1
|
Mabesoone MF, Leopold-Messer S, Minas HA, Chepkirui C, Chawengrum P, Reiter S, Meoded RA, Wolf S, Genz F, Magnus N, Piechulla B, Walker AS, Piel J. Evolution-guided engineering of trans-acyltransferase polyketide synthases. Science 2024; 383:1312-1317. [PMID: 38513027 PMCID: PMC11260071 DOI: 10.1126/science.adj7621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.
Collapse
Affiliation(s)
- Mathijs F.J. Mabesoone
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Stefan Leopold-Messer
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Hannah A. Minas
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Pornsuda Chawengrum
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
- Chemical Biology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Silke Reiter
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Roy A. Meoded
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Sarah Wolf
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Ferdinand Genz
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Nancy Magnus
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Birgit Piechulla
- Institute for Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059 Rostock, Germany
| | - Allison S. Walker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37240, United States
- Department of Biological Sciences, Vanderbilt University, 465 21st Avenue S, Nashville, Tennesee 37232, United States
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
- Lead contact
| |
Collapse
|
2
|
Bitzenhofer NL, Höfel C, Thies S, Weiler AJ, Eberlein C, Heipieper HJ, Batra‐Safferling R, Sundermeyer P, Heidler T, Sachse C, Busche T, Kalinowski J, Belthle T, Drepper T, Jaeger K, Loeschcke A. Exploring engineered vesiculation by Pseudomonas putida KT2440 for natural product biosynthesis. Microb Biotechnol 2024; 17:e14312. [PMID: 37435812 PMCID: PMC10832525 DOI: 10.1111/1751-7915.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
Pseudomonas species have become promising cell factories for the production of natural products due to their inherent robustness. Although these bacteria have naturally evolved strategies to cope with different kinds of stress, many biotechnological applications benefit from engineering of optimised chassis strains with specially adapted tolerance traits. Here, we explored the formation of outer membrane vesicles (OMV) of Pseudomonas putida KT2440. We found OMV production to correlate with the recombinant production of a natural compound with versatile beneficial properties, the tripyrrole prodigiosin. Further, several P. putida genes were identified, whose up- or down-regulated expression allowed controlling OMV formation. Finally, genetically triggering vesiculation in production strains of the different alkaloids prodigiosin, violacein, and phenazine-1-carboxylic acid, as well as the carotenoid zeaxanthin, resulted in up to three-fold increased product yields. Consequently, our findings suggest that the construction of robust strains by genetic manipulation of OMV formation might be developed into a useful tool which may contribute to improving limited biotechnological applications.
Collapse
Affiliation(s)
- Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Carolin Höfel
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Andrea Jeanette Weiler
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Christian Eberlein
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Hermann J. Heipieper
- Department of Environmental BiotechnologyHelmholtz Centre for Environmental Research (UFZ)LeipzigGermany
| | - Renu Batra‐Safferling
- Institute of Biological Information Processing – Structural Biochemistry (IBI‐7: Structural Biochemistry)Forschungszentrum JülichJülichGermany
| | - Pia Sundermeyer
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Thomas Heidler
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
| | - Carsten Sachse
- Ernst‐Ruska Centre for Microscopy and Spectroscopy with Electrons (ER‐C‐3/Structural Biology)Forschungszentrum JülichJülichGermany
- Institute for Biological Information Processing 6 (IBI‐6/ Structural Cellular Biology)Forschungszentrum JülichJülichGermany
- Department of BiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
- Bielefeld University, Medical School East Westphalia‐LippeBielefeld UniversityBielefeldGermany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
| | - Thomke Belthle
- DWI─Leibniz‐Institute for Interactive MaterialsAachenGermany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachenGermany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl‐Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Bio‐ and Geosciences IBG‐1: BiotechnologyForschungszentrum JülichJülichGermany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET)Heinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
3
|
Marsh JW, Kirk C, Ley RE. Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome. Annu Rev Microbiol 2023; 77:427-449. [PMID: 37339736 DOI: 10.1146/annurev-micro-032421-112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
Collapse
Affiliation(s)
- James W Marsh
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Christian Kirk
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| |
Collapse
|
4
|
Kossmann DF, Huang M, Weihmann R, Xiao X, Gätgens F, Weber TM, Brass HUC, Bitzenhofer NL, Ibrahim S, Bangert K, Rehling L, Mueller C, Tiso T, Blank LM, Drepper T, Jaeger KE, Grundler FMW, Pietruszka J, Schleker ASS, Loeschcke A. Production of tailored hydroxylated prodiginine showing combinatorial activity with rhamnolipids against plant-parasitic nematodes. Front Microbiol 2023; 14:1151882. [PMID: 37200918 PMCID: PMC10187637 DOI: 10.3389/fmicb.2023.1151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/03/2023] [Indexed: 05/20/2023] Open
Abstract
Bacterial secondary metabolites exhibit diverse remarkable bioactivities and are thus the subject of study for different applications. Recently, the individual effectiveness of tripyrrolic prodiginines and rhamnolipids against the plant-parasitic nematode Heterodera schachtii, which causes tremendous losses in crop plants, was described. Notably, rhamnolipid production in engineered Pseudomonas putida strains has already reached industrial implementation. However, the non-natural hydroxyl-decorated prodiginines, which are of particular interest in this study due to a previously described particularly good plant compatibility and low toxicity, are not as readily accessible. In the present study, a new effective hybrid synthetic route was established. This included the engineering of a novel P. putida strain to provide enhanced levels of a bipyrrole precursor and an optimization of mutasynthesis, i.e., the conversion of chemically synthesized and supplemented monopyrroles to tripyrrolic compounds. Subsequent semisynthesis provided the hydroxylated prodiginine. The prodiginines caused reduced infectiousness of H. schachtii for Arabidopsis thaliana plants resulting from impaired motility and stylet thrusting, providing the first insights on the mode of action in this context. Furthermore, the combined application with rhamnolipids was assessed for the first time and found to be more effective against nematode parasitism than the individual compounds. To obtain, for instance, 50% nematode control, it was sufficient to apply 7.8 μM hydroxylated prodiginine together with 0.7 μg/ml (~ 1.1 μM) di-rhamnolipids, which corresponded to ca. ¼ of the individual EC50 values. In summary, a hybrid synthetic route toward a hydroxylated prodiginine was established and its effects and combinatorial activity with rhamnolipids on plant-parasitic nematode H. schachtii are presented, demonstrating potential application as antinematodal agents. Graphical Abstract.
Collapse
Affiliation(s)
- D. F. Kossmann
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - M. Huang
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - R. Weihmann
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - X. Xiao
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - F. Gätgens
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - T. M. Weber
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - H. U. C. Brass
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - N. L. Bitzenhofer
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - S. Ibrahim
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - K. Bangert
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - L. Rehling
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - C. Mueller
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - T. Tiso
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - L. M. Blank
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - T. Drepper
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - K.-E. Jaeger
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - J. Pietruszka
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - A. Loeschcke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| |
Collapse
|
5
|
Scholz SA, Lindeboom CD, Freddolino PL. Genetic context effects can override canonical cis regulatory elements in Escherichia coli. Nucleic Acids Res 2022; 50:10360-10375. [PMID: 36134716 PMCID: PMC9561378 DOI: 10.1093/nar/gkac787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
Recent experiments have shown that in addition to control by cis regulatory elements, the local chromosomal context of a gene also has a profound impact on its transcription. Although this chromosome-position dependent expression variation has been empirically mapped at high-resolution, the underlying causes of the variation have not been elucidated. Here, we demonstrate that 1 kb of flanking, non-coding synthetic sequences with a low frequency of guanosine and cytosine (GC) can dramatically reduce reporter expression compared to neutral and high GC-content flanks in Escherichia coli. Natural and artificial genetic context can have a similarly strong effect on reporter expression, regardless of cell growth phase or medium. Despite the strong reduction in the maximal expression level from the fully-induced reporter, low GC synthetic flanks do not affect the time required to reach the maximal expression level after induction. Overall, we demonstrate key determinants of transcriptional propensity that appear to act as tunable modulators of transcription, independent of regulatory sequences such as the promoter. These findings provide insight into the regulation of naturally occurring genes and an independent control for optimizing expression of synthetic biology constructs.
