1
|
Wegat V, Fabarius JT, Sieber V. Synthetic methylotrophic yeasts for the sustainable fuel and chemical production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:113. [PMID: 36273178 PMCID: PMC9587593 DOI: 10.1186/s13068-022-02210-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
Abstract
Global energy-related emissions, in particular carbon dioxide, are rapidly increasing. Without immediate and strong reductions across all sectors, limiting global warming to 1.5 °C and thus mitigating climate change is beyond reach. In addition to the expansion of renewable energies and the increase in energy efficiency, the so-called Carbon Capture and Utilization technologies represent an innovative approach for closing the carbon cycle and establishing a circular economy. One option is to combine CO2 capture with microbial C1 fermentation. C1-molecules, such as methanol or formate are considered as attractive alternative feedstock for biotechnological processes due to their sustainable production using only CO2, water and renewable energy. Native methylotrophic microorganisms can utilize these feedstock for the production of value-added compounds. Currently, constraints exist regarding the understanding of methylotrophic metabolism and the available genetic engineering tools are limited. For this reason, the development of synthetic methylotrophic cell factories based on the integration of natural or artificial methanol assimilation pathways in biotechnologically relevant microorganisms is receiving special attention. Yeasts like Saccharomyces cerevisiae and Yarrowia lipolytica are capable of producing important products from sugar-based feedstock and the switch to produce these in the future from methanol is important in order to realize a CO2-based economy that is independent from land use. Here, we review historical biotechnological applications, the metabolism and the characteristics of methylotrophic yeasts. Various studies demonstrated the production of a broad set of promising products from fine chemicals to bulk chemicals by applying methylotrophic yeasts. Regarding synthetic methylotrophy, the deep understanding of the methylotrophic metabolism serves as the basis for microbial strain engineering and paves the way towards a CO2-based circular bioeconomy. We highlight design aspects of synthetic methylotrophy and discuss the resulting chances and challenges using non-conventional yeasts as host organisms. We conclude that the road towards synthetic methylotrophic yeasts can only be achieved through a combination of methods (e.g., metabolic engineering and adaptive laboratory evolution). Furthermore, we presume that the installation of metabolic regeneration cycles such as supporting carbon re-entry towards the pentose phosphate pathway from C1-metabolism is a pivotal target for synthetic methylotrophy.
Collapse
Affiliation(s)
- Vanessa Wegat
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| | - Jonathan T. Fabarius
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany
| | - Volker Sieber
- grid.469831.10000 0000 9186 607XFraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing branch Biocat, Schulgasse 11a, 94315 Straubing, Germany ,grid.6936.a0000000123222966Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, 94315 Straubing, Germany
| |
Collapse
|
2
|
Metabolic Engineering of Saccharomyces cerevisiae for Production of Fragrant Terpenoids from Agarwood and Sandalwood. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sandalwood and agarwood essential oils are rare natural oils comprising fragrant terpenoids that have been used in perfumes and incense for millennia. Increasing demand for these terpenoids, coupled with difficulties in isolating them from natural sources, have led to an interest in finding alternative production platforms. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fragrant terpenoids from sandalwood and agarwood. Specifically, we constructed strain FPPY005_39850, which overexpresses all eight genes in the mevalonate pathway. Using this engineered strain as the background strain, we screened seven distinct terpene synthases from agarwood, sandalwood, and related plant species for their activities in the context of yeast. Five terpene synthases led to the production of fragrant terpenoids, including α-santalene, α-humulene, δ-guaiene, α-guaiene, and β-eudesmol. To our knowledge, this is the first demonstration of β-eudesmol production in yeast. We further improved the production titers by downregulating ERG9, a key enzyme from a competing pathway, as well as employing enzyme fusions. Our final engineered strains produced fragrant terpenoids at up to 101.7 ± 6.9 mg/L. We envision our work will pave the way for a scalable route to these fragrant terpenoids and further establish S. cerevisiae as a versatile production platform for high-value chemicals.
