1
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate mesoderm development. Genes Dev 2024; 38:393-414. [PMID: 38834239 PMCID: PMC11216173 DOI: 10.1101/gad.351593.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
The fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1-null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identified processes regulating early mesoderm development by mechanisms involving both canonical and noncanonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
2
|
Clark JF, Soriano P. Diverse Fgfr1 signaling pathways and endocytic trafficking regulate early mesoderm development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580629. [PMID: 38405698 PMCID: PMC10888970 DOI: 10.1101/2024.02.16.580629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Fibroblast growth factor (FGF) pathway is a conserved signaling pathway required for embryonic development. Activated FGF receptor 1 (FGFR1) drives multiple intracellular signaling cascade pathways, including ERK/MAPK and PI3K/AKT, collectively termed canonical signaling. However, unlike Fgfr1 null embryos, embryos containing hypomorphic mutations in Fgfr1 lacking the ability to activate canonical downstream signals are still able to develop to birth, but exhibit severe defects in all mesodermal-derived tissues. The introduction of an additional signaling mutation further reduces the activity of Fgfr1, leading to earlier lethality, reduced somitogenesis, and more severe changes in transcriptional outputs. Genes involved in migration, ECM-interaction, and phosphoinositol signaling were significantly downregulated, proteomic analysis identified changes in interactions with endocytic pathway components, and cells expressing mutant receptors show changes in endocytic trafficking. Together, we identify processes regulating early mesoderm development by mechanisms involving both canonical and non-canonical Fgfr1 pathways, including direct interaction with cell adhesion components and endocytic regulation.
Collapse
Affiliation(s)
- James F. Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
3
|
Safarpour S, Mirzavi F, Rahmani F, Forouzanfar F, Sadeghnia HR, Mashkani B, Hamidi Alamdari D, Soukhtanloo M. Fenugreek Seed Extract Regulates Human Umbilical Vein Endothelial Cell Angiogenesis and Proliferation via the PI3K/Akt/Cyclin D1 Pathway. Altern Lab Anim 2023; 51:249-257. [PMID: 37345436 DOI: 10.1177/02611929231181623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The significance of angiogenesis in tumour progression has been widely documented. Hence, the identification of anti-angiogenic agents with fewer common side effects would be valuable in cancer therapy. In this study, we evaluated the anti-angiogenic and anti-proliferative effects of a hydro-alcoholic extract of fenugreek seed (HAEF) on human umbilical vein endothelial cells (HUVECs). Human umbilical vein endothelial cells were treated with various concentrations of HAEF and the half-maximal inhibitory concentration (IC50) value was estimated by using the MTT assay. Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and matrix metalloproteinase enzyme (MMP-2 and MMP-9) gene expression profiles were evaluated by using quantitative RT-PCR (qRT-PCR). Moreover, MMP activities and PI3K, Akt and cyclin D1 protein expression levels were evaluated by gel zymography and Western blotting, respectively. HAEF reduced HUVEC viability, with an IC50 value of 200 μg/ml. The qRT-PCR results demonstrated that treatment with HAEF markedly reduced MMP-2/MMP-9, VEGF and bFGF gene expression, as compared to the control group. We also found that MMP-2/MMP-9 enzyme activity and PI3K/Akt/cyclin D1 protein expression were notably decreased in cells treated with HAEF. Our results suggest that HAEF can potentially inhibit angiogenesis, and also affect cellular proliferation by targeting the PI3K/Akt/cyclin D1 pathway. Thus, fenugreek seed extract merits further investigation as a source of compounds with anti-cancer properties.
Collapse
Affiliation(s)
- Samaneh Safarpour
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Farzad Rahmani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Hamidi Alamdari
- Surgical Oncology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Zahra FT, Sajib MS, Mikelis CM. Role of bFGF in Acquired Resistance upon Anti-VEGF Therapy in Cancer. Cancers (Basel) 2021; 13:1422. [PMID: 33804681 PMCID: PMC8003808 DOI: 10.3390/cancers13061422] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Anti-angiogenic approaches targeting the vascular endothelial growth factor (VEGF) signaling pathway have been a significant research focus during the past decades and are well established in clinical practice. Despite the expectations, their benefit is ephemeral in several diseases, including specific cancers. One of the most prominent side effects of the current, VEGF-based, anti-angiogenic treatments remains the development of resistance, mostly due to the upregulation and compensatory mechanisms of other growth factors, with the basic fibroblast growth factor (bFGF) being at the top of the list. Over the past decade, several anti-angiogenic approaches targeting simultaneously different growth factors and their signaling pathways have been developed and some have reached the clinical practice. In the present review, we summarize the knowledge regarding resistance mechanisms upon anti-angiogenic treatment, mainly focusing on bFGF. We discuss its role in acquired resistance upon prolonged anti-angiogenic treatment in different tumor settings, outline the reported resistance mechanisms leading to bFGF upregulation, and summarize the efforts and outcome of combined anti-angiogenic approaches to date.
Collapse
Affiliation(s)
| | | | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (F.T.Z.); (M.S.S.)
| |
Collapse
|
5
|
Cunningham DL, Sarhan AR, Creese AJ, Larkins KPB, Zhao H, Ferguson HR, Brookes K, Marusiak AA, Cooper HJ, Heath JK. Differential responses to kinase inhibition in FGFR2-addicted triple negative breast cancer cells: a quantitative phosphoproteomics study. Sci Rep 2020; 10:7950. [PMID: 32409632 PMCID: PMC7224374 DOI: 10.1038/s41598-020-64534-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Fibroblast Growth Factor (FGF) dependent signalling is frequently activated in cancer by a variety of different mechanisms. However, the downstream signal transduction pathways involved are poorly characterised. Here a quantitative differential phosphoproteomics approach, SILAC, is applied to identify FGF-regulated phosphorylation events in two triple- negative breast tumour cell lines, MFM223 and SUM52, that exhibit amplified expression of FGF receptor 2 (FGFR2) and are dependent on continued FGFR2 signalling for cell viability. Comparative Gene Ontology proteome analysis revealed that SUM52 cells were enriched in proteins associated with cell metabolism and MFM223 cells enriched in proteins associated with cell adhesion and migration. FGFR2 inhibition by SU5402 impacts a significant fraction of the observed phosphoproteome of these cells. This study expands the known landscape of FGF signalling and identifies many new targets for functional investigation. FGF signalling pathways are found to be flexible in architecture as both shared, and divergent, responses to inhibition of FGFR2 kinase activity in the canonical RAF/MAPK/ERK/RSK and PI3K/AKT/PDK/mTOR/S6K pathways are identified. Inhibition of phosphorylation-dependent negative-feedback pathways is observed, defining mechanisms of intrinsic resistance to FGFR2 inhibition. These findings have implications for the therapeutic application of FGFR inhibitors as they identify both common and divergent responses in cells harbouring the same genetic lesion and pathways of drug resistance.
