1
|
Andersen CJ, Fernandez ML. Emerging Biomarkers and Determinants of Lipoprotein Profiles to Predict CVD Risk: Implications for Precision Nutrition. Nutrients 2024; 17:42. [PMID: 39796476 PMCID: PMC11722654 DOI: 10.3390/nu17010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Biomarkers constitute a valuable tool to diagnose both the incidence and the prevalence of chronic diseases and may help to inform the design and effectiveness of precision nutrition interventions. Cardiovascular disease (CVD) continues to be the foremost cause of death all over the world. While the reasons that lead to increased risk for CVD are multifactorial, dyslipidemias, plasma concentrations of specific lipoproteins, and dynamic measures of lipoprotein function are strong biomarkers to predict and document coronary heart disease incidence. The aim of this review is to provide a comprehensive evaluation of the biomarkers and emerging approaches that can be utilized to characterize lipoprotein profiles as predictive tools for assessing CVD risk, including the assessment of traditional clinical lipid panels, measures of lipoprotein efflux capacity and inflammatory and antioxidant activity, and omics-based characterization of lipoprotein composition and regulators of lipoprotein metabolism. In addition, we discuss demographic, genetic, metagenomic, and lifestyle determinants of lipoprotein profiles-such as age, sex, gene variants and single-nucleotide polymorphisms, gut microbiome profiles, dietary patterns, physical inactivity, obesity status, smoking and alcohol intake, and stress-which are likely to be essential factors to explain interindividual responses to precision nutrition recommendations to mitigate CVD risk.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
- School of Nutrition and Wellness, University of Arizona, Tucson, AZ 85712, USA
| |
Collapse
|
2
|
Expanding the Molecular Disturbances of Lipoproteins in Cardiometabolic Diseases: Lessons from Lipidomics. Diagnostics (Basel) 2023; 13:diagnostics13040721. [PMID: 36832218 PMCID: PMC9954993 DOI: 10.3390/diagnostics13040721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The increasing global burden of cardiometabolic diseases highlights the urgent clinical need for better personalized prediction and intervention strategies. Early diagnosis and prevention could greatly reduce the enormous socio-economic burden posed by these states. Plasma lipids including total cholesterol, triglycerides, HDL-C, and LDL-C have been at the center stage of the prediction and prevention strategies for cardiovascular disease; however, the bulk of cardiovascular disease events cannot be explained sufficiently by these lipid parameters. The shift from traditional serum lipid measurements that are poorly descriptive of the total serum lipidomic profile to comprehensive lipid profiling is an urgent need, since a wealth of metabolic information is currently underutilized in the clinical setting. The tremendous advances in the field of lipidomics in the last two decades has facilitated the research efforts to unravel the lipid dysregulation in cardiometabolic diseases, enabling the understanding of the underlying pathophysiological mechanisms and identification of predictive biomarkers beyond traditional lipids. This review presents an overview of the application of lipidomics in the study of serum lipoproteins in cardiometabolic diseases. Integrating the emerging multiomics with lipidomics holds great potential in moving toward this goal.
Collapse
|
3
|
Bordeianu G, Mitu I, Stanescu RS, Ciobanu CP, Petrescu-Danila E, Marculescu AD, Dimitriu DC. Circulating Biomarkers for Laboratory Diagnostics of Atherosclerosis-Literature Review. Diagnostics (Basel) 2022; 12:diagnostics12123141. [PMID: 36553147 PMCID: PMC9777004 DOI: 10.3390/diagnostics12123141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is still considered a disease burden with long-term damaging processes towards the cardiovascular system. Evaluation of atherosclerotic stages requires the use of independent markers such as those already considered traditional, that remain the main therapeutic target for patients with atherosclerosis, together with emerging biomarkers. The challenge is finding models of predictive markers that are particularly tailored to detect and evaluate the evolution of incipient vascular lesions. Important advances have been made in this field, resulting in a more comprehensible and stronger linkage between the lipidic profile and the continuous inflammatory process. In this paper, we analysed the most recent data from the literature studying the molecular mechanisms of biomarkers and their involvement in the cascade of events that occur in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
| | - Ivona Mitu
- Correspondence: (I.M.); (R.S.S.); Tel.: +40-75206-1747 (I.M.)