Collapse
Affiliation(s)
- Scott A Scholz
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chase D Lindeboom
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Klaus O, Hilgers F, Nakielski A, Hasenklever D, Jaeger KE, Axmann IM, Drepper T. Engineering phototrophic bacteria for the production of terpenoids. Curr Opin Biotechnol 2022; 77:102764. [PMID: 35932511 DOI: 10.1016/j.copbio.2022.102764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
With more than 80 000 compounds, terpenoids represent one of the largest classes of secondary metabolites naturally produced by various plants and other organisms. Owing to the tremendous structural diversity, they offer a wide range of properties relevant for biotechnological and pharmaceutical applications. In this context, heterologous terpenoid production in engineered microbial hosts represents an often cost-effective and eco-friendly way to make these valuable compounds industrially available. This review provides an overview of current strategies to employ and engineer oxygenic and anoxygenic phototrophic bacteria as alternative cell factories for sustainable terpenoid production. Besides terpenoid pathway engineering, the effects of different illumination strategies on terpenoid photoproduction are key elements in the latest studies.
Collapse
Affiliation(s)
- Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Nakielski
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dennis Hasenklever
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; Institute of Bio, and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ilka M Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
| |
Collapse
|
7
|
Heterologous Production of Plant Terpenes in the Photosynthetic Bacterium Rhodobacter capsulatus. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2379:125-154. [PMID: 35188660 DOI: 10.1007/978-1-0716-1791-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Terpenes are one of the largest classes of secondary metabolites that occur in all kingdoms of life and offer diverse valuable properties for food and pharma industry including pleasant odor or taste as well as antimicrobial or anticancer activities. A multitude of terpene biosynthesis pathways are known, but their efficient biotechnological exploitation requires an adequate microorganism as host which can ideally provide an optimal supply with biosynthetic isoprene precursors. Rhodobacter capsulatus, a Gram-negative, facultative anaerobic, photosynthetic non-sulfur purple bacterium belonging to the α-proteobacteria represents such a host particularly suitable for terpene production. Here, we describe methods for the expression of terpene biosynthetic enzymes in R. capsulatus and the extraction of products for analysis. At the same time, we summarize the current strategies to adjust the biosynthetic precursor supply via isoprenoid biosynthetic pathways.
Collapse
|
8
|
Brehl C, Brass HUC, Lüchtrath C, Böckmann L, Ihling N, Classen T, Pietruszka J, Büchs J. Optimized prodigiosin production with Pseudomonas putida KT2440 using parallelized non-invasive online monitoring. Biotechnol Prog 2022; 38:e3245. [PMID: 35170260 DOI: 10.1002/btpr.3245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2022]
Abstract
The red pigment prodigiosin is of high pharmaceutical interest, due to its potential applications as an antitumor drug and antibiotic agent. As previously demonstrated, Pseudomonas putida KT2440 is a suitable host for prodigiosin production, as it exhibits high tolerance towards the antimicrobial properties of prodigiosin. So far, prodigiosin concentrations of up to 94 mg/L have been achieved in shake flask cultivations. For the characterization and optimization of the prodigiosin production process, the scattered light of P. putida and fluorescence of prodigiosin was measured. The excitation and emission wavelengths for prodigiosin measurement were analyzed by recording 2D fluorescence spectra. The strongest prodigiosin fluorescence was obtained at a wavelength combination of 535/560 nm. By reducing the temperature to 18 °C and using 16 g/L glucose, the prodigiosin concentration was more than doubled compared to the initial cultivation conditions. The obtained results demonstrate the capabilities of parallelized microscale cultivations combined with non-invasive online monitoring of fluorescence for rapid bioprocess development, using prodigiosin as a molecule of current biotechnological interest.
Collapse
Affiliation(s)
- Carl Brehl
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hannah U C Brass
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Jülich, Germany
| | - Clara Lüchtrath
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lukas Böckmann
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nina Ihling
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas Classen
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute for Bio- and Geosciences 1: Bioorganic Chemistry (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Pietruszka
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Jülich, Germany.,Institute for Bio- and Geosciences 1: Bioorganic Chemistry (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
9
|
Hage-Hülsmann J, Klaus O, Linke K, Troost K, Gora L, Hilgers F, Wirtz A, Santiago-Schübel B, Loeschcke A, Jaeger KE, Drepper T. Production of C20, C30 and C40 terpenes in the engineered phototrophic bacterium Rhodobacter capsulatus. J Biotechnol 2021; 338:20-30. [PMID: 34237394 DOI: 10.1016/j.jbiotec.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Terpenes constitute one of the largest groups of secondary metabolites that are used, for example, as food-additives, fragrances or pharmaceuticals. Due to the formation of an intracytoplasmic membrane system and an efficient intrinsic tetraterpene pathway, the phototrophic α-proteobacterium Rhodobacter capsulatus offers favorable properties for the production of hydrophobic terpenes. However, research efforts have largely focused on sesquiterpene production. Recently, we have developed modular tools allowing to engineer the biosynthesis of terpene precursors. These tools were now applied to boost the biosynthesis of the diterpene casbene, the triterpene squalene and the tetraterpene β-carotene in R. capsulatus SB1003. Selected enzymes of the intrinsic isoprenoid pathway and the heterologous mevalonate (MVA) pathway were co-expressed together with the respective terpene synthases in various combinations. Remarkably, co-expression of genes ispA, idi and dxs enhanced the synthesis of casbene and β-carotene. In contrast, co-expression of precursor biosynthetic genes with the squalene synthase from Arabidopsis thaliana reduced squalene titers. Therefore, we further employed four alternative pro- and eukaryotic squalene synthases. Here, the synthase from Methylococcus capsulatus enabled highest product levels of 90 mg/L squalene upon co-expression with ispA. In summary, we demonstrate the applicability of R. capsulatus for the heterologous production of diverse terpene classes and provide relevant insights for further development of such platforms.
Collapse
Affiliation(s)
- Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany.
| | - Oliver Klaus
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Karl Linke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Katrin Troost
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Lukas Gora
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| | - Astrid Wirtz
- Institute of Bio- and Geosciences IBG-1, Forschungszentrum Jülich, Jülich, Germany.
| | - Beatrix Santiago-Schübel
- Central Division of Analytical Chemistry ZEA-3: Analytik/Biospec, Forschungszentrum Jülich, Jülich, Germany.
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Institute of Bio- and Geosciences IBG-1, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Germany; Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
10
|
Kusumawardhani H, Furtwängler B, Blommestijn M, Kaltenytė A, van der Poel J, Kolk J, Hosseini R, de Winde JH. Adaptive Laboratory Evolution Restores Solvent Tolerance in Plasmid-Cured Pseudomonas putida S12: a Molecular Analysis. Appl Environ Microbiol 2021; 87:e00041-21. [PMID: 33674430 PMCID: PMC8091024 DOI: 10.1128/aem.00041-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas putida S12 is inherently solvent tolerant and constitutes a promising platform for biobased production of aromatic compounds and biopolymers. The megaplasmid pTTS12 of P. putida S12 carries several gene clusters involved in solvent tolerance, and the removal of this megaplasmid caused a significant reduction in solvent tolerance. In this study, we succeeded in restoring solvent tolerance in plasmid-cured P. putida S12 using adaptive laboratory evolution (ALE), underscoring the innate solvent tolerance of this strain. Whole-genome sequencing identified several single nucleotide polymorphisms (SNPs) and a mobile element insertion enabling ALE-derived strains to survive and sustain growth in the presence of a high toluene concentration (10% [vol/vol]). We identified mutations in an RND efflux pump regulator, arpR, that resulted in constitutive upregulation of the multifunctional efflux pump ArpABC. SNPs were also found in the intergenic region and subunits of ATP synthase, RNA polymerase subunit β', a global two-component regulatory system (GacA/GacS), and a putative AraC family transcriptional regulator, Afr. Transcriptomic analysis further revealed a constitutive downregulation of energy-consuming activities in ALE-derived strains, such as flagellar assembly, FoF1 ATP synthase, and membrane transport proteins. In summary, constitutive expression of a solvent extrusion pump in combination with high metabolic flexibility enabled the restoration of the solvent tolerance trait in P. putida S12 lacking its megaplasmid.IMPORTANCE Sustainable production of high-value chemicals can be achieved by bacterial biocatalysis. However, bioproduction of biopolymers and aromatic compounds may exert stress on the microbial production host and limit the resulting yield. Having a solvent tolerance trait is highly advantageous for microbial hosts used in the biobased production of aromatics. The presence of a megaplasmid has been linked to the solvent tolerance trait of Pseudomonas putida; however, the extent of innate, intrinsic solvent tolerance in this bacterium remained unclear. Using adaptive laboratory evolution, we successfully adapted the plasmid-cured P. putida S12 strain to regain its solvent tolerance. Through these adapted strains, we began to clarify the causes, origins, limitations, and trade-offs of the intrinsic solvent tolerance in P. putida This work sheds light on the possible genetic engineering targets to enhance solvent tolerance in Pseudomonas putida as well as other bacteria.