Collapse
Affiliation(s)
- Debbie L Cunningham
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Adil R Sarhan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah, 6400, Iraq
| | - Andrew J Creese
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Immunocore, 101 Park Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Hongyan Zhao
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Harriet R Ferguson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Katie Brookes
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anna A Marusiak
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 02-097, Warszawa, Poland
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - John K Heath
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Letsiou S, Bakea A, Le Goff G, Lopes P, Gardikis Κ, Alonso C, Álvarez PA, Ouazzani J. In vitro protective effects of marine-derived Aspergillus puulaauensis TM124-S4 extract on H 2O 2-stressed primary human fibroblasts. Toxicol In Vitro 2020; 66:104869. [PMID: 32320759 DOI: 10.1016/j.tiv.2020.104869] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
Abstract
Nowadays, there is a huge interest in natural products obtained from marine organisms that can promote human health.The aim of the present study is to evaluate for the first time, the in vitro effects of marine Aspergillus puulaauensis TM124-S4 extract against oxidative stress in human fibroblasts, and its potential as a cosmetic ingredient. The strain was isolated from the Mediterranean Sea star, Echinaster sepositus, and identified according to ITS molecular sequence homology as a member of Aspergillus section versicolores.To gain insight on the bioactivity underpinning the effects of TM124-S4 extract on oxidative stress, we examined a panel of a hundred genes as well as cell viability. Initially, Aspergillus puulaauensis TM124-S4 promoted cell viability.The change in gene transcripts revealed that Aspergillus puulaauensis TM124-S4 extracts exhibited skin protection properties by mediating cell proliferation (EPS8, GDF15, CASP7, VEGFA), antioxidant response (CAT, SOD1, TXN, GPX1), skin hydration (CD44, CRABP2, SERPINE) and DNA repair (PCNA, P21). The extract also modulated the expression of genes involved in skin pigmentation and aging (TYR, FOXO3).These findings indicate that Aspergillus puulaauensis TM124-S4 extract possesses significant in-vitro skin protection activity against induced oxidative stress.Furthermore, new insights are provided into the beneficial role of fungal bioactive compounds in skin related research.
Collapse
Affiliation(s)
- Sophia Letsiou
- Laboratory of Biochemistry, Research and Development department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, 19003 Markopoulo Attiki, Athens, Greece.
| | - Artemis Bakea
- Laboratory of Biochemistry, Research and Development department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, 19003 Markopoulo Attiki, Athens, Greece
| | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Avenue de la Terrasse 91198, Gif-sur-Yvette, France
| | - Philippe Lopes
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Avenue de la Terrasse 91198, Gif-sur-Yvette, France
| | - Κonstantinos Gardikis
- Laboratory of Biochemistry, Research and Development department, APIVITA S.A., Industrial Park of Markopoulo Mesogaias, 19003 Markopoulo Attiki, Athens, Greece
| | | | | | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, Centre National de la Recherche Scientifique CNRS, Avenue de la Terrasse 91198, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Blackwood CA, Leary M, Salisbury A, McCoy MT, Cadet JL. Escalated Oxycodone Self-Administration Causes Differential Striatal mRNA Expression of FGFs and IEGs Following Abstinence-Associated Incubation of Oxycodone Craving. Neuroscience 2019; 415:173-183. [PMID: 31351142 DOI: 10.1016/j.neuroscience.2019.07.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Addiction to prescribed opioids including oxycodone has reached tragic levels. Herein, we investigated the relevance of fibroblast growth factors (FGFs) and immediate early genes (IEGs) to withdrawal-induced incubation of drug craving following escalated oxycodone self-administration (SA). Rats were trained to self-administer oxycodone for 4 weeks. Seeking tests were performed at various intervals during 1 month of drug withdrawal. Rats were euthanized 1 day after the last test and nucleus accumbens and dorsal striata were dissected for use in PCR analyses. Rats given long access (LgA, 9 h), but not short access (ShA, 3 h) to drug escalated their oxycodone intake and exhibited incubation of oxycodone seeking during withdrawal. These rats exhibited dose-dependent increases in fgf2 expression in the dorsal striatum. Fgfr2 expression was also significantly increased in the striatum in LgA, but not ShA groups. Similarly, striatal c-fos and junB mRNA levels showed greater increases in LgA rats. The observations that fgf mRNA levels were more altered in the dorsal striatum than in the NAc of LgA rats suggest that changes in striatal FGF expression may be more salient to incubation of oxycodone craving than alterations in the NAc. Targeting FGF signaling pathways might offer novel strategies against opioid addiction.
Collapse
Affiliation(s)
- Christopher A Blackwood
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program 251 Bayview Boulevard, Baltimore, MD 21224, United States of America
| | - Michael Leary
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program 251 Bayview Boulevard, Baltimore, MD 21224, United States of America
| | - Aaron Salisbury
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program 251 Bayview Boulevard, Baltimore, MD 21224, United States of America
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program 251 Bayview Boulevard, Baltimore, MD 21224, United States of America
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program 251 Bayview Boulevard, Baltimore, MD 21224, United States of America.
| |
Collapse
|
8
|
Baird MA, Pathak P, Shvartsburg AA. Elemental Dependence of Structurally Specific Isotopic Shifts in High-Field Ion Mobility Spectra. Anal Chem 2019; 91:3687-3693. [DOI: 10.1021/acs.analchem.8b05801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Matthew A. Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Pratima Pathak
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| | - Alexandre A. Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260, United States
| |
Collapse
|
9
|
Hoedt E, Zhang G, Neubert TA. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) for Quantitative Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:531-539. [PMID: 31347069 DOI: 10.1007/978-3-030-15950-4_31] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover.
Collapse
Affiliation(s)
- Esthelle Hoedt
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Thomas A Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Chouinard CD, Nagy G, Webb IK, Shi T, Baker ES, Prost SA, Liu T, Ibrahim YM, Smith RD. Improved Sensitivity and Separations for Phosphopeptides using Online Liquid Chromotography Coupled with Structures for Lossless Ion Manipulations Ion Mobility-Mass Spectrometry. Anal Chem 2018; 90:10889-10896. [PMID: 30118596 PMCID: PMC6211290 DOI: 10.1021/acs.analchem.8b02397] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphoproteomics greatly augments proteomics and holds tremendous potential for insights into the modulation of biological systems for various disease states. However, numerous challenges hinder conventional methods in terms of measurement sensitivity, throughput, quantification, and capabilities for confident phosphopeptide and phosphosite identification. In this work, we report the first example of integrating structures for lossless ion manipulations ion mobility-mass spectrometry (SLIM IM-MS) with online reversed-phase liquid chromatography (LC) to evaluate its potential for addressing the aforementioned challenges. A mixture of 51 heavy-labeled phosphopeptides was analyzed with a SLIM IM module having integrated ion accumulation and long-path separation regions. The SLIM IM-MS provided limits of detection as low as 50-100 pM (50-100 amol/μL) for several phosphopeptides, with the potential for significant further improvements. In addition, conventionally problematic phosphopeptide isomers could be resolved following an 18 m SLIM IM separation. The 2-D LC-IM peak capacity was estimated as ∼9000 for a 90 min LC separation coupled to an 18 m SLIM IM separation, considerably higher than LC alone and providing a basis for both improved identification and quantification, with additional gains projected with the future use of longer path SLIM IM separations. Thus, LC-SLIM IM-MS offers great potential for improving the sensitivity, separation, and throughput of phosphoproteomics analyses.