| | | | | | | | | | | |
Collapse
|
4
|
Donoso‐Quezada J, Ayala‐Mar S, González‐Valdez J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic 2021; 22:204-220. [PMID: 34053166 PMCID: PMC8361711 DOI: 10.1111/tra.12803] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Exosomes are extracellular vesicles that in recent years have received special attention for their regulatory functions in numerous biological processes. Recent evidence suggests a correlation between the composition of exosomes in body fluids and the progression of some disorders, such as cancer, diabetes and neurodegenerative diseases. In consequence, numerous studies have been performed to evaluate the composition of these vesicles, aiming to develop new biomarkers for diagnosis and to find novel therapeutic targets. On their part, lipids represent one of the most important components of exosomes, with important structural and regulatory functions during exosome biogenesis, release, targeting and cellular uptake. Therefore, exosome lipidomics has emerged as an innovative discipline for the discovery of novel lipid species with biomedical applications. This review summarizes the current knowledge about exosome lipids and their roles in exosome biology and intercellular communication. Furthermore, it presents the state-of-the-art analytical procedures used in exosome lipidomics while emphasizing how this emerging discipline is providing new insights for future applications of exosome lipids in biomedicine.
Collapse
Affiliation(s)
| | - Sergio Ayala‐Mar
- Tecnologico de MonterreySchool of Engineering and ScienceMonterreyNuevo LeónMexico
| | - José González‐Valdez
- Tecnologico de MonterreySchool of Engineering and ScienceMonterreyNuevo LeónMexico
| |
Collapse
|
5
|
Ding M, Rexrode KM. A Review of Lipidomics of Cardiovascular Disease Highlights the Importance of Isolating Lipoproteins. Metabolites 2020; 10:metabo10040163. [PMID: 32340170 PMCID: PMC7240942 DOI: 10.3390/metabo10040163] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cutting-edge lipidomic profiling measures hundreds or even thousands of lipids in plasma and is increasingly used to investigate mechanisms of cardiovascular disease (CVD). In this review, we introduce lipidomic techniques, describe distributions of lipids across lipoproteins, and summarize findings on the association of lipids with CVD based on lipidomics. The main findings of 16 cohort studies were that, independent of total and high-density lipoprotein cholesterol (HDL-c), ceramides (d18:1/16:0, d18:1/18:0, and d18:1/24:1) and phosphatidylcholines (PCs) containing saturated and monounsaturated fatty acyl chains are positively associated with risks of CVD outcomes, while PCs containing polyunsaturated fatty acyl chains (PUFA) are inversely associated with risks of CVD outcomes. Lysophosphatidylcholines (LPCs) may be positively associated with risks of CVD outcomes. Interestingly, the distributions of the identified lipids vary across lipoproteins: LPCs are primarily contained in HDLs, ceramides are mainly contained in low-density lipoproteins (LDLs), and PCs are distributed in both HDLs and LDLs. Thus, the potential mechanism behind previous findings may be related to the effect of the identified lipids on the biological functions of HDLs and LDLs. Only eight studies on the lipidomics of HDL and non-HDL particles and CVD outcomes have been conducted, which showed that higher triglycerides (TAGs), lower PUFA, lower phospholipids, and lower sphingomyelin content in HDLs might be associated with a higher risk of coronary heart disease (CHD). However, the generalizability of these studies is a major concern, given that they used case-control or cross-sectional designs in hospital settings, included a very small number of participants, and did not correct for multiple testing or adjust for blood lipids such as HDL-c, low-density lipoprotein cholesterol (LDL-c), or TAGs. Overall, findings from the literature highlight the importance of research on lipidomics of lipoproteins to enhance our understanding of the mechanism of the association between the identified lipids and the risk of CVD and allow the identification of novel lipid biomarkers in HDLs and LDLs, independent of HDL-c and LDL-c. Lipidomic techniques show the feasibility of this exciting research direction, and the lack of high-quality epidemiological studies warrants well-designed prospective cohort studies.