Collapse
|
3
|
Engineered Production of Isobutanol from Sugarcane Trash Hydrolysates in Pichia pastoris. J Fungi (Basel) 2022; 8:jof8080767. [PMID: 35893135 PMCID: PMC9330720 DOI: 10.3390/jof8080767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 12/10/2022] Open
Abstract
Concerns over climate change have led to increased interest in renewable fuels in recent years. Microbial production of advanced fuels from renewable and readily available carbon sources has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered the yeast Pichia pastoris, an industrial powerhouse in heterologous enzyme production, to produce the advanced biofuel isobutanol from sugarcane trash hydrolysates. Our strategy involved overexpressing a heterologous xylose isomerase and the endogenous xylulokinase to enable the yeast to consume both C5 and C6 sugars in biomass. To enable the yeast to produce isobutanol, we then overexpressed the endogenous amino acid biosynthetic pathway and the 2-keto acid degradation pathway. The engineered strains produced isobutanol at a titer of up to 48.2 ± 1.7 mg/L directly from a minimal medium containing sugarcane trash hydrolysates as the sole carbon source. To our knowledge, this is the first demonstration of advanced biofuel production using agricultural waste-derived hydrolysates in the yeast P. pastoris. We envision that our work will pave the way for a scalable route to this advanced biofuel and further establish P. pastoris as a versatile production platform for fuels and high-value chemicals.
Collapse
|
4
|
Runguphan W, Sae-Tang K, Tanapongpipat S. Recent advances in the microbial production of isopentanol (3-Methyl-1-butanol). World J Microbiol Biotechnol 2021; 37:107. [PMID: 34043086 DOI: 10.1007/s11274-021-03074-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
As the effects of climate change become increasingly severe, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. The design and optimization of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce dependence on fossil fuels and thereby produce fewer emissions. Over the past two decades, a tremendous amount of research has contributed to the development of microbial strains to produce advanced fuel compounds, including branched-chain higher alcohols (BCHAs) such as isopentanol (3-methyl-1-butanol; 3M1B) and isobutanol (2-methyl-1-propanol). In this review, we provide an overview of recent advances in the development of microbial strains for the production of isopentanol in both conventional and non-conventional hosts. We also highlight metabolic engineering strategies that may be employed to enhance product titers, reduce end-product toxicity, and broaden the substrate range to non-sugar carbon sources. Finally, we offer glimpses into some promising future directions in the development of isopentanol producing microbial strains.
Collapse
Affiliation(s)
- Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand.
| | - Kittapong Sae-Tang
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| |
Collapse
|
5
|
Quantification of Branched-Chain Alcohol-Based Biofuels and Other Fermentation Metabolites via High-Performance Liquid Chromatography. Methods Mol Biol 2021. [PMID: 34009583 DOI: 10.1007/978-1-0716-1323-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
As the consequences of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce bio-gasoline and other biofuels from renewable feedstocks can significantly reduce dependence on fossil fuels as well as lower the emissions of greenhouse gases. A significant amount of research over the past two decades has led to the development of microbial strains for the production of advanced fuel compounds. Crucial to these efforts are robust methods to quantify the amount of the biofuel compound being produced as well as the other metabolites that might be present during fermentation. Here, we provide a protocol for the quantification of branched-chain alcohols, specifically isobutanol and isopropanol, using high-performance liquid chromatography (HPLC).
Collapse
|
6
|
Yoo JI, Sohn YJ, Son J, Jo SY, Pyo J, Park SK, Choi JI, Joo JC, Kim HT, Park SJ. Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnol J 2021; 17:e2000451. [PMID: 33984183 DOI: 10.1002/biot.202000451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The heavy global dependence on petroleum-based industries has led to serious environmental problems, including climate change and global warming. As a result, there have been calls for a paradigm shift towards the use of biorefineries, which employ natural and engineered microorganisms that can utilize various carbon sources from renewable resources as host strains for the carbon-neutral production of target products. PURPOSE AND SCOPE C4 alcohols are versatile chemicals that can be used directly as biofuels and bulk chemicals and in the production of value-added materials such as plastics, cosmetics, and pharmaceuticals. C4 alcohols can be effectively produced by microorganisms using DCEO biotechnology (tools to design, construct, evaluate, and optimize) and metabolic engineering strategies. SUMMARY OF NEW SYNTHESIS AND CONCLUSIONS In this review, we summarize the production strategies and various synthetic tools available for the production of C4 alcohols and discuss the potential development of microbial cell factories, including the optimization of fermentation processes, that offer cost competitiveness and potential industrial commercialization.