Collapse
Affiliation(s)
- Christopher D. Chouinard
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ian K. Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erin S. Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Spencer A. Prost
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Garabedian A, Baird M, Porter J, Jeanne Dit Fouque K, Shliaha PV, Jensen ON, Williams TD, Fernandez-Lima F, Shvartsburg A. Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal Chem 2018; 90:2918-2925. [PMID: 29359922 PMCID: PMC6366606 DOI: 10.1021/acs.analchem.7b05224] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Comprehensive characterization of proteomes comprising the same proteins with distinct post-translational modifications (PTMs) is a staggering challenge. Many such proteoforms are isomers (localization variants) that require separation followed by top-down or middle-down mass spectrometric analyses, but condensed-phase separations are ineffective in those size ranges. The variants for "middle-down" peptides were resolved by differential ion mobility spectrometry (FAIMS), relying on the mobility increment at high electric fields, but not previously by linear IMS on the basis of absolute mobility. We now use complete histone tails with diverse PTMs on alternative sites to demonstrate that high-resolution linear IMS, here trapped IMS (TIMS), broadly resolves the variants of ∼50 residues in full or into binary mixtures quantifiable by tandem MS, largely thanks to orthogonal separations across charge states. Separations using traveling-wave (TWIMS) and/or involving various time scales and electrospray ionization source conditions are similar (with lower resolution for TWIMS), showing the transferability of results across linear IMS instruments. The linear IMS and FAIMS dimensions are substantially orthogonal, suggesting FAIMS/IMS/MS as a powerful platform for proteoform analyses.
Collapse
Affiliation(s)
- Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
| | - Matthew Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260
| | - Jacob Porter
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199
| | | | - Pavel V. Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Todd D. Williams
- Mass Spectrometry Laboratory, University of Kansas, Lawrence, KS 66045
| | | | - Alexandre Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260
| |
Collapse
|
12
|
Caron JM, Ames JJ, Contois L, Liebes L, Friesel R, Muggia F, Vary CPH, Oxburgh L, Brooks PC. Inhibition of Ovarian Tumor Growth by Targeting the HU177 Cryptic Collagen Epitope. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:1649-61. [PMID: 27216148 DOI: 10.1016/j.ajpath.2016.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/22/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022]
Abstract
Evidence suggests that stromal cells play critical roles in tumor growth. Uncovering new mechanisms that control stromal cell behavior and their accumulation within tumors may lead to development of more effective treatments. We provide evidence that the HU177 cryptic collagen epitope is selectively generated within human ovarian carcinomas and this collagen epitope plays a role in SKOV-3 ovarian tumor growth in vivo. The ability of the HU177 epitope to regulate SKOV-3 tumor growth depends in part on its ability to modulate stromal cell behavior because targeting this epitope inhibited angiogenesis and, surprisingly, the accumulation of α-smooth muscle actin-expressing stromal cells. Integrin α10β1 can serve as a receptor for the HU177 epitope in α-smooth muscle actin-expressing stromal cells and subsequently regulates Erk-dependent migration. These findings are consistent with a mechanism by which the generation of the HU177 collagen epitope provides a previously unrecognized α10β1 ligand that selectively governs angiogenesis and the accumulation of stromal cells, which in turn secrete protumorigenic factors that contribute to ovarian tumor growth. Our findings provide a new mechanistic understanding into the roles by which the HU177 epitope regulates ovarian tumor growth and provide new insight into the clinical results from a phase 1 human clinical study of the monoclonal antibody D93/TRC093 in patients with advanced malignant tumors.
Collapse
Affiliation(s)
- Jennifer M Caron
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Jacquelyn J Ames
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Liangru Contois
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Leonard Liebes
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Robert Friesel
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Franco Muggia
- New York University Langone Medical Center, Division of Hematology and Medical Oncology, New York, New York
| | - Calvin P H Vary
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Leif Oxburgh
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Peter C Brooks
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine.
| |
Collapse
|
13
|
LPP is a Src substrate required for invadopodia formation and efficient breast cancer lung metastasis. Nat Commun 2017; 8:15059. [PMID: 28436416 PMCID: PMC5413977 DOI: 10.1038/ncomms15059] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/24/2017] [Indexed: 01/17/2023] Open
Abstract
We have previously shown that lipoma preferred partner (LPP) mediates TGFβ-induced breast cancer cell migration and invasion. Herein, we demonstrate that diminished LPP expression reduces circulating tumour cell numbers, impairs cancer cell extravasation and diminishes lung metastasis. LPP localizes to invadopodia, along with Tks5/actin, at sites of matrix degradation and at the tips of extravasating breast cancer cells as revealed by intravital imaging of the chick chorioallantoic membrane (CAM). Invadopodia formation, breast cancer cell extravasation and metastasis require an intact LPP LIM domain and the ability of LPP to interact with α-actinin. Finally, we show that Src-mediated LPP phosphorylation at specific tyrosine residues (Y245/301/302) is critical for invadopodia formation, breast cancer cell invasion and metastasis. Together, these data define a previously unknown function for LPP in the formation of invadopodia and reveal a requirement for LPP in mediating the metastatic ability of breast cancer cells.