Collapse
Affiliation(s)
- Ming Ding
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
- Correspondence:
| | - Kathryn M. Rexrode
- Division of Women’s Health, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
6
|
Gouilleux B, Christensen NV, Malmos KG, Vosegaard T. Analytical Evaluation of Low-Field 31P NMR Spectroscopy for Lipid Analysis. Anal Chem 2019; 91:3035-3042. [PMID: 30657309 DOI: 10.1021/acs.analchem.8b05416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the potential of 31P NMR with simple, maintenance-free benchtop spectrometers to probe phospholipids in complex mixtures. 31P NMR-based lipidomics has become an important topic in a wide range of applications in food- and health-sciences, and the continuous improvements of compact, maintenance- and cryogen-free instruments opens new opportunities for NMR routine analyses. A prior milestone is the evaluation of the analytical performance provided by 31P NMR at low magnetic field. To address this, we assess the ability of state-of-the-art benchtop NMR spectrometers to detect, identify, and quantify several types of phospholipids in mixtures. Relying on heteronuclear cross-polarization experiments, phospholipids can be detected in 2 h with a limit of detection of 0.5 mM at 1 T and 0.2 mM at 2 T, while the headgroups of phosphatidylcholine (PC), phosphatidyl-ethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and phosphatidyl-glycerol (PG) can be unambiguously assigned based on 2D 1H-31P total correlated spectroscopy (TOCSY) spectra. Furthermore, two quantitative methods to obtain absolute concentrations are proposed and discussed, and the performance is evaluated regarding precision and accuracy.
Collapse
Affiliation(s)
- Boris Gouilleux
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Nichlas Vous Christensen
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Kirsten G Malmos
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Kostara CE, Lekkas P, Vezyraki P, Angelidis C, Deligiannis IK, Bairaktari ET, Kalfakakou V. Lipidome of plasma lipoproteins and liver is zinc- modulated in High fat diet treated mice. J Trace Elem Med Biol 2018; 50:268-275. [PMID: 30262290 DOI: 10.1016/j.jtemb.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Zinc (Zn) and Zn-transcription Factors regulate the metabolic pathways of lipids and glucose, consequently nutritional zinc deficiency or excess, activates stress pathways and deranges the hepatic metabolism of lipids. High fat diet (HFD) also leads to lipids' profile disorders as well as to intracellular free radicals (FR) accumulation and finally to metabolic stress-syndrome. Study of nutritional Zn effects on the lipidome of plasma lipoproteins and liver, in HFD-mice, was the aim of the present research. Three Zn enriched HF-Diets as follows, 3 mg/kg feed (Zn deficient diet), 30 mg/kg feed (Zn sufficient diet), 300mgZn /kg feed (Zn excess diet) (Mucedola s.r.l Italy-55% cal) were applied respectively to three groups of male wild type (wt) mice (Hybrid F1/F1),C57Bl/6xCBA, one month old, for 10 weeks. Accordingly, mice body weight rate and 1H-NMR spectrum analysis of liver extracts and plasma HDL and non-HDL lipoproteins were evaluated at the end of the experimental period. It is concluded that Zn sufficient diet (30 mg/Kg Feed) creates a highly protective lipidomic profile on plasma and liver lipoproteins of HFD-mice, related to significantly increased antiatherogenic indicators in lipids' composition, compared to mice in nutritional Zn deficiency or excess.
Collapse
Affiliation(s)
- Christina E Kostara
- Laboratory of Clinical Chemistry, Medical Department, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Panagiotis Lekkas
- Laboratory of Physiology-Unit of Environmental Physiology, Medical Department, School of Health Sciences, University of Ioannina, Ioannina, Greece.