Collapse
Affiliation(s)
| | | | | | - Adelė Kaltenytė
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jaap van der Poel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jan Kolk
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Rohola Hosseini
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
11
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
12
|
Del Valle I, Fulk EM, Kalvapalle P, Silberg JJ, Masiello CA, Stadler LB. Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences. Front Microbiol 2021; 11:618373. [PMID: 33633695 PMCID: PMC7901896 DOI: 10.3389/fmicb.2020.618373] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
The rapid diversification of synthetic biology tools holds promise in making some classically hard-to-solve environmental problems tractable. Here we review longstanding problems in the Earth and environmental sciences that could be addressed using engineered microbes as micron-scale sensors (biosensors). Biosensors can offer new perspectives on open questions, including understanding microbial behaviors in heterogeneous matrices like soils, sediments, and wastewater systems, tracking cryptic element cycling in the Earth system, and establishing the dynamics of microbe-microbe, microbe-plant, and microbe-material interactions. Before these new tools can reach their potential, however, a suite of biological parts and microbial chassis appropriate for environmental conditions must be developed by the synthetic biology community. This includes diversifying sensing modules to obtain information relevant to environmental questions, creating output signals that allow dynamic reporting from hard-to-image environmental materials, and tuning these sensors so that they reliably function long enough to be useful for environmental studies. Finally, ethical questions related to the use of synthetic biosensors in environmental applications are discussed.
Collapse
Affiliation(s)
- Ilenne Del Valle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Emily M. Fulk
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Prashant Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Caroline A. Masiello
- Department of BioSciences, Rice University, Houston, TX, United States
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, United States
| |
Collapse
|
13
|
Saleski TE, Chung MT, Carruthers DN, Khasbaatar A, Kurabayashi K, Lin XN. Optimized gene expression from bacterial chromosome by high-throughput integration and screening. SCIENCE ADVANCES 2021; 7:7/7/eabe1767. [PMID: 33579713 PMCID: PMC7880599 DOI: 10.1126/sciadv.abe1767] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/30/2020] [Indexed: 06/01/2023]
Abstract
Chromosomal integration of recombinant genes is desirable compared with expression from plasmids due to increased stability, reduced cell-to-cell variability, and elimination of the need for antibiotics for plasmid maintenance. Here, we present a new approach for tuning pathway gene expression levels via random integration and high-throughput screening. We demonstrate multiplexed gene integration and expression-level optimization for isobutanol production in Escherichia coli The integrated strains could, with far lower expression levels than plasmid-based expression, produce high titers (10.0 ± 0.9 g/liter isobutanol in 48 hours) and yields (69% of the theoretical maximum). Close examination of pathway expression in the top-performing, as well as other isolates, reveals the complexity of cellular metabolism and regulation, underscoring the need for precise optimization while integrating pathway genes into the chromosome. We expect this method for pathway integration and optimization can be readily extended to a wide range of pathways and chassis to create robust and efficient production strains.
Collapse
Affiliation(s)
- Tatyana E Saleski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meng Ting Chung
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - David N Carruthers
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Azzaya Khasbaatar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoxia Nina Lin
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Weimer A, Kohlstedt M, Volke DC, Nikel PI, Wittmann C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl Microbiol Biotechnol 2020; 104:7745-7766. [PMID: 32789744 PMCID: PMC7447670 DOI: 10.1007/s00253-020-10811-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas putida is a Gram-negative, rod-shaped bacterium that can be encountered in diverse ecological habitats. This ubiquity is traced to its remarkably versatile metabolism, adapted to withstand physicochemical stress, and the capacity to thrive in harsh environments. Owing to these characteristics, there is a growing interest in this microbe for industrial use, and the corresponding research has made rapid progress in recent years. Hereby, strong drivers are the exploitation of cheap renewable feedstocks and waste streams to produce value-added chemicals and the steady progress in genetic strain engineering and systems biology understanding of this bacterium. Here, we summarize the recent advances and prospects in genetic engineering, systems and synthetic biology, and applications of P. putida as a cell factory. KEY POINTS: • Pseudomonas putida advances to a global industrial cell factory. • Novel tools enable system-wide understanding and streamlined genomic engineering. • Applications of P. putida range from bioeconomy chemicals to biosynthetic drugs.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany.
| |
Collapse
|
15
|
Zhao Y, Yao Z, Ploessl D, Ghosh S, Monti M, Schindler D, Gao M, Cai Y, Qiao M, Yang C, Cao M, Shao Z. Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories. ACS Synth Biol 2020; 9:1736-1752. [PMID: 32396718 DOI: 10.1021/acssynbio.0c00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We broadened the usage of DNA transposon technology by demonstrating its capacity for the rapid creation of expression libraries for long biochemical pathways, which is beyond the classical application of building genome-scale knockout libraries in yeasts. This strategy efficiently leverages the readily available fine-tuning impact provided by the diverse transcriptional environment surrounding each random integration locus. We benchmark the transposon-mediated integration against the nonhomologous end joining-mediated strategy. The latter strategy was demonstrated for achieving pathway random integration in other yeasts but is associated with a high false-positive rate in the absence of a high-throughput screening method. Our key innovation of a nonreplicable circular DNA platform increased the possibility of identifying top-producing variants to 97%. Compared to the classical DNA transposition protocol, the design of a nonreplicable circular DNA skipped the step of counter-selection for plasmid removal and thus not only reduced the time required for the step of library creation from 10 to 5 d but also efficiently removed the "transposition escapers", which undesirably represented almost 80% of the entire population as false positives. Using one endogenous product (i.e., shikimate) and one heterologous product (i.e., (S)-norcoclaurine) as examples, we presented a streamlined procedure to rapidly identify high-producing variants with titers significantly higher than the reported data in the literature. We selected Scheffersomyces stipitis, a representative nonconventional yeast, as a demo, but the strategy can be generalized to other nonconventional yeasts. This new exploration of transposon technology, therefore, adds a highly versatile tool to accelerate the development of novel species as microbial cell factories for producing value-added chemicals.
Collapse
Affiliation(s)
- Yuxin Zhao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Saptarshi Ghosh
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Marco Monti
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Daniel Schindler
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Yizhi Cai
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, United States
- Bioeconomy Institute, Iowa State University, Ames, Iowa, United States
- Interdepartmental Microbiology Program, Iowa State University, Ames, Iowa, United States
- The Ames Laboratory, Ames, Iowa, United States
| |
Collapse
|
16
|
Loeschcke A, Thies S. Engineering of natural product biosynthesis in Pseudomonas putida. Curr Opin Biotechnol 2020; 65:213-224. [PMID: 32498036 DOI: 10.1016/j.copbio.2020.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
17
|
Bator I, Wittgens A, Rosenau F, Tiso T, Blank LM. Comparison of Three Xylose Pathways in Pseudomonas putida KT2440 for the Synthesis of Valuable Products. Front Bioeng Biotechnol 2020; 7:480. [PMID: 32010683 PMCID: PMC6978631 DOI: 10.3389/fbioe.2019.00480] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas putida KT2440 is a well-established chassis in industrial biotechnology. To increase the substrate spectrum, we implemented three alternative xylose utilization pathways, namely the Isomerase, Weimberg, and Dahms pathways. The synthetic operons contain genes from Escherichia coli and Pseudomonas taiwanensis. For isolating the Dahms pathway in P. putida KT2440 two genes (PP_2836 and PP_4283), encoding an endogenous enzyme of the Weimberg pathway and a regulator for glycolaldehyde degradation, were deleted. Before and after adaptive laboratory evolution, these strains were characterized in terms of growth and synthesis of mono-rhamnolipids and pyocyanin. The engineered strain using the Weimberg pathway reached the highest maximal growth rate of 0.30 h-1. After adaptive laboratory evolution the lag phase was reduced significantly. The highest titers of 720 mg L-1 mono-rhamnolipids and 30 mg L-1 pyocyanin were reached by the evolved strain using the Weimberg or an engineered strain using the Isomerase pathway, respectively. The different stoichiometries of the three xylose utilization pathways may allow engineering of tailored chassis for valuable bioproduct synthesis.