Collapse
|
14
|
Chapman JR, Katsara O, Ruoff R, Morgenstern D, Nayak S, Basilico C, Ueberheide B, Kolupaeva V. Phosphoproteomics of Fibroblast Growth Factor 1 (FGF1) Signaling in Chondrocytes: Identifying the Signature of Inhibitory Response. Mol Cell Proteomics 2017; 16:1126-1137. [PMID: 28298517 DOI: 10.1074/mcp.m116.064980] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/10/2017] [Indexed: 01/03/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling is vital for many biological processes, beginning with development. The importance of FGF signaling for skeleton formation was first discovered by the analysis of genetic FGFR mutations which cause several bone morphogenetic disorders, including achondroplasia, the most common form of human dwarfism. The formation of the long bones is mediated through proliferation and differentiation of highly specialized cells - chondrocytes.Chondrocytes respond to FGF with growth inhibition, a unique response which differs from the proliferative response of the majority of cell types; however, its molecular determinants are still unclear. Quantitative phosphoproteomic analysis was utilized to catalogue the proteins whose phosphorylation status is changed upon FGF1 treatment. The generated dataset consists of 756 proteins. We could localize the divergence between proliferative (canonical) and inhibitory (chondrocyte specific) FGF transduction pathways immediately upstream of AKT kinase. Gene Ontology (GO) analysis of the FGF1 regulated peptides revealed that many of the identified phosphorylated proteins are assigned to negative regulation clusters, in accordance with the observed inhibitory growth response. This is the first time a comprehensive subset of proteins involved in FGF inhibitory response is defined. We were able to identify a number of targets and specifically discover glycogen synthase kinase3β (GSK3β) as a novel key mediator of FGF inhibitory response in chondrocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Beatrix Ueberheide
- From the ‡Proteomics Laboratory.,¶Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, 550 First Avenue, New York, New York 10016
| | | |
Collapse
|
15
|
Baird MA, Shvartsburg AA. Localization of Post-Translational Modifications in Peptide Mixtures via High-Resolution Differential Ion Mobility Separations Followed by Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:2064-2070. [PMID: 27644938 PMCID: PMC7063994 DOI: 10.1007/s13361-016-1498-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 05/02/2023]
Abstract
Precise localization of post-translational modifications (PTMs) on proteins and peptides is an outstanding challenge in proteomics. While electron transfer dissociation (ETD) has dramatically advanced PTM analyses, mixtures of localization variants that commonly coexist in cells often require prior separation. Although differential or field asymmetric waveform ion mobility spectrometry (FAIMS) achieves broad variant resolution, the need for standards to identify the features has limited the utility of approach. Here we demonstrate full a priori characterization of variant mixtures by high-resolution FAIMS coupled to ETD and the procedures to systematically extract the FAIMS spectra for all variants from such data. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Matthew A Baird
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS, 67260-0051, USA
| | - Alexandre A Shvartsburg
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS, 67260-0051, USA.
| |
Collapse
|
16
|
The SHIP2 interactor Myo1c is required for cell migration in 1321 N1 glioblastoma cells. Biochem Biophys Res Commun 2016; 476:508-514. [DOI: 10.1016/j.bbrc.2016.05.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/28/2016] [Indexed: 12/29/2022]
|
17
|
Sarhan AR, Patel TR, Creese AJ, Tomlinson MG, Hellberg C, Heath JK, Hotchin NA, Cunningham DL. Regulation of Platelet Derived Growth Factor Signaling by Leukocyte Common Antigen-related (LAR) Protein Tyrosine Phosphatase: A Quantitative Phosphoproteomics Study. Mol Cell Proteomics 2016; 15:1823-36. [PMID: 27074791 DOI: 10.1074/mcp.m115.053652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Indexed: 02/01/2023] Open
Abstract
Intracellular signaling pathways are reliant on protein phosphorylation events that are controlled by a balance of kinase and phosphatase activity. Although kinases have been extensively studied, the role of phosphatases in controlling specific cell signaling pathways has been less so. Leukocyte common antigen-related protein (LAR) is a member of the LAR subfamily of receptor-like protein tyrosine phosphatases (RPTPs). LAR is known to regulate the activity of a number of receptor tyrosine kinases, including platelet-derived growth factor receptor (PDGFR). To gain insight into the signaling pathways regulated by LAR, including those that are PDGF-dependent, we have carried out the first systematic analysis of LAR-regulated signal transduction using SILAC-based quantitative proteomic and phosphoproteomic techniques. We haveanalyzed differential phosphorylation between wild-type mouse embryo fibroblasts (MEFs) and MEFs in which the LAR cytoplasmic phosphatase domains had been deleted (LARΔP), and found a significant change in abundance of phosphorylation on 270 phosphosites from 205 proteins because of the absence of the phosphatase domains of LAR. Further investigation of specific LAR-dependent phosphorylation sites and enriched biological processes reveal that LAR phosphatase activity impacts on a variety of cellular processes, most notably regulation of the actin cytoskeleton. Analysis of putative upstream kinases that may play an intermediary role between LAR and the identified LAR-dependent phosphorylation events has revealed a role for LAR in regulating mTOR and JNK signaling.
Collapse
Affiliation(s)
- Adil R Sarhan
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Trushar R Patel
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Andrew J Creese
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Michael G Tomlinson
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carina Hellberg
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - John K Heath
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Neil A Hotchin
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Debbie L Cunningham
- ‡From the School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
18
|
Abstract
The fibroblast growth factor (Fgf) family of ligands and receptor tyrosine kinases is required throughout embryonic and postnatal development and also regulates multiple homeostatic functions in the adult. Aberrant Fgf signaling causes many congenital disorders and underlies multiple forms of cancer. Understanding the mechanisms that govern Fgf signaling is therefore important to appreciate many aspects of Fgf biology and disease. Here we review the mechanisms of Fgf signaling by focusing on genetic strategies that enable in vivo analysis. These studies support an important role for Erk1/2 as a mediator of Fgf signaling in many biological processes but have also provided strong evidence for additional signaling pathways in transmitting Fgf signaling in vivo.
Collapse
Affiliation(s)
- J Richard Brewer
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Pierre Mazot
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
19
|
Abstract
Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.
Collapse
|
20
|
Edimo WE, Ghosh S, Derua R, Janssens V, Waelkens E, Vanderwinden JM, Robe P, Erneux C. SHIP2 controls plasma membrane PI(4,5)P2 thereby participating in the control of cell migration in 1321 N1 glioblastoma. J Cell Sci 2016; 129:1101-14. [DOI: 10.1242/jcs.179663] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositides, particularly PI(3,4,5)P3, and PI(4,5)P2, are recognized by SHIP2 a member of the inositol polyphosphate 5-phosphatase family. SHIP2 dephosphorylates PI(3,4,5)P3 to form PI(3,4)P2; the latter interacts with specific target proteins (e.g. lamellipodin). Although the SHIP2 preferred substrate is PI(3,4,5)P3, PI(4,5)P2 could also be dephosphorylated to PI4P. Through depletion of SHIP2 in a glioblastoma cell line 1321 N1 cells, we show that SHIP2 inhibits cell migration. In different glioblastoma cell lines and primary cultures, SHIP2 staining at the plasma membrane partly overlaps with PI(4,5)P2 immunoreactivity. PI(4,5)P2 was upregulated in SHIP2-deficient N1 cells as compared to control cells; in contrast, PI4P was very much decreased in SHIP2-deficient cells. Therefore, SHIP2 controls both PI(3,4,5)P3 and PI(4,5)P2 levels in intact cells. In N1 cells, the PI(4,5)P2 binding protein myosin-1c was identified as a new interactor of SHIP2. Regulation of PI(4,5)P2 and PI4P content by SHIP2 controls N1 cell migration through the organization of focal adhesions. Thus, our results reveal a novel role of SHIP2 in the control of PI(4,5)P2, PI4P and cell migration in PTEN-deficient glioblastoma N1 cells.