| | - Patra Vezyraki
- Laboratory of Physiology-Unit of Environmental Physiology, Medical Department, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Charalampos Angelidis
- Laboratory of Biology, Medical Department, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ioannis-Konstantinos Deligiannis
- Laboratory of Physiology-Unit of Environmental Physiology, Medical Department, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eleni T Bairaktari
- Laboratory of Clinical Chemistry, Medical Department, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Vasiliki Kalfakakou
- Laboratory of Physiology-Unit of Environmental Physiology, Medical Department, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
8
|
Barrilero R, Gil M, Amigó N, Dias CB, Wood LG, Garg ML, Ribalta J, Heras M, Vinaixa M, Correig X. LipSpin: A New Bioinformatics Tool for Quantitative 1H NMR Lipid Profiling. Anal Chem 2018; 90:2031-2040. [PMID: 29293319 DOI: 10.1021/acs.analchem.7b04148] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The structural similarity among lipid species and the low sensitivity and spectral resolution of nuclear magnetic resonance (NMR) have traditionally hampered the routine use of 1H NMR lipid profiling of complex biological samples in metabolomics, which remains mostly manual and lacks freely available bioinformatics tools. However, 1H NMR lipid profiling provides fast quantitative screening of major lipid classes (fatty acids, glycerolipids, phospholipids, and sterols) and some individual species and has been used in several clinical and nutritional studies, leading to improved risk prediction models. In this Article, we present LipSpin, a free and open-source bioinformatics tool for quantitative 1H NMR lipid profiling. LipSpin implements a constrained line shape fitting algorithm based on voigt profiles and spectral templates from spectra of lipid standards, which automates the analysis of severely overlapped spectral regions and lipid signals with complex coupling patterns. LipSpin provides the most detailed quantification of fatty acid families and choline phospholipids in serum lipid samples by 1H NMR to date. Moreover, analytical and clinical results using LipSpin quantifications conform with other techniques commonly used for lipid analysis.
Collapse
Affiliation(s)
- Rubén Barrilero
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain
| | - Miriam Gil
- Biosfer Teslab S.L. , Reus, 43201, Spain
| | - Núria Amigó
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain.,Biosfer Teslab S.L. , Reus, 43201, Spain
| | - Cintia B Dias
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Lisa G Wood
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Manohar L Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle , Callaghan, New South Wales 2308, Australia
| | - Josep Ribalta
- Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain.,Unitat de Recerca en Lípids i Arteriosclerosi, Facultat de Medicina, Universitat Rovira i Virgili , Reus, 43201, Spain
| | - Mercedes Heras
- Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain.,Unitat de Recerca en Lípids i Arteriosclerosi, Facultat de Medicina, Universitat Rovira i Virgili , Reus, 43201, Spain
| | - Maria Vinaixa
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain
| | - Xavier Correig
- Department of Electronic Engineering, Universitat Rovira i Virgili , Metabolomics Platform, URV, Tarragona, 43007, Spain.,Pere Virgili Health Research Institute, IISPV , Reus, 43204, Spain.,Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid, 28029, Spain
| |
Collapse
|
9
|
Li J, Vosegaard T, Guo Z. Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Prog Lipid Res 2017; 68:37-56. [PMID: 28911967 DOI: 10.1016/j.plipres.2017.09.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/25/2017] [Accepted: 09/11/2017] [Indexed: 02/01/2023]
Abstract
The role of lipids in cell, tissue, and organ physiology is crucial; as many diseases, including cancer, diabetes, neurodegenerative, and infectious diseases, are closely related to absorption and metabolism of lipids. Mass spectrometry (MS) based methods are the most developed powerful tools to study the synthetic pathways and metabolic networks of cellular lipids in biological systems; leading to the birth of an emerging subject lipidomics, which has been extensively reviewed. Nuclear magnetic resonance (NMR), another powerful analytical tool, which allows the visualization of single atoms and molecules, is receiving increasing attention in lipidomics analyses. However, very little work focusing on lipidomic studies using NMR has been critically reviewed. This paper presents a first comprehensive summary of application of 1H, 13C &31P NMR in lipids and lipidomics analyses. The scientific basis, principles and characteristic diagnostic peaks assigned to specific atoms/molecular structures of lipids are presented. Applications of 2D NMR in mapping and monitoring of the components and their changes in complex lipids systems, as well as alteration of lipid profiling over disease development are also reviewed. The applications of NMR lipidomics in diseases diagnosis and food adulteration are exemplified.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Engineering, Faculty of Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark.