Collapse
Affiliation(s)
- Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jiwon Pyo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Su Kyeong Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and Biomaterials, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyenggi-do, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Shanmugam KT, Ingram LO. Principles and practice of designing microbial biocatalysts for fuel and chemical production. J Ind Microbiol Biotechnol 2021; 49:6158391. [PMID: 33686428 PMCID: PMC9118985 DOI: 10.1093/jimb/kuab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022]
Abstract
The finite nature of fossil fuels and the environmental impact of its use have raised interest in alternate renewable energy sources. Specifically, non-food carbohydrates, such as lignocellulosic biomass, can be used to produce next generation biofuels, including cellulosic ethanol and other non-ethanol fuels like butanol. However, currently there is no native microorganism that can ferment all lignocellulosic sugars to fuel molecules. Thus, research is focused on engineering improved microbial biocatalysts for production of liquid fuels at high productivity, titer and yield. A clear understanding and application of the basic principles of microbial physiology and biochemistry are crucial to achieve this goal. In this review, we present and discuss the construction of microbial biocatalysts that integrate these principles with ethanol-producing Escherichia coli as an example of metabolic engineering. These principles also apply to fermentation of lignocellulosic sugars to other chemicals that are currently produced from petroleum.
Collapse
Affiliation(s)
- K T Shanmugam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Lonnie O Ingram
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Wangsanuwat C, Heom KA, Liu E, O'Malley MA, Dey SS. Efficient and cost-effective bacterial mRNA sequencing from low input samples through ribosomal RNA depletion. BMC Genomics 2020; 21:717. [PMID: 33066726 PMCID: PMC7565789 DOI: 10.1186/s12864-020-07134-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND RNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA molecules in a population to gain deeper understanding of cellular functions and phenotypes. However, unlike eukaryotic cells, mRNA sequencing of bacterial samples is more challenging due to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold lower quantities of RNA compared to mammalian cells, which further complicates mRNA sequencing from non-cultivable and non-model bacterial species. To overcome these limitations, we report EMBR-seq (Enrichment of mRNA by Blocked rRNA), a method that efficiently depletes 5S, 16S and 23S rRNA using blocking primers to prevent their amplification. RESULTS EMBR-seq results in 90% of the sequenced RNA molecules from an E. coli culture deriving from mRNA. We demonstrate that this increased efficiency provides a deeper view of the transcriptome without introducing technical amplification-induced biases. Moreover, compared to recent methods that employ a large array of oligonucleotides to deplete rRNA, EMBR-seq uses a single or a few oligonucleotides per rRNA, thereby making this new technology significantly more cost-effective, especially when applied to varied bacterial species. Finally, compared to existing commercial kits for bacterial rRNA depletion, we show that EMBR-seq can be used to successfully quantify the transcriptome from more than 500-fold lower starting total RNA. CONCLUSIONS EMBR-seq provides an efficient and cost-effective approach to quantify global gene expression profiles from low input bacterial samples.
Collapse
Affiliation(s)
- Chatarin Wangsanuwat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kellie A Heom
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Estella Liu
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
9
|
Promdonkoy P, Mhuantong W, Champreda V, Tanapongpipat S, Runguphan W. Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering. ACTA ACUST UNITED AC 2020; 47:497-510. [DOI: 10.1007/s10295-020-02281-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022]
Abstract
Abstract
As the effects of climate change become apparent, metabolic engineers and synthetic biologists are exploring sustainable sources for transportation fuels. The design and engineering of microorganisms to produce gasoline, diesel, and jet fuel compounds from renewable feedstocks can significantly reduce our dependence on fossil fuels as well as lower the emissions of greenhouse gases. Over the past 2 decades, a considerable amount of work has led to the development of microbial strains for the production of advanced fuel compounds from both C5 and C6 sugars. In this work, we combined two strategies—adaptive laboratory evolution and rational metabolic engineering—to improve the yeast Saccharomyces cerevisiae’s ability to utilize d-xylose, a major C5 sugar in biomass, and produce the advanced biofuel isobutanol. Whole genome resequencing of several evolved strains followed by reverse engineering identified two single nucleotide mutations, one in CCR4 and another in TIF1, that improved the yeast’s specific growth rate by 23% and 14%, respectively. Neither one of these genes has previously been implicated to play a role in utilization of d-xylose. Fine-tuning the expression levels of the bottleneck enzymes in the isobutanol pathway further improved the evolved strain’s isobutanol titer to 92.9 ± 4.4 mg/L (specific isobutanol production of 50.2 ± 2.6 mg/g DCW), a 90% improvement in titer and a 110% improvement in specific production over the non-evolved strain. We hope that our work will set the stage for an economic route to the advanced biofuel isobutanol and enable efficient utilization of xylose-containing biomass.