Collapse
Affiliation(s)
- William's Elong Edimo
- IRIBHM, Campus Erasme, ULB Bâtiment C, 808 route de Lennik B-1070 Bruxelles, Belgium
| | - Somadri Ghosh
- IRIBHM, Campus Erasme, ULB Bâtiment C, 808 route de Lennik B-1070 Bruxelles, Belgium
| | - Rita Derua
- Protein Phosphorylation & Proteomics Lab, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Herestraat 49 PO-box 901, B-3000 Leuven, Belgium
| | - Veerle Janssens
- Protein Phosphorylation & Proteomics Lab, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Herestraat 49 PO-box 901, B-3000 Leuven, Belgium
| | - Etienne Waelkens
- Protein Phosphorylation & Proteomics Lab, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Herestraat 49 PO-box 901, B-3000 Leuven, Belgium
| | - Jean-Marie Vanderwinden
- Laboratory of Neurophysiology, ULB Bâtiment C, 808 route de Lennik B-1070 Bruxelles, Belgium
| | - Pierre Robe
- Génétique Humaine, GIGA center, Ulg, Belgium
| | - Christophe Erneux
- IRIBHM, Campus Erasme, ULB Bâtiment C, 808 route de Lennik B-1070 Bruxelles, Belgium
| |
Collapse
|
21
|
Zhao H, Cunningham DL, Creese AJ, Heath JK, Cooper HJ. FAIMS and Phosphoproteomics of Fibroblast Growth Factor Signaling: Enhanced Identification of Multiply Phosphorylated Peptides. J Proteome Res 2015; 14:5077-87. [PMID: 26503514 DOI: 10.1021/acs.jproteome.5b00713] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have applied liquid chromatography high-field asymmetric waveform ion mobility spectrometry tandem mass spectrometry (LC-FAIMS-MS/MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS) to the investigation of site-specific phosphorylation in fibroblast growth factor (FGF) signaling. We have combined a SILAC approach with chemical inhibition by SU5402 (an FGF receptor tyrosine kinase inhibitor) and dasatinib (a Src family kinase inhibitor). The results show that incorporation of FAIMS within the workflow results in (a) an increase in the relative proportion of phosphothreonine and phosphotyrosine sites identified, (b) an increase in phosphopeptide identifications from precursors with charge states ≥ +3 (with an associated increase in peptide length), and (c) an increase in the identification of multiply phosphorylated peptides. Approximately 20% of the phosphorylation sites identified via the FAIMS workflow had not been reported previously, and over 80% of those were from multiply phosphorylated peptides. Moreover, FAIMS provided access to a distinct set of phosphorylation sites regulated in response to SU5402 and dasatinib. The enhanced identification of multiply phosphorylated peptides was particularly striking in the case of sites regulated by SU5402. In addition to providing a compelling example of the complementarity of FAIMS in phosphoproteomics, the results provide a valuable resource of phosphorylation sites for further investigation of FGF signaling and trafficking.
Collapse
Affiliation(s)
- Hongyan Zhao
- School of Biosciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Debbie L Cunningham
- School of Biosciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andrew J Creese
- School of Biosciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - John K Heath
- School of Biosciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Helen J Cooper
- School of Biosciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
22
|
Zeng L, Kuti M, Mujtaba S, Zhou MM. Structural insights into FRS2α PTB domain recognition by neurotrophin receptor TrkB. Proteins 2015; 82:1534-41. [PMID: 24470253 DOI: 10.1002/prot.24523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/27/2013] [Accepted: 01/16/2014] [Indexed: 11/07/2022]
Abstract
The fibroblast growth factor receptor (FGFR) substrate 2 (FRS2) family proteins function as scaffolding adapters for receptor tyrosine kinases (RTKs). The FRS2α proteins interact with RTKs through the phosphotyrosine-binding (PTB) domain and transfer signals from the activated receptors to downstream effector proteins. Here, we report the nuclear magnetic resonance structure of the FRS2α PTB domain bound to phosphorylated TrkB. The structure reveals that the FRS2α-PTB domain is comprised of two distinct but adjacent pockets for its mutually exclusive interaction with either nonphosphorylated juxtamembrane region of the FGFR, or tyrosine phosphorylated peptides TrkA and TrkB. The new structural insights suggest rational design of selective small molecules through targeting of the two conjunct pockets in the FRS2α PTB domain.
Collapse
Affiliation(s)
- Lei Zeng
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029
| | | | | | | |
Collapse
|
23
|
Deneubourg L, Elong Edimo W, Moreau C, Vanderwinden JM, Erneux C. Phosphorylated SHIP2 on Y1135 localizes at focal adhesions and at the mitotic spindle in cancer cell lines. Cell Signal 2014; 26:1193-203. [DOI: 10.1016/j.cellsig.2014.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/20/2014] [Accepted: 02/13/2014] [Indexed: 11/30/2022]
|
24
|
Hoedt E, Zhang G, Neubert TA. Stable isotope labeling by amino acids in cell culture (SILAC) for quantitative proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:93-106. [PMID: 24952180 DOI: 10.1007/978-3-319-06068-2_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful approach for high-throughput quantitative proteomics. SILAC allows highly accurate protein quantitation through metabolic encoding of whole cell proteomes using stable isotope labeled amino acids. Since its introduction in 2002, SILAC has become increasingly popular. In this chapter we review the methodology and application of SILAC, with an emphasis on three research areas: dynamics of posttranslational modifications, protein-protein interactions, and protein turnover.
Collapse
Affiliation(s)
- Esthelle Hoedt
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | | | | |
Collapse
|
25
|
Francavilla C, Rigbolt K, Emdal K, Carraro G, Vernet E, Bekker-Jensen D, Streicher W, Wikström M, Sundström M, Bellusci S, Cavallaro U, Blagoev B, Olsen J. Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs. Mol Cell 2013; 51:707-22. [DOI: 10.1016/j.molcel.2013.08.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/26/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
|
26
|
Abstract
Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.
Collapse
Affiliation(s)
- Masaru Katoh
- Division of Integrative Omics and Bioinformatics, National Cancer Center, 5-1-1 Tsukiji, Chuo Ward, Tokyo, 104-0045, Japan
| | | |
Collapse
|
27
|
Xie J, Erneux C, Pirson I. How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity? Bioessays 2013; 35:733-43. [PMID: 23650141 DOI: 10.1002/bies.201200168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The number of cellular events identified as being directly or indirectly modulated by phosphoinositides dramatically increased in the recent years. Part of the complexity results from the fact that the seven phosphoinositides play second messenger functions in many different areas of growth factors and insulin signaling, cytoskeletal organization, membrane dynamics, trafficking, or nuclear signaling. PtdIns(3,4)P2 is commonly reported as a product of the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and SHIP2) that dephosphorylate PtdIns(3,4,5)P3 at the 5-position. Here we discuss recent interest in PtdIns(3,4)P2 signaling highlighting its involvement in key cellular mechanisms such as cell adhesion, migration, and cytoskeletal regulation. We question and discuss the involvement of SHIP2 either as a PI 5-phosphatase or as a scaffold protein in insulin signaling, cytoskeletal dynamics, and endocytosis of growth factor receptors.