Collapse
Affiliation(s)
- Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Andreas Wittgens
- Institute for Pharmaceutical Biotechnology, Ulm-University, Ulm, Germany
- Ulm Center for Peptide Pharmaceuticals, Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Synthesis of Macromolecules, Mainz, Germany
| | - Frank Rosenau
- Institute for Pharmaceutical Biotechnology, Ulm-University, Ulm, Germany
- Ulm Center for Peptide Pharmaceuticals, Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Synthesis of Macromolecules, Mainz, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Lars M. Blank
- iAMB - Institute of Applied Microbiology, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Haddix PL, Shanks RMQ. Production of prodigiosin pigment by Serratia marcescens is negatively associated with cellular ATP levels during high-rate, low-cell-density growth. Can J Microbiol 2020; 66:243-255. [PMID: 31922894 DOI: 10.1139/cjm-2019-0548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Serratia marcescens is a facultatively anaerobic bacterium and the most recognized producer of the hydrophobic pigment prodigiosin. Previous work has shown that prodigiosin both increases ATP production during population lag phase and approximately doubles the stationary-phase cell yield. Here, we employed both batch and chemostat culture methods to investigate prodigiosin's role during high rate growth at low cell density as peak cellular ATP levels decline. Batch culture experiments utilizing artificial pigment induction showed an ATP reduction during low cell density growth. In addition, pigment induction during fixed growth rate chemostat culture revealed a negative correlation between cellular levels of prodigiosin and ATP (r = -0.95). Variable growth rate chemostat experiments showed an inverse relationship between ATP per cell and prodigiosin per cell during low-density growth but a direct relationship during high-density growth. Rate modeling of chemostat data quantified the pigment's effect on cellular levels of ATP for both population growth phases. Finally, prodigiosin production in a heterologous bacterium led to ATP decline. These data with intact cells complement the established in vitro proton import function of prodigiosin pigment and may indicate an energy-spilling function during high rate, low cell density growth.
Collapse
Affiliation(s)
- Pryce L Haddix
- Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124-4023, USA
| | - Robert M Q Shanks
- Charles T. Campbell Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Pseudomonas putida in the quest of programmable chemistry. Curr Opin Biotechnol 2019; 59:111-121. [DOI: 10.1016/j.copbio.2019.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022]
|
20
|
Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors. Microb Cell Fact 2019; 18:152. [PMID: 31500633 PMCID: PMC6734295 DOI: 10.1186/s12934-019-1204-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soil bacterium Pseudomonas putida is a promising platform for the production of industrially valuable natural compounds. In the case of isoprenoids, the availability of biosynthetic precursors is a major limiting factor. In P. putida and most other bacteria, these precursors are produced from pyruvate and glyceraldehyde 3-phosphate by the methylerythritol 4-phosphate (MEP) pathway, whereas other bacteria synthesize the same precursors from acetyl-CoA using the unrelated mevalonate (MVA) pathway. RESULTS Here we explored different strategies to increase the supply of isoprenoid precursors in P. putida cells using lycopene as a read-out. Because we were not aiming at producing high isoprenoid titers but were primarily interested in finding ways to enhance the metabolic flux to isoprenoids, we engineered the well-characterized P. putida strain KT2440 to produce low but detectable levels of lycopene under conditions in which MEP pathway steps were not saturated. Then, we compared lycopene production in cells expressing the Myxococcus xanthus MVA pathway genes or endogenous MEP pathway genes (dxs, dxr, idi) under the control of IPTG-induced and stress-regulated promoters. We also tested a shunt pathway producing isoprenoid precursors from ribulose 5-phosphate using a mutant version of the Escherichia coli ribB gene. CONCLUSIONS The most successful combination led to a 50-fold increase in lycopene levels, indicating that P. putida can be successfully engineered to substantially increase the supply of metabolic substrates for the production of industrially valuable isoprenoids.
Collapse
|
21
|
Troost K, Loeschcke A, Hilgers F, Özgür AY, Weber TM, Santiago-Schübel B, Svensson V, Hage-Hülsmann J, Habash SS, Grundler FMW, Schleker ASS, Jaeger KE, Drepper T. Engineered Rhodobacter capsulatus as a Phototrophic Platform Organism for the Synthesis of Plant Sesquiterpenoids. Front Microbiol 2019; 10:1998. [PMID: 31555236 PMCID: PMC6742980 DOI: 10.3389/fmicb.2019.01998] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022] Open
Abstract
Sesquiterpenoids are a large class of natural compounds offering manifold properties valuable for food, cosmetics, agriculture, and pharma industry. Production in microorganisms is a sustainable approach to provide sesquiterpenoids for research and industrial use independent of their natural sources. This requires the functional transfer of the respective biocatalytic pathways in an adequate host microorganism offering a sufficient supply of precursors that is ideally adjusted to the individual demand of the recombinant biosynthesis route. The phototrophic purple bacterium Rhodobacter capsulatus offers unique physiological properties that are favorable for biosynthesis of hydrophobic terpenes. Under phototrophic conditions, it develops a large intracytoplasmic membrane suitable for hosting membrane-bound enzymes and metabolites of respective biosynthetic pathways. In addition, Rhodobacter harbors an intrinsic carotenoid biosynthesis that can be engineered toward the production of foreign terpenes. Here, we evaluate R. capsulatus as host for the production of plant sesquiterpenoids under phototrophic conditions using patchoulol and valencene as a proof of concept. The heterologous expression of patchoulol synthase PcPS from Pogostemon cablin as well as the valencene synthases CsVS from Citrus sinensis and CnVS from Callitropsis nootkatensis led to the production of the respective sesquiterpenoids in R. capsulatus. To analyze, if gradually adjustable formation of the key precursor farnesylpyrophosphate (FPP) is beneficial for sesquiterpene synthesis under phototrophic conditions, the intrinsic 1-deoxy-D-xylulose 5-phosphate (DXP) pathway genes as well as the heterologous mevalonate pathway genes were modularly expressed in various combinations. To this end, different plasmids and chromosomally integrated expression tools were developed harboring the strong and tightly controlled Pnif promoter for heterologous gene expression. Notably, comparative studies identified a distinct combination of precursor biosynthetic genes as best-performing setup for each of the tested sesquiterpene synthases. In summary, we could demonstrate that R. capsulatus is a promising alternative platform organism that is suited for sustainable sesquiterpenoid formation under phototrophic cultivation conditions. A modular engineering of R. capsulatus strains via tailored co-expression of FPP biosynthetic genes further allowed adaptation of sesquiterpene precursor formation to its catalytic conversion by different plant terpene synthases.
Collapse
Affiliation(s)
- Katrin Troost
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Armagan Yakup Özgür
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tim Moritz Weber
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Beatrix Santiago-Schübel
- Central Institute for Engineering, Electronics and Analytics ZEA-3, Analytics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Vera Svensson
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Samer S Habash
- INRES-Molecular Phytomedicine, Rhenish Friedrich-Wilhelm University of Bonn, Bonn, Germany
| | - Florian M W Grundler
- INRES-Molecular Phytomedicine, Rhenish Friedrich-Wilhelm University of Bonn, Bonn, Germany
| | - A Sylvia S Schleker
- INRES-Molecular Phytomedicine, Rhenish Friedrich-Wilhelm University of Bonn, Bonn, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
22
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
Nora LC, Westmann CA, Guazzaroni ME, Siddaiah C, Gupta VK, Silva-Rocha R. Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnol Adv 2019; 37:107433. [PMID: 31437573 DOI: 10.1016/j.biotechadv.2019.107433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022]
Abstract
A key challenge for domesticating alternative cultivable microorganisms with biotechnological potential lies in the development of innovative technologies. Within this framework, a myriad of genetic tools has flourished, allowing the design and manipulation of complex synthetic circuits and genomes to become the general rule in many laboratories rather than the exception. More recently, with the development of novel technologies such as DNA automated synthesis/sequencing and powerful computational tools, molecular biology has entered the synthetic biology era. In the beginning, most of these technologies were established in traditional microbial models (known as chassis in the synthetic biology framework) such as Escherichia coli and Saccharomyces cerevisiae, enabling fast advances in the field and the validation of fundamental proofs of concept. However, it soon became clear that these organisms, although extremely useful for prototyping many genetic tools, were not ideal for a wide range of biotechnological tasks due to intrinsic limitations in their molecular/physiological properties. Over the last decade, researchers have been facing the great challenge of shifting from these model systems to non-conventional chassis with endogenous capacities for dealing with specific tasks. The key to address these issues includes the generation of narrow and broad host plasmid-based molecular tools and the development of novel methods for engineering genomes through homologous recombination systems, CRISPR/Cas9 and other alternative methods. Here, we address the most recent advances in plasmid-based tools for the construction of novel cell factories, including a guide for helping with "build-your-own" microbial host.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | - Vijai Kumar Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
24
|
Otto M, Wynands B, Drepper T, Jaeger KE, Thies S, Loeschcke A, Blank LM, Wierckx N. Targeting 16S rDNA for Stable Recombinant Gene Expression in Pseudomonas. ACS Synth Biol 2019; 8:1901-1912. [PMID: 31298831 DOI: 10.1021/acssynbio.9b00195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ribosomal RNA (rRNA) operons have recently been identified as promising sites for chromosomal integration of genetic elements in Pseudomonas putida, a bacterium that has gained considerable popularity as a microbial cell factory. We have developed a tool for targeted integration of recombinant genes into the rRNA operons of various Pseudomonas strains, where the native context of the rRNA clusters enables effective transcription of heterologous genes. However, a sufficient translation of foreign mRNA transcriptionally fused to rRNA required optimization of RNA secondary structures, which was achieved utilizing synthetic ribozymes and a bicistronic design. The generated tool further enabled the characterization of the six rRNA promoter units of P. putida S12 under different growth conditions. The presence of multiple, almost identical rRNA operons in Pseudomonas also allowed the integration of multiple copies of heterologous genetic elements. The integration of two expression cassettes and the resulting disruption of rRNA units only moderately affects growth rates, and the constructs were highly stable over more than 160 generations.