Collapse
Affiliation(s)
- Peerada Promdonkoy
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Wuttichai Mhuantong
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Verawat Champreda
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Sutipa Tanapongpipat
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| | - Weerawat Runguphan
- grid.419250.b National Center for Genetic Engineering and Biotechnology 113 Thailand Science Park, Paholyothin Road, Klong 1 12120 Klong Luang Pathumthani Thailand
| |
Collapse
|
10
|
|
11
|
Zhao C, Zhang Y, Li Y. Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnol Adv 2019; 37:107402. [DOI: 10.1016/j.biotechadv.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
|
12
|
Quesne MG, Silveri F, de Leeuw NH, Catlow CRA. Advances in Sustainable Catalysis: A Computational Perspective. Front Chem 2019; 7:182. [PMID: 31032245 PMCID: PMC6473102 DOI: 10.3389/fchem.2019.00182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/07/2019] [Indexed: 11/13/2022] Open
Abstract
The enormous challenge of moving our societies to a more sustainable future offers several exciting opportunities for computational chemists. The first principles approach to "catalysis by design" will enable new and much greener chemical routes to produce vital fuels and fine chemicals. This prospective outlines a wide variety of case studies to underscore how the use of theoretical techniques, from QM/MM to unrestricted DFT and periodic boundary conditions, can be applied to biocatalysis and to both homogeneous and heterogenous catalysts of all sizes and morphologies to provide invaluable insights into the reaction mechanisms they catalyze.
Collapse
|
13
|
Abstract
Biocatalytic systems (e.g., multienzyme pathways or complexes) enable the conversion of simple sugars into complex products under ambient conditions and, thus, represent promising platforms for the synthesis of renewable fuels and chemicals. Unfortunately, to date, many of these systems have proven difficult to engineer without a detailed understanding of the kinetic relationships that regulate the concerted action of their constituent enzymes. This study develops a mechanistic kinetic model of the fatty acid synthase (FAS) of Escherichia coli and uses that model to determine how different FAS components work together to control the production of free fatty acids-precursors to a wide range of oleochemicals. Perturbational analyses indicate that the modification or overexpression of a single FAS component can depress fatty acid production (a commonly observed phenomenon) by sequestering the proteins with which it interacts and/or by depleting common substrate pools. Compositional studies, in turn, suggest that simple changes in the ratios of FAS components can alter the average length of fatty acids but show that specialized enzymes (i.e., highly specific ketoacyl synthases or thioesterases) are required for narrow product profiles. Intriguingly, a sensitivity analysis indicates that two components primarily influence-and, thus, enable fine control over-total production, but suggests that the enzymes that regulate product profile are more broadly influential. Findings thus reveal the general importance of kinetic considerations in efforts to engineer fatty acid biosynthesis and provide strategies-and a kinetic model-for incorporating those considerations into FAS designs.
Collapse
Affiliation(s)
- Sophia Ruppe
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
14
|
Miller BR, Kung Y. Structural insight into substrate and product binding in an archaeal mevalonate kinase. PLoS One 2018; 13:e0208419. [PMID: 30521590 PMCID: PMC6283576 DOI: 10.1371/journal.pone.0208419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/18/2018] [Indexed: 12/03/2022] Open
Abstract
Mevalonate kinase (MK) is a key enzyme of the mevalonate pathway, which produces the biosynthetic precursors for steroids, including cholesterol, and isoprenoids, the largest class of natural products. Currently available crystal structures of MK from different organisms depict the enzyme in its unbound, substrate-bound, and inhibitor-bound forms; however, until now no structure has yet been determined of MK bound to its product, 5-phosphomevalonate. Here, we present crystal structures of mevalonate-bound and 5-phosphomevalonate-bound MK from Methanosarcina mazei (MmMK), a methanogenic archaeon. In contrast to the prior structure of a eukaryotic MK bound with mevalonate, we find a striking lack of direct interactions between this archaeal MK and its substrate. Further, these two MmMK structures join the prior structure of the apoenzyme to complete the first suite of structural snapshots that depict unbound, substrate-bound, and product-bound forms of the same MK. With this collection of structures, we now provide additional insight into the catalytic mechanism of this biologically essential enzyme.