Collapse
Affiliation(s)
- Jingwei Xie
- Department of Pathophysiology, China Medical University, Heping District, Shenyang Liaoning Province, China
| | | | | |
Collapse
|
28
|
Novel binding partners and differentially regulated phosphorylation sites clarify Eps8 as a multi-functional adaptor. PLoS One 2013; 8:e61513. [PMID: 23626693 PMCID: PMC3634024 DOI: 10.1371/journal.pone.0061513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/09/2013] [Indexed: 12/02/2022] Open
Abstract
Eps8 is involved in both cell signalling and receptor trafficking. It is a known phosphorylation substrate for two proteins involved in the fibroblast growth factor receptor (FGFR) signalling pathway: the receptor itself and Src. Here we report a differential proteomic analysis of Eps8 aimed to identify specific FGFR and Src family kinase dependent phosphosites and co-associated phosphodependent binding partners. This study reveals a total of 22 Eps8 pTyr and pSer/Thr phosphorylation sites, including those that are dependent on Src family and FGFR kinase activity. Peptide affinity purification of proteins that bind to a selection of the pTyr phosphosites has identified a range of novel Eps8 binding partners including members of the intracellular vesicle trafficking machinery (clathrin and AP-2), proteins which have been shown to regulate activated receptor trafficking (NBR1 and Vav2), and proteins involved in receptor signalling (IRS4 and Shp2). Collectively this study significantly extends the understanding of Eps8 post-translational modification by regulated phosphorylation, identifies novel Eps8 binding partners implicated in receptor trafficking and signalling, and confirms the functions of Eps8 at the nexus of receptor signalling and vesicular trafficking.
Collapse
|
29
|
Abstract
Cells respond to external stimuli by transducing signals through a series of intracellular molecules and eliciting an appropriate response. The cascade of events through which the signals are transduced include post-translational modifications such as phosphorylation and ubiquitylation in addition to formation of multi-protein complexes. Improvements in biological mass spectrometry and protein/peptide microarray technology have tremendously improved our ability to probe proteins, protein complexes, and signaling pathways in a high-throughput fashion. Today, a single mass spectrometry-based investigation of a signaling pathway has the potential to uncover the large majority of known signaling intermediates painstakingly characterized over decades in addition to discovering a number of novel ones. Here, we discuss various proteomic strategies to characterize signaling pathways and provide protocols for phosphoproteomic analysis.
Collapse
Affiliation(s)
- H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | |
Collapse
|
30
|
Elong Edimo W, Vanderwinden JM, Erneux C. SHIP2 signalling at the plasma membrane, in the nucleus and at focal contacts. Adv Biol Regul 2013; 53:28-37. [PMID: 23040614 DOI: 10.1016/j.jbior.2012.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Phosphoinositide 5-phosphatases are critical enzymes in modulating the concentrations of PI(3,4,5)P(3), PI(4,5)P(2) and PI(3,5)P(2). The SH2 domain containing inositol 5-phosphatases SHIP1 and SHIP2 belong to this family of enzymes very much involved in physiopathology and development. Therefore activity and localization of the enzymes are particularly important taking into account both catalytic and non-catalytic mechanisms of the SHIP phosphatases. Several different mechanisms have been reported for SHIP2 targeting that often result from specific protein:protein interactions. In unstimulated astrocytoma cells, SHIP2 has a perinuclear and cytoplasmic localization. In serum-stimulated cells, SHIP2 can be localized at the plasma membrane and at focal contacts in polarized cells. A phosphorylated form of SHIP2 on S132 can be found in the nucleus and nuclear speckles. When present at the plasma membrane, SHIP2 may control the intracellular level of PI(3,4,5)P(3) thereby producing PI(3,4)P(2). When present in the nucleus, SHIP2 probably associates to other nuclear proteins such as lamin A/C and could potentially control nuclear PI(4,5)P(2). Finally, its presence at focal adhesions and lamellipodia could suggest a role in cell adhesion and migration. It is proposed that the complex phenotype observed in SHIP2 mutant mice in tissue development and growth could result from the addition of plasma membrane and nuclear effects consecutive to SHIP2 alteration.
Collapse
Affiliation(s)
- William's Elong Edimo
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg. C, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | |
Collapse
|
31
|
Auciello G, Cunningham DL, Tatar T, Heath JK, Rappoport JZ. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8. J Cell Sci 2012. [PMID: 23203811 DOI: 10.1242/jcs.116228] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.
Collapse
Affiliation(s)
- Giulio Auciello
- CRUK Growth Factor Group, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
32
|
Sun Z, Hamilton KL, Reardon KF. Phosphoproteomics and molecular cardiology: Techniques, applications and challenges. J Mol Cell Cardiol 2012; 53:354-68. [DOI: 10.1016/j.yjmcc.2012.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/26/2012] [Accepted: 06/03/2012] [Indexed: 12/16/2022]
|
33
|
Blunt MD, Ward SG. Pharmacological targeting of phosphoinositide lipid kinases and phosphatases in the immune system: success, disappointment, and new opportunities. Front Immunol 2012; 3:226. [PMID: 22876243 PMCID: PMC3410520 DOI: 10.3389/fimmu.2012.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022] Open
Abstract
The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath Bath, UK
| | | |
Collapse
|
34
|
Courcelles M, Bridon G, Lemieux S, Thibault P. Occurrence and Detection of Phosphopeptide Isomers in Large-Scale Phosphoproteomics Experiments. J Proteome Res 2012; 11:3753-65. [DOI: 10.1021/pr300229m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mathieu Courcelles
- IRIC,
Institute for Research in Immunology and Cancer, ‡Department of Biochemistry, §Department of Chemistry, and ∥Department of
Computer Science and Operational Research, Université de Montréal, P.O. Box 6128,
Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Gaëlle Bridon
- IRIC,
Institute for Research in Immunology and Cancer, ‡Department of Biochemistry, §Department of Chemistry, and ∥Department of
Computer Science and Operational Research, Université de Montréal, P.O. Box 6128,
Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Sébastien Lemieux
- IRIC,
Institute for Research in Immunology and Cancer, ‡Department of Biochemistry, §Department of Chemistry, and ∥Department of
Computer Science and Operational Research, Université de Montréal, P.O. Box 6128,
Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Pierre Thibault
- IRIC,
Institute for Research in Immunology and Cancer, ‡Department of Biochemistry, §Department of Chemistry, and ∥Department of
Computer Science and Operational Research, Université de Montréal, P.O. Box 6128,
Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
35
|
Edimo WE, Janssens V, Waelkens E, Erneux C. Reversible Ser/Thr SHIP phosphorylation: a new paradigm in phosphoinositide signalling?: Targeting of SHIP1/2 phosphatases may be controlled by phosphorylation on Ser and Thr residues. Bioessays 2012; 34:634-42. [PMID: 22641604 DOI: 10.1002/bies.201100195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphoinositide (PI) phosphatases such as the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been shown to interact with SHIP2, a putative mechanism for reversing SHIP2 Ser/Thr phosphorylation can be anticipated. PI phosphatases are potential target molecules in human diseases, particularly, but not exclusively, in cancer and diabetes. Therefore, this novel regulatory mechanism deserves further attention in the hunt for discovering novel or complementary therapeutic strategies. This mechanism may be more broadly involved in regulating PI signalling in the case of synaptojanin1 or the phosphatase, tensin homolog, deleted on chromosome TEN.