Collapse
Affiliation(s)
- Maike Otto
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Benedikt Wynands
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Bio- and Geosciences (IBG-1: Biotechnology), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
25
|
Sánchez-Pascuala A, Fernández-Cabezón L, de Lorenzo V, Nikel PI. Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Metab Eng 2019; 54:200-211. [DOI: 10.1016/j.ymben.2019.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/23/2023]
|
26
|
Weihmann R, Domröse A, Drepper T, Jaeger KE, Loeschcke A. Protocols for yTREX/Tn5-based gene cluster expression in Pseudomonas putida. Microb Biotechnol 2019; 13:250-262. [PMID: 31162833 PMCID: PMC6922528 DOI: 10.1111/1751-7915.13402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 11/30/2022] Open
Abstract
Bacterial gene clusters, which represent a genetic treasure trove for secondary metabolite pathways, often need to be activated in a heterologous host to access the valuable biosynthetic products. We provide here a detailed protocol for the application of the yTREX ‘gene cluster transplantation tool’: Via yeast recombinational cloning, a gene cluster of interest can be cloned in the yTREX vector, which enables the robust conjugational transfer of the gene cluster to bacteria like Pseudomonas putida, and their subsequent transposon Tn5‐based insertion into the host chromosome. Depending on the gene cluster architecture and chromosomal insertion site, the respective pathway genes can be transcribed effectively from a chromosomal promoter, thereby enabling the biosynthesis of a natural product. We describe workflows for the design of a gene cluster expression cassette, cloning of the cassette in the yTREX vector by yeast recombineering, and subsequent transfer and expression in P. putida. As an example for yTREX‐based transplantation of a natural product biosynthesis, we provide details on the cloning and activation of the phenazine‐1‐carboxylic acid biosynthetic genes from Pseudomonas aeruginosa in P. putidaKT2440 as well as the use of β‐galactosidase‐encoding lacZ as a reporter of production levels.
Collapse
Affiliation(s)
- Robin Weihmann
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Domröse
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
27
|
Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes. Sci Rep 2019; 9:7028. [PMID: 31065014 PMCID: PMC6505042 DOI: 10.1038/s41598-019-43405-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/24/2019] [Indexed: 11/23/2022] Open
Abstract
Since high-value bacterial secondary metabolites, including antibiotics, are often naturally produced in only low amounts, their efficient biosynthesis typically requires the transfer of entire metabolic pathways into suitable bacterial hosts like Pseudomonas putida. Stable maintenance and sufficient expression of heterologous pathway-encoding genes in host microbes, however, still remain key challenges. In this study, the 21 kb prodigiosin gene cluster from Serratia marcescens was used as a reporter to identify genomic sites in P. putida KT2440 especially suitable for maintenance and expression of pathway genes. After generation of a strain library by random Tn5 transposon-based chromosomal integration of the cluster, 50 strains exhibited strong prodigiosin production. Remarkably, chromosomal integration sites were exclusively identified in the seven rRNA-encoding rrn operons of P. putida. We could further demonstrate that prodigiosin production was mainly dependent on (i) the individual rrn operon where the gene cluster was inserted as well as (ii) the distance between the rrn promoter and the inserted prodigiosin biosynthetic genes. In addition, the recombinant strains showed high stability upon subculturing for many generations. Consequently, our findings demonstrate the general applicability of rDNA loci as chromosomal integration sites for gene cluster expression and recombinant pathway implementation in P. putida KT2440.
Collapse
|
28
|
Cook TB, Pfleger BF. Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts. MEDCHEMCOMM 2019; 10:668-681. [PMID: 31191858 PMCID: PMC6540960 DOI: 10.1039/c9md00055k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022]
Abstract
Bacteria have historically been a rich source of natural products (e.g. polyketides and non-ribosomal peptides) that possess medically-relevant activities. Despite extensive discovery programs in both industry and academia, a plethora of biosynthetic pathways remain uncharacterized and the corresponding molecular products untested for potential bioactivities. This knowledge gap comes in part from the fact that many putative natural product producers have not been cultured in conventional laboratory settings in which the corresponding products are produced at detectable levels. Next-generation sequencing technologies are further increasing the knowledge gap by obtaining metagenomic sequence information from complex communities where production of the desired compound cannot be isolated in the laboratory. For these reasons, many groups are turning to synthetic biology to produce putative natural products in heterologous hosts. This strategy depends on the ability to heterologously express putative biosynthetic gene clusters and produce relevant quantities of the corresponding products. Actinobacteria remain the most abundant source of natural products and the most promising heterologous hosts for natural product discovery and production. However, researchers are discovering more natural products from other groups of bacteria, such as myxobacteria and cyanobacteria. Therefore, phylogenetically similar heterologous hosts have become promising candidates for synthesizing these novel molecules. The downside of working with these microbes is the lack of well-characterized genetic tools for optimizing expression of gene clusters and product titers. This review examines heterologous expression of natural product gene clusters in terms of the motivations for this research, the traits desired in an ideal host, tools available to the field, and a survey of recent progress.
Collapse
Affiliation(s)
- Taylor B Cook
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| |
Collapse
|
29
|
Amarelle V, Sanches-Medeiros A, Silva-Rocha R, Guazzaroni ME. Expanding the Toolbox of Broad Host-Range Transcriptional Terminators for Proteobacteria through Metagenomics. ACS Synth Biol 2019; 8:647-654. [PMID: 30943009 DOI: 10.1021/acssynbio.8b00507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As the field of synthetic biology moves toward the utilization of novel bacterial chassis, there is a growing need for biological parts with enhanced performance in a wide number of hosts. Is not unusual that biological parts (such as promoters and terminators), initially characterized in the model bacterium Escherichia coli, do not perform well when implemented in alternative hosts, such as Pseudomonas, therefore limiting the construction of synthetic circuits in industrially relevant bacteria, for instance Pseudomonas putida. In order to address this limitation, we present here the mining of transcriptional terminators through functional metagenomics to identify novel parts with broad host-range activity. Using a GFP-based terminator trap strategy and a broad host-range plasmid, we identified 20 clones with potential terminator activity in P. putida. Further characterization allowed the identification of 4 unique sequences ranging from 58 to 181 bp long that efficiently terminate transcription in P. putida, E. coli, Burkholderia phymatum, and two Pseudomonas strains isolated from Antarctica. Therefore, this work presents a new set of biological parts useful for the engineering of synthetic circuits in Proteobacteria.
Collapse
Affiliation(s)
- Vanesa Amarelle
- Department of Microbial Biochemistry and Genomics, Biological Research Institute Clemente Estable, 11600 Montevideo, Uruguay
- FFCLRP, University of São Paulo, 14049-901 Ribeirão Preto, São Paulo, Brazil
| | | | - Rafael Silva-Rocha
- FMRP, University of São Paulo, 14049-901 Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
30
|
Peters L, Weidenfeld I, Klemm U, Loeschcke A, Weihmann R, Jaeger KE, Drepper T, Ntziachristos V, Stiel AC. Phototrophic purple bacteria as optoacoustic in vivo reporters of macrophage activity. Nat Commun 2019; 10:1191. [PMID: 30867430 PMCID: PMC6416252 DOI: 10.1038/s41467-019-09081-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Τhe morphology, physiology and immunology, of solid tumors exhibit spatial heterogeneity which complicates our understanding of cancer progression and therapy response. Understanding spatial heterogeneity necessitates high resolution in vivo imaging of anatomical and pathophysiological tumor information. We introduce Rhodobacter as bacterial reporter for multispectral optoacoustic (photoacoustic) tomography (MSOT). We show that endogenous bacteriochlorophyll a in Rhodobacter gives rise to strong optoacoustic signals >800 nm away from interfering endogenous absorbers. Importantly, our results suggest that changes in the spectral signature of Rhodobacter which depend on macrophage activity inside the tumor can be used to reveal heterogeneity of the tumor microenvironment. Employing non-invasive high resolution MSOT in longitudinal studies we show spatiotemporal changes of Rhodobacter spectral profiles in mice bearing 4T1 and CT26.WT tumor models. Accessibility of Rhodobacter to genetic modification and thus to sensory and therapeutic functions suggests potential for a theranostic platform organism. Current optoacoustic probes for cancer imaging have limitations including background noise, long-term toxicity and scarce imaging depth in living tissue. Here the authors use Rhodobacter, purple bacteria rich in bacteriochlorophyll a, as an optoacoustic reporter to image tumor-associated macrophages in mice in vivo.