| | - Thomas Vosegaard
- Danish Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Zheng Guo
- Department of Engineering, Faculty of Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark.
| |
Collapse
|
10
|
Kubicek-Sutherland JZ, Vu DM, Mendez HM, Jakhar S, Mukundan H. Detection of Lipid and Amphiphilic Biomarkers for Disease Diagnostics. BIOSENSORS-BASEL 2017; 7:bios7030025. [PMID: 28677660 PMCID: PMC5618031 DOI: 10.3390/bios7030025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/24/2022]
Abstract
Rapid diagnosis is crucial to effectively treating any disease. Biological markers, or biomarkers, have been widely used to diagnose a variety of infectious and non-infectious diseases. The detection of biomarkers in patient samples can also provide valuable information regarding progression and prognosis. Interestingly, many such biomarkers are composed of lipids, and are amphiphilic in biochemistry, which leads them to be often sequestered by host carriers. Such sequestration enhances the difficulty of developing sensitive and accurate sensors for these targets. Many of the physiologically relevant molecules involved in pathogenesis and disease are indeed amphiphilic. This chemical property is likely essential for their biological function, but also makes them challenging to detect and quantify in vitro. In order to understand pathogenesis and disease progression while developing effective diagnostics, it is important to account for the biochemistry of lipid and amphiphilic biomarkers when creating novel techniques for the quantitative measurement of these targets. Here, we review techniques and methods used to detect lipid and amphiphilic biomarkers associated with disease, as well as their feasibility for use as diagnostic targets, highlighting the significance of their biochemical properties in the design and execution of laboratory and diagnostic strategies. The biochemistry of biological molecules is clearly relevant to their physiological function, and calling out the need for consideration of this feature in their study, and use as vaccine, diagnostic and therapeutic targets is the overarching motivation for this review.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Dung M Vu
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Heather M Mendez
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA.
- The New Mexico Consortium, Los Alamos, NM 87544, USA.
| | - Shailja Jakhar
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
11
|
Flote VG, Vettukattil R, Bathen TF, Egeland T, McTiernan A, Frydenberg H, Husøy A, Finstad SE, Lømo J, Garred Ø, Schlichting E, Wist EA, Thune I. Lipoprotein subfractions by nuclear magnetic resonance are associated with tumor characteristics in breast cancer. Lipids Health Dis 2016; 15:56. [PMID: 26970778 PMCID: PMC4789271 DOI: 10.1186/s12944-016-0225-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/08/2016] [Indexed: 12/25/2022] Open
Abstract
Background High-Density Lipoprotein (HDL)-cholesterol, has been associated with breast cancer development, but the association is under debate, and whether lipoprotein subfractions is associated with breast tumor characteristics remains unclear. Methods Among 56 women with newly diagnosed invasive breast cancer stage I/II, aged 35–75 years, pre-surgery overnight fasting serum concentrations of lipids were assessed, and body mass index (BMI) was measured. All breast tumors were immunohistochemically examined in the surgical specimen. Serum metabolomics of lipoprotein subfractions and their contents of cholesterol, free cholesterol, phospholipids, apolipoprotein-A1 and apolipoprotein-A2, were assessed using nuclear magnetic resonance. Principal component analysis, partial least square analysis, and uni- and multivariable linear regression models were used to study whether lipoprotein subfractions were associated with breast cancer tumor characteristics. Results The breast cancer patients had following means: age at diagnosis: 55.1 years; BMI: 25.1 kg/m2; total-Cholesterol: 5.74 mmol/L; HDL-Cholesterol: 1.78 mmol/L; Low-Density Lipoprotein (LDL)-Cholesterol: 3.45 mmol/L; triglycerides: 1.18 mmol/L. The mean tumor size was 16.4 mm, and the mean Ki67 hotspot index was 26.5 %. Most (93 %) of the patients had estrogen receptor (ER) positive tumors (≥1 % ER+), and 82 % had progesterone receptor (PgR) positive tumors (≥10 % PgR+). Several HDL subfraction contents were strongly associated with PgR expression: Apolipoprotein-A1 (β 0.46, CI 0.22–0.69, p < 0.001), HDL cholesterol (β 0.95, CI 0.51–1.39, p < 0.001), HDL free cholesterol (β 2.88, CI 1.28–4.48, p = 0.001), HDL phospholipids (β 0.70, CI 0.36–1.04, p < 0.001). Similar results were observed for the subfractions of HDL1-3. We observed inverse associations between HDL phospholipids and Ki67 (β -0.25, p = 0.008), and in particular between HDL1’s contents of cholesterol, phospholipids, apolipoprotein-A1, apolipoprotein-A2 and Ki67. No association was observed between lipoproteins and ER expression. Conclusion Our findings hypothesize associations between different lipoprotein subfractions, and PgR expression, and Ki 67 % in breast tumors. These findings may have clinical implications, but require confirmation in larger studies. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0225-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vidar G Flote
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway.