Collapse
Affiliation(s)
- Bradley R. Miller
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States of America
| | - Yan Kung
- Department of Chemistry, Bryn Mawr College, Bryn Mawr, PA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ragwan ER, Arai E, Kung Y. New Crystallographic Snapshots of Large Domain Movements in Bacterial 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. Biochemistry 2018; 57:5715-5725. [PMID: 30199631 DOI: 10.1021/acs.biochem.8b00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR) catalyzes the first committed step of the mevalonate pathway, which is used across biology in the biosynthesis of countless metabolites. HMGR consumes 2 equiv of the cofactor NAD(P)H to perform the four-electron reduction of HMG-CoA to mevalonate toward the production of steroids and isoprenoids, the largest class of natural products. Recent structural data have shown that HMGR contains a highly mobile C-terminal domain (CTD) that is believed to adopt many different conformations to permit binding and dissociation of the substrate, cofactors, and products at specific points during the reaction cycle. Here, we have characterized the HMGR from Delftia acidovorans as an NADH-specific enzyme and determined crystal structures of the enzyme in unbound, mevalonate-bound, and NADH- and citrate-bound states. Together, these structures depict ligand binding in both the active site and the cofactor-binding site while illustrating how a conserved helical motif confers NAD(P)H cofactor specificity. Unexpectedly, the NADH-bound structure also reveals a new conformation of the CTD, in which the domain has "flipped" upside-down, while directly binding the cofactor. By capturing these structural snapshots, this work not only expands the known range of HMGR domain movement but also provides valuable insight into the catalytic mechanism of this biologically important enzyme.
Collapse
Affiliation(s)
- Edwin R Ragwan
- Department of Chemistry , Bryn Mawr College , 101 North Merion Avenue , Bryn Mawr , Pennsylvania 19010 , United States
| | - Eri Arai
- Department of Chemistry , Bryn Mawr College , 101 North Merion Avenue , Bryn Mawr , Pennsylvania 19010 , United States
| | - Yan Kung
- Department of Chemistry , Bryn Mawr College , 101 North Merion Avenue , Bryn Mawr , Pennsylvania 19010 , United States
| |
Collapse
|
16
|
Zhang Y, Dong R, Zhang M, Gao H. Native efflux pumps of Escherichia coli responsible for short and medium chain alcohol. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Huang W, Daboussi F. Genetic and metabolic engineering in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0411. [PMID: 28717021 DOI: 10.1098/rstb.2016.0411] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/23/2022] Open
Abstract
Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Weichao Huang
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
18
|
Siripong W, Wolf P, Kusumoputri TP, Downes JJ, Kocharin K, Tanapongpipat S, Runguphan W. Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:1. [PMID: 29321810 PMCID: PMC5757298 DOI: 10.1186/s13068-017-1003-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/21/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Interests in renewable fuels have exploded in recent years as the serious effects of global climate change become apparent. Microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of transportation fuels. Here, we engineered Pichia pastoris, an industrial workhorse in heterologous enzyme production, to produce the biofuel isobutanol from two renewable carbon sources, glucose and glycerol. Our strategy exploited the yeast's amino acid biosynthetic pathway and diverted the amino acid intermediates to the 2-keto acid degradation pathway for higher alcohol production. To further demonstrate the versatility of our yeast platform, we incorporated a broad-substrate-range alcohol-O-acyltransferase to generate a variety of volatile esters, including isobutyl acetate ester and isopentyl acetate ester. RESULTS The engineered strain overexpressing the keto-acid degradation pathway was able to produce 284 mg/L of isobutanol when supplemented with 2-ketoisovalerate. To improve the production of isobutanol and eliminate the need to supplement the production media with the expensive 2-ketoisovalerate intermediate, we overexpressed a portion of the amino acid l-valine biosynthetic pathway in the engineered strain. While heterologous expression of the pathway genes from the yeast Saccharomyces cerevisiae did not lead to improvement in isobutanol production in the engineered P. pastoris, overexpression of the endogenous l-valine biosynthetic pathway genes led to a strain that is able to produce 0.89 g/L of isobutanol. Fine-tuning the expression of bottleneck enzymes by employing an episomal plasmid-based expression system further improved the production titer of isobutanol to 2.22 g/L, a 43-fold improvement from the levels observed in the original strain. Finally, heterologous expression of a broad-substrate-range alcohol-O-acyltransferase led to the production of isobutyl acetate ester and isopentyl acetate ester at 51 and 24 mg/L, respectively. CONCLUSIONS In this study, we engineered high-level production of the biofuel isobutanol and the corresponding acetate ester by P. pastoris from readily available carbon sources. We envision that our work will provide an economic route to this important class of compounds and establish P. pastoris as a versatile production platform for fuels and chemicals.