Collapse
Affiliation(s)
- Lena Peters
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Ina Weidenfeld
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Robin Weihmann
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Technische Universität München, München, 81675, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, 85764, Germany.
| |
Collapse
|
31
|
Choi KR, Lee SY. Protocols for RecET-based markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Microb Biotechnol 2019; 13:199-209. [PMID: 30761747 PMCID: PMC6922525 DOI: 10.1111/1751-7915.13374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas putida has emerged as a promising host for the production of chemicals and materials thanks to its metabolic versatility and cellular robustness. In particular, P. putida KT2440 has been officially classified as a generally recognized as safe (GRAS) strain, which makes it suitable for the production of compounds that humans directly consume, including secondary metabolites of high importance. Although various tools and strategies have been developed to facilitate metabolic engineering of P. putida, modification of large genes/clusters essential for heterologous expression of natural products with large biosynthetic gene clusters (BGCs) has not been straightforward. Recently, we reported a RecET-based markerless recombineering system for engineering P. putida and demonstrated deletion of multiple regions as large as 101.7 kb throughout the chromosome by single rounds of recombineering. In addition, development of a donor plasmid system allowed successful markerless integration of heterologous BGCs to P. putida chromosome using the recombineering system with examples of - but not limited to - integrating multiple heterologous BGCs as large as 7.4 kb to the chromosome of P. putida KT2440. In response to the increasing interest in our markerless recombineering system, here we provide detailed protocols for markerless gene knockout and integration for the genome engineering of P. putida and related species of high industrial importance.
Collapse
Affiliation(s)
- Kyeong Rok Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
32
|
Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol 2019; 12:98-124. [PMID: 29926529 PMCID: PMC6302729 DOI: 10.1111/1751-7915.13292] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
The last few years have witnessed an unprecedented increase in the number of novel bacterial species that hold potential to be used for metabolic engineering. Historically, however, only a handful of bacteria have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction - and only for the synthesis of very few, structurally simple compounds. One of the reasons for this unfortunate circumstance has been the dearth of tools for targeted genome engineering of bacterial chassis, and, nowadays, synthetic biology is significantly helping to bridge such knowledge gap. Against this background, in this review, we discuss the state of the art in the rational design and construction of robust bacterial chassis for metabolic engineering, presenting key examples of bacterial species that have secured a place in industrial bioproduction. The emergence of novel bacterial chassis is also considered at the light of the unique properties of their physiology and metabolism, and the practical applications in which they are expected to outperform other microbial platforms. Emerging opportunities, essential strategies to enable successful development of industrial phenotypes, and major challenges in the field of bacterial chassis development are also discussed, outlining the solutions that contemporary synthetic biology-guided metabolic engineering offers to tackle these issues.
Collapse
Affiliation(s)
- Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of Denmark2800Kongens LyngbyDenmark
| |
Collapse
|
33
|
Philipps G, de Vries S, Jennewein S. Development of a metabolic pathway transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:112. [PMID: 31086564 PMCID: PMC6507227 DOI: 10.1186/s13068-019-1448-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/22/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Clostridium spp. can synthesize valuable chemicals and fuels by utilizing diverse waste-stream substrates, including starchy biomass, lignocellulose, and industrial waste gases. However, metabolic engineering in Clostridium spp. is challenging due to the low efficiency of gene transfer and genomic integration of entire biosynthetic pathways. RESULTS We have developed a reliable gene transfer and genomic integration system for the syngas-fermenting bacterium Clostridium ljungdahlii based on the conjugal transfer of donor plasmids containing large transgene cassettes (> 5 kb) followed by the inducible activation of Himar1 transposase to promote integration. We established a conjugation protocol for the efficient generation of transconjugants using the Gram-positive origins of replication repL and repH. We also investigated the impact of DNA methylation on conjugation efficiency by testing donor constructs with all possible combinations of Dam and Dcm methylation patterns, and used bisulfite conversion and PacBio sequencing to determine the DNA methylation profile of the C. ljungdahlii genome, resulting in the detection of four sequence motifs with N6-methyladenosine. As proof of concept, we demonstrated the transfer and genomic integration of a heterologous acetone biosynthesis pathway using a Himar1 transposase system regulated by a xylose-inducible promoter. The functionality of the integrated pathway was confirmed by detecting enzyme proteotypic peptides and the formation of acetone and isopropanol by C. ljungdahlii cultures utilizing syngas as a carbon and energy source. CONCLUSIONS The developed multi-gene delivery system offers a versatile tool to integrate and stably express large biosynthetic pathways in the industrial promising syngas-fermenting microorganism C. ljungdahlii. The simple transfer and stable integration of large gene clusters (like entire biosynthetic pathways) is expanding the range of possible fermentation products of heterologously expressing recombinant strains. We also believe that the developed gene delivery system can be adapted to other clostridial strains as well.
Collapse
Affiliation(s)
- Gabriele Philipps
- Department for Industrial Biotechnology, Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074 Aachen, Germany
| | - Sebastian de Vries
- Department for Industrial Biotechnology, Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074 Aachen, Germany
- Present Address: Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Stefan Jennewein
- Department for Industrial Biotechnology, Fraunhofer IME, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr. 6, 52074 Aachen, Germany
| |
Collapse
|
34
|
Solvent Tolerance in Bacteria: Fulfilling the Promise of the Biotech Era? Trends Biotechnol 2018; 36:1025-1039. [DOI: 10.1016/j.tibtech.2018.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
|
35
|
Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metab Eng 2018; 47:463-474. [PMID: 29751103 DOI: 10.1016/j.ymben.2018.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 11/22/2022]
Abstract
Pseudomonas putida has gained much interest among metabolic engineers as a workhorse for producing valuable natural products. While a few gene knockout tools for P. putida have been reported, integration of heterologous genes into the chromosome of P. putida, an essential strategy to develop stable industrial strains producing heterologous bioproducts, requires development of a more efficient method. Current methods rely on time-consuming homologous recombination techniques and transposon-mediated random insertions. Here we report a RecET recombineering system for markerless integration of heterologous genes into the P. putida chromosome. The efficiency and capacity of the recombineering system were first demonstrated by knocking out various genetic loci on the P. putida chromosome with knockout lengths widely spanning 0.6-101.7 kb. The RecET recombineering system developed here allowed successful integration of biosynthetic gene clusters for four proof-of-concept bioproducts, including protein, polyketide, isoprenoid, and amino acid derivative, into the target genetic locus of P. putida chromosome. The markerless recombineering system was completed by combining Cre/lox system and developing efficient plasmid curing systems, generating final strains free of antibiotic markers and plasmids. This markerless recombineering system for efficient gene knockout and integration will expedite metabolic engineering of P. putida, a bacterial host strain of increasing academic and industrial interest.
Collapse
|
36
|
Prodigiosin pigment of Serratia marcescens is associated with increased biomass production. Arch Microbiol 2018; 200:989-999. [PMID: 29616306 DOI: 10.1007/s00203-018-1508-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022]
Abstract
Serratia marcescens is a gram-negative, facultatively-anaerobic bacterium and opportunistic pathogen which produces the red pigment prodigiosin. We employed both batch culture and chemostat growth methods to investigate prodigiosin function in the producing organism. Pigmentation correlated with an increased rate of ATP production during population lag phase. Results with a lacZ transcriptional fusion to the prodigiosin (pig) biosynthetic operon revealed that operon transcription is activated by low cellular levels of ATP at high cell density. Furthermore, these data enabled estimation of the ATP per cell minimum value at which the operon is induced. Pigmented cells were found to accumulate ATP more rapidly and to multiply more quickly than non-pigmented cells during the high density growth phase. Finally, results with both batch and chemostat culture revealed that pigmented cells grow to approximately twice the biomass yield as non-pigmented S. marcescens bacteria. Prodigiosin production may, therefore, provide a growth advantage at ambient temperatures.