Collapse
Affiliation(s)
- William's Elong Edimo
- Institut de Recherche Interdisciplinaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | | | | | | |
Collapse
|
36
|
Shvartsburg AA, Zheng Y, Smith RD, Kelleher NL. Ion mobility separation of variant histone tails extending to the "middle-down" range. Anal Chem 2012; 84:4271-6. [PMID: 22559289 PMCID: PMC3353003 DOI: 10.1021/ac300612y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Differential ion mobility spectrometry (FAIMS) can baseline-resolve multiple variants of post-translationally modified peptides extending to the 3-4 kDa range, which differ in the localization of a PTM as small as acetylation. Essentially orthogonal separations for different charge states expand the total peak capacity with the number of observed states that increases for longer polypeptides. This potentially enables resolving localization variants for yet larger peptides and even intact proteins.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
| | | | | | | |
Collapse
|
37
|
Choi SK, Yoon SR, Calabrese P, Arnheim N. Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B. PLoS Genet 2012; 8:e1002420. [PMID: 22359510 PMCID: PMC3280958 DOI: 10.1371/journal.pgen.1002420] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/19/2011] [Indexed: 01/15/2023] Open
Abstract
Multiple endocrine neoplasia type 2B (MEN2B) is a highly aggressive thyroid cancer syndrome. Since almost all sporadic cases are caused by the same nucleotide substitution in the RET proto-oncogene, the calculated disease incidence is 100-200 times greater than would be expected based on the genome average mutation frequency. In order to determine whether this increased incidence is due to an elevated mutation rate at this position (true mutation hot spot) or a selective advantage conferred on mutated spermatogonial stem cells, we studied the spatial distribution of the mutation in 14 human testes. In donors aged 36-68, mutations were clustered with small regions of each testis having mutation frequencies several orders of magnitude greater than the rest of the testis. In donors aged 19-23 mutations were almost non-existent, demonstrating that clusters in middle-aged donors grew during adulthood. Computational analysis showed that germline selection is the only plausible explanation. Testes of men aged 75-80 were heterogeneous with some like middle-aged and others like younger testes. Incorporating data on age-dependent death of spermatogonial stem cells explains the results from all age groups. Germline selection also explains MEN2B's male mutation bias and paternal age effect. Our discovery focuses attention on MEN2B as a model for understanding the genetic and biochemical basis of germline selection. Since RET function in mouse spermatogonial stem cells has been extensively studied, we are able to suggest that the MEN2B mutation provides a selective advantage by altering the PI3K/AKT and SFK signaling pathways. Mutations that are preferred in the germline but reduce the fitness of offspring increase the population's mutational load. Our approach is useful for studying other disease mutations with similar characteristics and could uncover additional germline selection pathways or identify true mutation hot spots.
Collapse
Affiliation(s)
- Soo-Kyung Choi
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Song-Ro Yoon
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Peter Calabrese
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| | - Norman Arnheim
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
38
|
Erneux C, Edimo WE, Deneubourg L, Pirson I. SHIP2 multiple functions: a balance between a negative control of PtdIns(3,4,5)P₃ level, a positive control of PtdIns(3,4)P₂ production, and intrinsic docking properties. J Cell Biochem 2011; 112:2203-9. [PMID: 21503961 DOI: 10.1002/jcb.23146] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The SH2 domain containing inositol 5-phosphatase 2 (SHIP2) belongs to the family of the mammalian inositol polyphosphate 5-phosphatases. The two closely related isoenzymes SHIP1 (or SHIP) and SHIP2 contain a N-terminal SH2 domain, a catalytic domain, potential PTB domain-binding sites (NPXY), and C-terminal proline-rich regions with consensus sites for SH3 domain interactions. In addition, SHIP2 contains a unique sterile alpha motif (SAM) domain that could be involved in SAM-SAM domain interactions with other proteins or receptors. SHIP2 also shows the presence of an ubiquitin interacting motif at the C-terminal end. SHIP2 is essentially a PI(3,4,5)P(3) 5-phosphatase that negatively controls PI(3,4,5)P(3) levels in intact cells and produce PI(3,4)P(2) . Depending on the cells and stimuli, PI(3,4)P(2) could accumulate at important levels and be a "second messenger" by its own. It could interact with a very large number of target proteins such as PKB or TAPP1 and 2 that control insulin sensitivity. In addition to its catalytic activity, SHIP2 is also a docking protein for a large number of proteins: Cytoskeletal, focal adhesion proteins, scaffold proteins, adaptors, protein phosphatases, and tyrosine kinase associated receptors. These interactions could play a role in the control of cell adhesion, migration, or endocytosis of some receptors. SHIP2 could be acting independently of its phosphatase activity being part of a protein network of some receptors, e.g., the EGF receptor or BCR/ABL. These non-catalytic properties associated to a PI phosphatase have also been reported for other enzymes of the metabolism of myo-inositol such as Ins(1,4,5)P(3) 3-kinases, inositol phosphate multikinase (IPMK), or PTEN.
Collapse
Affiliation(s)
- Christophe Erneux
- Institut de Recherche Interdisciplinaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg. C, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
39
|
Ibrahim YM, Shvartsburg AA, Smith RD, Belov ME. Ultrasensitive identification of localization variants of modified peptides using ion mobility spectrometry. Anal Chem 2011; 83:5617-23. [PMID: 21692493 PMCID: PMC3136632 DOI: 10.1021/ac200719n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Localization of the modification sites on peptides is challenging, particularly when multiple modifications or mixtures of localization isomers (variants) are involved. Such variants commonly coelute in liquid chromatography and may be undistinguishable in tandem mass spectrometry (MS/MS) for lack of unique fragments. Here, we have resolved the variants of singly and doubly phosphorylated peptides employing drift tube ion mobility spectrometry (IMS) coupled to time-of-flight mass spectrometry. Even with a moderate IMS resolving power of ∼80-100, substantial separation was achieved for both 2+ and 3+ ions normally generated by electrospray ionization, including for the variants indistinguishable by MS/MS. Variants often exhibit a distribution of 3-D conformers, which can be adjusted for optimum IMS separation by prior field heating of ions in a funnel trap. The peak assignments were confirmed using MS/MS after IMS separation, but known species could be identified using just the ion mobility "tag". Avoiding the MS/MS step lowers the detection limit of localization variants to <100 amol, an order of magnitude better than that provided by electron transfer dissociation in an Orbitrap MS.