Collapse
Affiliation(s)
- Wiparat Siripong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Philipp Wolf
- Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Theodora Puspowangi Kusumoputri
- Atma Jaya University, Jl. Jend. Sudirman No.51, RT.5/RW.4, Karet Semanggi, Setia Budi, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta, 12930 Indonesia
| | | | - Kanokarn Kocharin
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 Thailand
| |
Collapse
|
19
|
Miller BR, Kung Y. Structural Features and Domain Movements Controlling Substrate Binding and Cofactor Specificity in Class II HMG-CoA Reductase. Biochemistry 2017; 57:654-662. [PMID: 29224355 DOI: 10.1021/acs.biochem.7b00999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The key mevalonate pathway enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR) uses the cofactor NAD(P)H to reduce HMG-CoA to mevalonate in the production of countless metabolites and natural products. Although inhibition of HMGR by statin drugs is well-understood, several mechanistic details of HMGR catalysis remain unresolved, and the structural basis for the wide range of cofactor specificity for either NADH or NADPH among HMGRs from different organisms is also unknown. Here, we present crystal structures of HMGR from Streptococcus pneumoniae (SpHMGR) alongside kinetic data of the enzyme's cofactor preferences. Our structure of SpHMGR bound with its kinetically preferred NADPH cofactor suggests how NADPH-specific binding and recognition are achieved. In addition, our structure of HMG-CoA-bound SpHMGR reveals large, previously unknown conformational domain movements that may control HMGR substrate binding and enable cofactor exchange without intermediate release during the catalytic cycle. Taken together, this work provides critical new insights into both the HMGR reaction mechanism and the structural basis of cofactor specificity.
Collapse
Affiliation(s)
- Bradley R Miller
- Department of Chemistry, Bryn Mawr College , 101 North Merion Avenue, Bryn Mawr, Pennsylvania 19010, United States
| | - Yan Kung
- Department of Chemistry, Bryn Mawr College , 101 North Merion Avenue, Bryn Mawr, Pennsylvania 19010, United States
| |
Collapse
|
20
|
Use of CellNetAnalyzer in biotechnology and metabolic engineering. J Biotechnol 2017; 261:221-228. [DOI: 10.1016/j.jbiotec.2017.05.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 01/28/2023]
|
21
|
Abstract
![]()
The
year 2017 marks the twentieth anniversary of terpenoid cyclase
structural biology: a trio of terpenoid cyclase structures reported
together in 1997 were the first to set the foundation for understanding
the enzymes largely responsible for the exquisite chemodiversity of
more than 80000 terpenoid natural products. Terpenoid cyclases catalyze
the most complex chemical reactions in biology, in that more than
half of the substrate carbon atoms undergo changes in bonding and
hybridization during a single enzyme-catalyzed cyclization reaction.
The past two decades have witnessed structural, functional, and computational
studies illuminating the modes of substrate activation that initiate
the cyclization cascade, the management and manipulation of high-energy
carbocation intermediates that propagate the cyclization cascade,
and the chemical strategies that terminate the cyclization cascade.
The role of the terpenoid cyclase as a template for catalysis is paramount
to its function, and protein engineering can be used to reprogram
the cyclization cascade to generate alternative and commercially important
products. Here, I review key advances in terpenoid cyclase structural
and chemical biology, focusing mainly on terpenoid cyclases and related
prenyltransferases for which X-ray crystal structures have informed
and advanced our understanding of enzyme structure and function.
Collapse
Affiliation(s)
- David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
22
|
Tang X, Feng L, Chen L, Chen WN. Engineering Saccharomyces cerevisiae for Efficient Biosynthesis of Fatty Alcohols Based on Enhanced Supply of Free Fatty Acids. ACS OMEGA 2017; 2:3284-3290. [PMID: 30023691 PMCID: PMC6044801 DOI: 10.1021/acsomega.7b00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/20/2017] [Indexed: 05/05/2023]
Abstract
In recent years, production of fatty acid derivatives has attracted much attention because of their wide range of applications in renewable oleochemicals. Microorganisms such as Saccharomyces cerevisiae provided an ideal cell factory for such chemical synthesis. In this study, an efficient strategy for the synthesis of fatty alcohols based on enhanced supply of free fatty acids (FFAs) was constructed. The FAA1 and FAA4 genes encoding two acyl-CoA synthetases in S. cerevisiae were deleted, resulting in the accumulation of FFAs with carbon chain length from C8 to C18. The coexpression of the carboxylic acid reductase gene (car) from Mycobacterium marinum and the phosphopantetheinyl transferase gene (sfp) from Bacillus subtilis successfully converted the accumulated FFAs into fatty alcohols. The concentration of the total fatty alcohols reached 24.3 mg/L, which is in agreement with that of the accumulated FFAs. To further increase the supply of FFAs, the DGAI encoding the acyl-CoA:diacylglycerol acyltransferase involved in the rate-limiting step of triacylglycerols storage was codeleted with FAA1 and FAA4, and the acyl-CoA thioesterase gene (acot) was expressed together with car and sfp, resulting in an enhanced production of fatty alcohols, the content of which increased to 31.2 mg/L. The results herein demonstrated the efficiency of the engineered pathway for the production of fatty acid derivatives using FFAs as precursors.