Collapse
|
37
|
Complex molecules, clever solutions – Enzymatic approaches towards natural product and active agent syntheses. Bioorg Med Chem 2018; 26:1285-1303. [DOI: 10.1016/j.bmc.2017.06.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/29/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
|
38
|
Loeschcke A, Dienst D, Wewer V, Hage-Hülsmann J, Dietsch M, Kranz-Finger S, Hüren V, Metzger S, Urlacher VB, Gigolashvili T, Kopriva S, Axmann IM, Drepper T, Jaeger KE. The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS One 2017; 12:e0189816. [PMID: 29281679 PMCID: PMC5744966 DOI: 10.1371/journal.pone.0189816] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022] Open
Abstract
Cyclic triterpenes constitute one of the most diverse groups of plant natural products. Besides the intriguing biochemistry of their biosynthetic pathways, plant triterpenes exhibit versatile bioactivities, including antimicrobial effects against plant and human pathogens. While prokaryotes have been extensively used for the heterologous production of other classes of terpenes, the synthesis of cyclic triterpenes, which inherently includes the two-step catalytic formation of the universal linear precursor 2,3-oxidosqualene, is still a major challenge. We thus explored the suitability of the metabolically versatile photosynthetic α-proteobacterium Rhodobacter capsulatus SB1003 and cyanobacterium Synechocystis sp. PCC 6803 as alternative hosts for biosynthesis of cyclic plant triterpenes. Therefore, 2,3-oxidosqualene production was implemented and subsequently combined with different cyclization reactions catalyzed by the representative oxidosqualene cyclases CAS1 (cycloartenol synthase), LUP1 (lupeol synthase), THAS1 (thalianol synthase) and MRN1 (marneral synthase) derived from model plant Arabidopsis thaliana. While successful accumulation of 2,3-oxidosqualene could be detected by LC-MS analysis in both hosts, cyclase expression resulted in differential production profiles. CAS1 catalyzed conversion to only cycloartenol, but expression of LUP1 yielded lupeol and a triterpenoid matching an oxidation product of lupeol, in both hosts. In contrast, THAS1 expression did not lead to cyclic product formation in either host, whereas MRN1-dependent production of marnerol and hydroxymarnerol was observed in Synechocystis but not in R. capsulatus. Our findings thus indicate that 2,3-oxidosqualene cyclization in heterologous phototrophic bacteria is basically feasible but efficient conversion depends on both the respective cyclase enzyme and individual host properties. Therefore, photosynthetic α-proteo- and cyanobacteria are promising alternative candidates for providing new bacterial access to the broad class of triterpenes for biotechnological applications.
Collapse
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Dennis Dienst
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vera Wewer
- Cluster of Excellence on Plant Sciences (CEPLAS)
- MS Platform, Department of Biology, University of Cologne, Cologne, Germany
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
| | - Maximilian Dietsch
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Kranz-Finger
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Biochemistry II, Department of Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vanessa Hüren
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sabine Metzger
- Cluster of Excellence on Plant Sciences (CEPLAS)
- MS Platform, Department of Biology, University of Cologne, Cologne, Germany
| | - Vlada B. Urlacher
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Biochemistry II, Department of Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tamara Gigolashvili
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Botanical Institute, University of Cologne, Cologne, Germany
| | - Stanislav Kopriva
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Botanical Institute, University of Cologne, Cologne, Germany
| | - Ilka M. Axmann
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute for Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- * E-mail: (IMA); (TD)
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
- * E-mail: (IMA); (TD)
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS)
- Institute of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
39
|
Domröse A, Weihmann R, Thies S, Jaeger KE, Drepper T, Loeschcke A. Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX. Synth Syst Biotechnol 2017; 2:310-319. [PMID: 29552656 PMCID: PMC5851919 DOI: 10.1016/j.synbio.2017.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/03/2017] [Accepted: 11/03/2017] [Indexed: 11/18/2022] Open
Abstract
Microbial secondary metabolites represent a rich source of valuable compounds with a variety of applications in medicine or agriculture. Effective exploitation of this wealth of chemicals requires the functional expression of the respective biosynthetic genes in amenable heterologous hosts. We have previously established the TREX system which facilitates the transfer, integration and expression of biosynthetic gene clusters in various bacterial hosts. Here, we describe the yTREX system, a new tool adapted for one-step yeast recombinational cloning of gene clusters. We show that with yTREX, Pseudomonas putida secondary metabolite production strains can rapidly be constructed by random targeting of chromosomal promoters by Tn5 transposition. Feasibility of this approach was corroborated by prodigiosin production after yTREX cloning, transfer and expression of the respective biosynthesis genes from Serratia marcescens. Furthermore, the applicability of the system for effective pathway rerouting by gene cluster adaptation was demonstrated using the violacein biosynthesis gene cluster from Chromobacterium violaceum, producing pathway metabolites violacein, deoxyviolacein, prodeoxyviolacein, and deoxychromoviridans. Clones producing both prodigiosin and violaceins could be readily identified among clones obtained after random chromosomal integration by their strong color-phenotype. Finally, the addition of a promoter-less reporter gene enabled facile detection also of phenazine-producing clones after transfer of the respective phenazine-1-carboxylic acid biosynthesis genes from Pseudomonas aeruginosa. All compounds accumulated to substantial titers in the mg range. We thus corroborate here the suitability of P. putida for the biosynthesis of diverse natural products, and demonstrate that the yTREX system effectively enables the rapid generation of secondary metabolite producing bacteria by activation of heterologous gene clusters, applicable for natural compound discovery and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Robin Weihmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
- Corresponding author. Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.Institute of Molecular Enzyme TechnologyHeinrich Heine University DüsseldorfForschungszentrum JülichJülichGermany
| |
Collapse
|
40
|
Gemperlein K, Hoffmann M, Huo L, Pilak P, Petzke L, Müller R, Wenzel SC. Synthetic biology approaches to establish a heterologous production system for coronatines. Metab Eng 2017; 44:213-222. [DOI: 10.1016/j.ymben.2017.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/19/2017] [Accepted: 09/18/2017] [Indexed: 11/28/2022]
|
41
|
Dvořák P, Nikel PI, Damborský J, de Lorenzo V. Bioremediation 3 . 0 : Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 2017; 35:845-866. [DOI: 10.1016/j.biotechadv.2017.08.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 01/07/2023]
|
42
|
Klein AS, Domröse A, Bongen P, Brass HUC, Classen T, Loeschcke A, Drepper T, Laraia L, Sievers S, Jaeger KE, Pietruszka J. New Prodigiosin Derivatives Obtained by Mutasynthesis in Pseudomonas putida. ACS Synth Biol 2017; 6:1757-1765. [PMID: 28505410 DOI: 10.1021/acssynbio.7b00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The deeply red-colored natural compound prodigiosin is a representative of the prodiginine alkaloid family, which possesses bioactivities as antimicrobial, antitumor, and antimalarial agents. Various bacteria including the opportunistic human pathogen Serratia marcescens and different members of the Streptomycetaceae and Pseudoalteromonadaceae produce prodiginines. In addition, these microbes generally accumulate many structurally related alkaloids making efficient prodiginine synthesis and purification difficult and expensive. Furthermore, it is known that structurally different natural prodiginine variants display differential bioactivities. In the herein described mutasynthesis approach, 13 different derivatives of prodigiosin were obtained utilizing the GRAS (generally recognized as safe) classified strain Pseudomonas putida KT2440. Genetic engineering of the prodigiosin pathway together with incorporation of synthetic intermediates thus resulted in the formation of a so far unprecedented structural diversity of new prodiginine derivatives in P. putida. Furthermore, the formed products allow reliable conclusions regarding the substrate specificity of PigC, the final condensing enzyme in the prodigiosin biosynthesis pathway of S. marcescens. The biological activity of prodigiosin toward modulation of autophagy was preserved in prodiginine derivatives. One prodiginine derivative displayed more potent autophagy inhibitory activity than the parent compound or the synthetic clinical candidate obatoclax.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Classen
- Insitute
of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, 52428, Germany
| | | | | | | | | | - Karl-Erich Jaeger
- Insitute
of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, 52428, Germany
| | - Jörg Pietruszka
- Insitute
of Bio- and Geosciences (IBG-1), Forschungszentrum Jülich, Jülich, 52428, Germany
| |
Collapse
|
43
|
Kranz A, Vogel A, Degner U, Kiefler I, Bott M, Usadel B, Polen T. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads. J Biotechnol 2017; 258:197-205. [PMID: 28433722 DOI: 10.1016/j.jbiotec.2017.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 02/08/2023]
Abstract
State of the art and novel high-throughput DNA sequencing technologies enable fascinating opportunities and applications in the life sciences including microbial genomics. Short high-quality read data already enable not only microbial genome sequencing, yet can be inadequately to solve problems in genome assemblies and for the analysis of structural variants, especially in engineered microbial cell factories. Single-molecule real-time sequencing technologies generating long reads promise to solve such assembly problems. In our study, we wanted to increase the average read length of long nanopore reads with R9 chemistry and conducted a hybrid approach for the analysis of structural variants to check the genome stability of a recombinant Gluconobacter oxydans 621H strain (IK003.1) engineered for improved growth. Therefore we combined accurate Illumina sequencing technology and low-cost single-molecule nanopore sequencing using the MinION® device from Oxford Nanopore. In our hybrid approach with a modified library protocol we could increase the average size of nanopore 2D reads to about 18.9kb. Combining the long MinION nanopore reads with the high quality short Illumina reads enabled the assembly of the engineered chromosome into a single contig and comprehensive detection and clarification of 7 structural variants including all three known genetically engineered modifications. We found the genome of IK003.1 was stable over 70 generations of strain handling including 28h of process time in a bioreactor. The long read data revealed a novel 1420 bp transposon-flanked and ORF-containing sequence which was hitherto unknown in the G. oxydans 621H reference. Further analysis and genome sequencing showed that this region is already present in G. oxydans 621H wild-type strains. Our data of G. oxydans 621H wild-type DNA from different resources also revealed in 73 annotated coding sequences about 91 uniform nucleotide differences including InDels. Together, our results contribute to an improved high quality genome reference for G. oxydans 621H which is available via ENA accession PRJEB18739.