Collapse
Affiliation(s)
- Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | | | | |
Collapse
|
40
|
Shvartsburg AA, Singer D, Smith RD, Hoffmann R. Ion mobility separation of isomeric phosphopeptides from a protein with variant modification of adjacent residues. Anal Chem 2011; 83:5078-85. [PMID: 21667994 PMCID: PMC3139565 DOI: 10.1021/ac200985s] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ion mobility spectrometry (IMS), and particularly differential or field asymmetric waveform IMS (FAIMS), was recently shown capable of separating peptides with variant localization of post-translational modifications. However, that work was limited to a model peptide with Ser phosphorylation on fairly distant alternative sites. Here, we demonstrate that FAIMS (coupled to electrospray/mass spectrometry (ESI/MS)) can broadly baseline-resolve variant phosphopeptides from a biologically modified human protein, including those involving phosphorylation of different residues and adjacent sites that challenge existing tandem mass spectrometry (MS/MS) methods most. Singly and doubly phosphorylated variants can be resolved equally well and identified without dissociation, based on accurate separation properties. The spectra change little over a range of infusion solvent pH; hence, the present approach should be viable in conjunction with chromatographic separations using mobile phase gradients.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
| | | | | | | |
Collapse
|
41
|
Organ SL, Tong J, Taylor P, St-Germain JR, Navab R, Moran MF, Tsao MS. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer. J Proteome Res 2011; 10:3200-11. [PMID: 21609022 DOI: 10.1021/pr200238t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the second leading cause of death from cancer. The MET receptor tyrosine kinase and/or its ligand HGF are frequently amplified or overexpressed in CRC. It is known that tyrosine phosphorylated proteins are involved in progression and metastasis of colorectal cancer; however, little is known about the MET phospho-proteome in CRC. High resolution mass spectrometry was used to characterize immunoaffinity-purified, phosphotyrosine (pY)-containing tryptic peptides of the MET-expressing CRC cell model, DLD1. A total of 266 unambiguously identified pY sites spanning 168 proteins were identified. Quantification of mass spectrometry ion currents identified 161 pY sites, including many not previously linked to MET signaling, that were modulated in abundance by HGF stimulation. Overlay of these data with protein-protein interaction data sets suggested that many of the identified HGF-modulated phospho-proteins may be directly or indirectly associated with MET. Analysis of pY sequence motifs indicated a prevalence of Src family kinase consensus sequences, and reciprocal signaling between Src and MET was confirmed by using selective small molecule inhibitors of these kinases. Therefore, using quantitative phospho-proteomics profiling, kinase modulation by ligand and inhibitors, and data integration, an outline of the MET signaling network was generated for the CRC model.
Collapse
Affiliation(s)
- Shawna L Organ
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Hedden L, Benes CH, Soltoff SP. P2X(7) receptor antagonists display agonist-like effects on cell signaling proteins. Biochim Biophys Acta Gen Subj 2011; 1810:532-42. [PMID: 21397667 DOI: 10.1016/j.bbagen.2011.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/14/2011] [Accepted: 03/07/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND The activation of various P2 receptors (P2R) by extracellular nucleotides promotes diverse cellular events, including the stimulation of cell signaling protein and increases in [Ca(2+)](i). We report that some agents that can block P2X(7)R receptors also promote diverse P2X(7)R-independent effects on cell signaling. METHODS We exposed native rat parotid acinar cells, salivary gland cell lines (Par-C10, HSY, HSG), and PC12 cells to suramin, DIDS (4,4'-diisothiocyano stilbene-2,2'-disulfonic acid), Cibacron Blue 3GA, Brilliant Blue G, and the P2X(7)R-selective antagonist A438079, and examined the activation/phosphorylation of ERK1/2, PKCδ, Src, CDCP1, and other signaling proteins. RESULTS With the exception of suramin, these agents blocked the phosphorylation of ERK1/2 by BzATP in rat parotid acinar cells; but higher concentrations of suramin blocked ATP-stimulated (45)Ca(2+) entry. Aside from A438079, these agents increased the phosphorylation of ERK1/2, Src, PKCδ, and other proteins (including Dok-1) within minutes in an agent- and cell type-specific manner in the absence of a P2X(7)R ligand. The stimulatory effect of these compounds on the tyrosine phosphorylation of CDCP1 and its Src-dependent association with PKCδ was blocked by knockdown of CDCP1, which also blocked Src and PKCδ phosphorylation. CONCLUSIONS Several agents used as P2X(7)R blockers promote the activation of various signaling proteins and thereby act more like receptor agonists than antagonists. GENERAL SIGNIFICANCE Some compounds used to block P2 receptors have complicated effects that may confound their use in blocking receptor activation and other biological processes for which they are employed, including their use as blockers of various ion transport proteins.
Collapse
Affiliation(s)
- Lee Hedden
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
43
|
Jones AW, Cooper HJ. Dissociation techniques in mass spectrometry-based proteomics. Analyst 2011; 136:3419-29. [DOI: 10.1039/c0an01011a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Shvartsburg AA, Creese AJ, Smith RD, Cooper HJ. Separation of peptide isomers with variant modified sites by high-resolution differential ion mobility spectrometry. Anal Chem 2010; 82:8327-34. [PMID: 20843012 PMCID: PMC2973842 DOI: 10.1021/ac101878a] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many proteins and proteolytic peptides incorporate the same post-translational modification (PTM) at different sites, creating multiple localization variants with different functions or activities that may coexist in cells. Current analytical methods based on liquid chromatography (LC) followed by tandem mass spectrometry (MS/MS) are challenged by such isomers that often coelute in LC and/or produce nonunique fragment ions. The application of ion mobility spectrometry (IMS) was explored, but success has been limited by insufficient resolution. We show that high-resolution differential ion mobility spectrometry (FAIMS) employing helium-rich gases can readily separate phosphopeptides with variant modification sites. Use of He/N(2) mixtures containing up to 74% He has allowed separating to >95% three monophosphorylated peptides of identical sequence. Similar separation was achieved at 50% He, using an elevated electric field. Bisphosphorylated isomers that differ in only one modification site were separated to the same extent. We anticipate FAIMS capabilities for such separations to extend to other PTMs.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
45
|
Harsha HC, Pandey A. Phosphoproteomics in cancer. Mol Oncol 2010; 4:482-95. [PMID: 20937571 DOI: 10.1016/j.molonc.2010.09.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 12/19/2022] Open
Abstract
Reversible protein phosphorylation serves as a basis for regulating a number of cellular processes. Aberrant activation of kinase signaling pathways is commonly associated with several cancers. Recent developments in phosphoprotein/phosphopeptide enrichment strategies and quantitative mass spectrometry have resulted in robust pipelines for high-throughput characterization of phosphorylation in a global fashion. Today, it is possible to profile site-specific phosphorylation events on thousands of proteins in a single experiment. The potential of this approach is already being realized to characterize signaling pathways that govern oncogenesis. In addition, chemical proteomic strategies have been used to unravel targets of kinase inhibitors, which are otherwise difficult to characterize. This review summarizes various approaches used for analysis of the phosphoproteome in general, and protein kinases in particular, highlighting key cancer phosphoproteomic studies.
Collapse
Affiliation(s)
- H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India.
| | | |
Collapse
|