Collapse
Affiliation(s)
- Xiaoling Tang
- Key
Laboratory of Bioorganic Synthesis of Zhejiang Province, College of
Biotechnology and Bioengineering, Zhejiang
University of Technology, Hangzhou 310014, P. R. China
- School
of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Lilin Feng
- Key
Laboratory of Bioorganic Synthesis of Zhejiang Province, College of
Biotechnology and Bioengineering, Zhejiang
University of Technology, Hangzhou 310014, P. R. China
| | - Liwei Chen
- School
of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Wei Ning Chen
- School
of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- E-mail: . Phone: +6563162870. Fax: +6562259865
| |
Collapse
|
23
|
Lewin GR, Carlos C, Chevrette MG, Horn HA, McDonald BR, Stankey RJ, Fox BG, Currie CR. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annu Rev Microbiol 2017; 70:235-54. [PMID: 27607553 DOI: 10.1146/annurev-micro-102215-095748] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels.
Collapse
Affiliation(s)
- Gina R Lewin
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Camila Carlos
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Marc G Chevrette
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Heidi A Horn
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706;
| | - Bradon R McDonald
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Robert J Stankey
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Brian G Fox
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726.,Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Wisconsin 53706; .,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Wisconsin 53726
| |
Collapse
|
24
|
Chang F, Dutta S, Mascal M. Hydrogen-Economic Synthesis of Gasoline-like Hydrocarbons by Catalytic Hydrodecarboxylation of the Biomass-derived Angelica Lactone Dimer. ChemCatChem 2017. [DOI: 10.1002/cctc.201700314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fei Chang
- Department of Chemistry; University of California Davis; 1 Shields Ave Davis CA 95616 USA
| | - Saikat Dutta
- National Institute of Technology Karnataka, Surathkal; Mangalore Karnataka India
| | - Mark Mascal
- Department of Chemistry; University of California Davis; 1 Shields Ave Davis CA 95616 USA
| |
Collapse
|
25
|
Gajewski J, Pavlovic R, Fischer M, Boles E, Grininger M. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat Commun 2017; 8:14650. [PMID: 28281527 PMCID: PMC5353594 DOI: 10.1038/ncomms14650] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/19/2017] [Indexed: 01/19/2023] Open
Abstract
Fatty acids (FAs) are considered strategically important platform compounds that can be accessed by sustainable microbial approaches. Here we report the reprogramming of chain-length control of Saccharomyces cerevisiae fatty acid synthase (FAS). Aiming for short-chain FAs (SCFAs) producing baker's yeast, we perform a highly rational and minimally invasive protein engineering approach that leaves the molecular mechanisms of FASs unchanged. Finally, we identify five mutations that can turn baker's yeast into a SCFA producing system. Without any further pathway engineering, we achieve yields in extracellular concentrations of SCFAs, mainly hexanoic acid (C6-FA) and octanoic acid (C8-FA), of 464 mg l−1 in total. Furthermore, we succeed in the specific production of C6- or C8-FA in extracellular concentrations of 72 and 245 mg l−1, respectively. The presented technology is applicable far beyond baker's yeast, and can be plugged into essentially all currently available FA overproducing microorganisms. The production of short chain fatty acids by microorganisms has numerous industrial and biofuel applications. Here the authors reprogramme S. cerevisiae fatty acid synthase with five mutations to produce C6- and C8-fatty acids and identify thioesterases responsible for hydrolysis of short chain acyl-CoA hydrolysis.