Collapse
Affiliation(s)
- Angela Kranz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander Vogel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany; IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ursula Degner
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ines Kiefler
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Björn Usadel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany; IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
44
|
Katzke N, Knapp A, Loeschcke A, Drepper T, Jaeger KE. Novel Tools for the Functional Expression of Metagenomic DNA. Methods Mol Biol 2017; 1539:159-196. [PMID: 27900689 DOI: 10.1007/978-1-4939-6691-2_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Functional expression of genes from metagenomic libraries is limited by various factors including inefficient transcription and/or translation of target genes as well as improper folding and assembly of the corresponding proteins caused by the lack of appropriate chaperones and cofactors. It is now well accepted that the use of different expression hosts of distinct phylogeny and physiology can dramatically increase the rate of success. In the following chapter, we therefore describe tools and protocols allowing for the comparative heterologous expression of genes in five bacterial expression hosts, namely Escherichia coli, Pseudomonas putida, Bacillus subtilis, Burkholderia glumae, and Rhodobacter capsulatus. Different broad-host-range shuttle vectors are described that allow activity-based screening of metagenomic DNA in these bacteria. Furthermore, we describe the newly developed transfer-and-expression system TREX which comprises genetic elements essential to allow for expression of large clusters of functionally coupled genes in different microbial species.
Collapse
Affiliation(s)
- Nadine Katzke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Andreas Knapp
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich GmbH, Heinrich-Heine-University Düsseldorf, 52426, Jülich, Germany.
| |
Collapse
|
45
|
Poblete-Castro I, Borrero-de Acuña JM, Nikel PI, Kohlstedt M, Wittmann C. Host Organism: Pseudomonas putida. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ignacio Poblete-Castro
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - José M. Borrero-de Acuña
- Universidad Andrés Bello; Center for Bioinformatics and Integrative Biology, Biosystems Engineering Laboratory, Faculty of Biological Sciences; Av. República 239 8340176 Santiago de Chile Chile
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program; National Spanish Center for Biotechnology (CNB-CSIC); Calle Darwin, 3 28049 Madrid, Spain
| | - Michael Kohlstedt
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| | - Christoph Wittmann
- Saarland University; Institute of Systems Biology, Biosciences; Campus A1.5 66123 Saarbrücken, Germany
| |
Collapse
|
46
|
Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci Rep 2016; 6:27035. [PMID: 27271534 PMCID: PMC4897644 DOI: 10.1038/srep27035] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 12/02/2022] Open
Abstract
DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library.
Collapse
|
47
|
Ferrer M, Martínez-Martínez M, Bargiela R, Streit WR, Golyshina OV, Golyshin PN. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 2016; 9:22-34. [PMID: 26275154 PMCID: PMC4720405 DOI: 10.1111/1751-7915.12309] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 12/01/2022] Open
Abstract
Recent reports have suggested that the establishment of industrially relevant enzyme collections from environmental genomes has become a routine procedure. Across the studies assessed, a mean number of approximately 44 active clones were obtained in an average size of approximately 53,000 clones tested using naïve screening protocols. This number could be significantly increased in shorter times when novel metagenome enzyme sequences obtained by direct sequencing are selected and subjected to high-throughput expression for subsequent production and characterization. The pre-screening of clone libraries by naïve screens followed by the pyrosequencing of the inserts allowed for a 106-fold increase in the success rate of identifying genes encoding enzymes of interest. However, a much longer time, usually on the order of years, is needed from the time of enzyme identification to the establishment of an industrial process. If the hit frequency for the identification of enzymes performing at high turnover rates under real application conditions could be increased while still covering a high natural diversity, the very expensive and time-consuming enzyme optimization phase would likely be significantly shortened. At this point, it is important to review the current knowledge about the success of fine-tuned naïve- and sequence-based screening protocols for enzyme selection and to describe the environments worldwide that have already been subjected to enzyme screen programmes through metagenomic tools. Here, we provide such estimations and suggest the current challenges and future actions needed before environmental enzymes can be successfully introduced into the market.
Collapse
Affiliation(s)
- Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Mónica Martínez-Martínez
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Rafael Bargiela
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas (CSIC), Marie Curie 2, 28049, Madrid, Spain
| | - Wolfgang R Streit
- Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststraße 18, D-22609, Hamburg, Germany
| | - Olga V Golyshina
- School of Biological Sciences, Bangor University, LL57 2UW, Gwynedd, UK
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, LL57 2UW, Gwynedd, UK
| |
Collapse
|
48
|
Domröse A, Klein AS, Hage-Hülsmann J, Thies S, Svensson V, Classen T, Pietruszka J, Jaeger KE, Drepper T, Loeschcke A. Efficient recombinant production of prodigiosin in Pseudomonas putida. Front Microbiol 2015; 6:972. [PMID: 26441905 PMCID: PMC4569968 DOI: 10.3389/fmicb.2015.00972] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022] Open
Abstract
Serratia marcescens and several other bacteria produce the red-colored pigment prodigiosin which possesses bioactivities as an antimicrobial, anticancer, and immunosuppressive agent. Therefore, there is a great interest to produce this natural compound. Efforts aiming at its biotechnological production have so far largely focused on the original producer and opportunistic human pathogen S. marcescens. Here, we demonstrate efficient prodigiosin production in the heterologous host Pseudomonas putida. Random chromosomal integration of the 21 kb prodigiosin biosynthesis gene cluster of S. marcescens in P. putida KT2440 was employed to construct constitutive prodigiosin production strains. Standard cultivation parameters were optimized such that titers of 94 mg/L culture were obtained upon growth of P. putida at 20°C using rich medium under high aeration conditions. Subsequently, a novel, fast and effective protocol for prodigiosin extraction and purification was established enabling the straightforward isolation of prodigiosin from P. putida growth medium. In summary, we describe here a highly efficient method for the heterologous biosynthetic production of prodigiosin which may serve as a basis to produce large amounts of this bioactive natural compound and may provide a platform for further in-depth studies of prodiginine biosynthesis.
Collapse
Affiliation(s)
- Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Andreas S Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Vera Svensson
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany ; Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany ; Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH Jülich, Germany
| |
Collapse
|
49
|
Pseudomonas putida-a versatile host for the production of natural products. Appl Microbiol Biotechnol 2015; 99:6197-214. [PMID: 26099332 PMCID: PMC4495716 DOI: 10.1007/s00253-015-6745-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 10/30/2022]
Abstract
The biosynthesis of natural products by heterologous expression of biosynthetic pathways in amenable production strains enables biotechnological access to a variety of valuable compounds by conversion of renewable resources. Pseudomonas putida has emerged as a microbial laboratory work horse, with elaborated techniques for cultivation and genetic manipulation available. Beyond that, this bacterium offers several particular advantages with regard to natural product biosynthesis, notably a versatile intrinsic metabolism with diverse enzymatic capacities as well as an outstanding tolerance to xenobiotics. Therefore, it has been applied for recombinant biosynthesis of several valuable natural products. This review provides an overview of applications of P. putida as a host organism for the recombinant biosynthesis of such natural products, including rhamnolipids, terpenoids, polyketides and non-ribosomal peptides, and other amino acid-derived compounds. The focus is on de novo natural product synthesis from intrinsic building blocks by means of heterologous gene expression and strain engineering. Finally, the future potential of the bacterium as a chassis organism for synthetic microbiology is pointed out.
Collapse
|
50
|
Synthetic biology advances for pharmaceutical production. Curr Opin Biotechnol 2015; 35:46-51. [PMID: 25744872 PMCID: PMC4617476 DOI: 10.1016/j.copbio.2015.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/12/2023]
Abstract
Synthetic biology is quickly moving from proof of concept to industrial application. Pharmaceuticals are a promising target for advanced genetic engineering. Genome sequence data indicate vast underexploited biosynthetic capacity. Synthetic biology can create libraries of novel chemicals enriched for bioactivity. Synthetic biology expands the range of available chassis organisms for industry.
Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.
Collapse
|