| | - Riyas Vettukattil
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thore Egeland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432, Aas, Norway
| | - Anne McTiernan
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hanne Frydenberg
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway
| | - Anders Husøy
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway
| | - Sissi E Finstad
- Norwegian Directorate of Health, PO Box 7000, St. Olavs plass, N-0130, Oslo, Norway
| | - Jon Lømo
- Department of Pathology, Oslo University Hospital, N-0424, Oslo, Norway
| | - Øystein Garred
- Department of Pathology, Oslo University Hospital, N-0424, Oslo, Norway
| | - Ellen Schlichting
- Department of Breast and Endocrine Surgery, Oslo University Hospital, N-0424, Oslo, Norway
| | - Erik A Wist
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway
| | - Inger Thune
- The Cancer Centre, Oslo University Hospital HF, N-0424, Oslo, Norway.,Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, N-9037, Tromsø, Norway
| |
Collapse
|
12
|
Dysfunctional High-Density Lipoprotein: An Innovative Target for Proteomics and Lipidomics. CHOLESTEROL 2015; 2015:296417. [PMID: 26634153 PMCID: PMC4655037 DOI: 10.1155/2015/296417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 02/02/2023]
Abstract
High-Density Lipoprotein-Cholesterol (HDL-C) is regarded as an important protective factor against cardiovascular disease, with abundant evidence of an inverse relationship between its serum levels and risk of cardiovascular disease, as well as various antiatherogenic, antioxidant, and anti-inflammatory properties. Nevertheless, observations of hereditary syndromes featuring scant HDL-C concentration in absence of premature atherosclerotic disease suggest HDL-C levels may not be the best predictor of cardiovascular disease. Indeed, the beneficial effects of HDL may not depend solely on their concentration, but also on their quality. Distinct subfractions of this lipoprotein appear to be constituted by specific protein-lipid conglomerates necessary for different physiologic and pathophysiologic functions. However, in a chronic inflammatory microenvironment, diverse components of the HDL proteome and lipid core suffer alterations, which propel a shift towards a dysfunctional state, where HDL-C becomes proatherogenic, prooxidant, and proinflammatory. This heterogeneity highlights the need for further specialized molecular studies in this aspect, in order to achieve a better understanding of this dysfunctional state; with an emphasis on the potential role for proteomics and lipidomics as valuable methods in the search of novel therapeutic approaches for cardiovascular disease.
Collapse
|
13
|
Kostara CE, Papathanasiou A, Psychogios N, Cung MT, Elisaf MS, Goudevenos J, Bairaktari ET. NMR-Based Lipidomic Analysis of Blood Lipoproteins Differentiates the Progression of Coronary Heart Disease. J Proteome Res 2014; 13:2585-98. [DOI: 10.1021/pr500061n] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | | | | | - Manh Thong Cung
- Laboratoire
de Chimie-Physique Macromoléculaire, UMR 7568 CNRS-INPL, Nancy-Université, 1 Rue Grandville, B.P. 20451, 54001 Nancy Cedex, France
| | | | | | | |
Collapse
|