Collapse
Affiliation(s)
- Jan Gajewski
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Renata Pavlovic
- Institute of Molecular Biosciences, Department of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Manuel Fischer
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Department of Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany
| |
Collapse
|
26
|
Osiro KO, de Camargo BR, Satomi R, Hamann PRV, Silva JP, de Sousa MV, Quirino BF, Aquino EN, Felix CR, Murad AM, Noronha EF. Characterization of Clostridium thermocellum (B8) secretome and purified cellulosomes for lignocellulosic biomass degradation. Enzyme Microb Technol 2017; 97:43-54. [DOI: 10.1016/j.enzmictec.2016.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
|
27
|
Cabulong RB, Valdehuesa KNG, Ramos KRM, Nisola GM, Lee WK, Lee CR, Chung WJ. Enhanced yield of ethylene glycol production from d-xylose by pathway optimization in Escherichia coli. Enzyme Microb Technol 2016; 97:11-20. [PMID: 28010767 DOI: 10.1016/j.enzmictec.2016.10.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/07/2016] [Accepted: 10/30/2016] [Indexed: 12/01/2022]
Abstract
The microbial production of renewable ethylene glycol (EG) has been gaining attention recently due to its growing importance in chemical and polymer industries. EG has been successfully produced biosynthetically from d-xylose through several novel pathways. The first report on EG biosynthesis employed the Dahms pathway in Escherichia coli wherein 71% of the theoretical yield was achieved. This report further improved the EG yield by implementing metabolic engineering strategies. First, d-xylonic acid accumulation was reduced by employing a weak promoter which provided a tighter control over Xdh expression. Second, EG yield was further improved by expressing the YjgB, which was identified as the most suitable aldehyde reductase endogenous to E. coli. Finally, cellular growth, d-xylose consumption, and EG yield were further increased by blocking a competing reaction. The final strain (WTXB) was able to reach up to 98% of the theoretical yield (25% higher as compared to the first study), the highest reported value for EG production from d-xylose.
Collapse
Affiliation(s)
- Rhudith B Cabulong
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Kris Niño G Valdehuesa
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Grace M Nisola
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Chang Ro Lee
- Division of Bioscience and Bioinformatics, Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea
| | - Wook-Jin Chung
- Department of Energy Science and Technology (DEST), Energy and Environment Fusion Technology Center (E(2)FTC), Myongji University, Myongji-ro 116, Cheoin-gu, Yongin, Gyeonggi-do, 170-58, South Korea.
| |
Collapse
|
28
|
Kreyenschulte D, Emde F, Regestein L, Büchs J. Computational minimization of the specific energy demand of large-scale aerobic fermentation processes based on small-scale data. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2016; 100:4561-71. [PMID: 26883346 DOI: 10.1007/s00253-016-7375-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/05/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.
Collapse
|
30
|
Ito Y, Yamanishi M, Ikeuchi A, Imamura C, Matsuyama T. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System. PLoS One 2015; 10:e0144870. [PMID: 26692026 PMCID: PMC4687128 DOI: 10.1371/journal.pone.0144870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 11/24/2015] [Indexed: 01/26/2023] Open
Abstract
Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.
Collapse
Affiliation(s)
- Yoichiro Ito
- Matsuyama Research Group, TOYOTA Central Research and Development Laboratories Incorporation, Nagakute, Aichi, Japan
- * E-mail: (TM); (YI)
| | - Mamoru Yamanishi
- Matsuyama Research Group, TOYOTA Central Research and Development Laboratories Incorporation, Nagakute, Aichi, Japan
| | - Akinori Ikeuchi
- Biotechnology Laboratory, TOYOTA Central Research and Development Laboratories Incorporation, Nagakute, Aichi, Japan
| | - Chie Imamura
- Biotechnology Laboratory, TOYOTA Central Research and Development Laboratories Incorporation, Nagakute, Aichi, Japan
| | - Takashi Matsuyama
- Matsuyama Research Group, TOYOTA Central Research and Development Laboratories Incorporation, Nagakute, Aichi, Japan
- * E-mail: (TM); (YI)
| |
Collapse
|
31
|
Petronikolou N, Nair SK. Biochemical Studies of Mycobacterial Fatty Acid Methyltransferase: A Catalyst for the Enzymatic Production of Biodiesel. ACTA ACUST UNITED AC 2015; 22:1480-1490. [PMID: 26526103 DOI: 10.1016/j.chembiol.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/04/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
Abstract
Transesterification of fatty acids yields the essential component of biodiesel, but current processes are cost-prohibitive and generate waste. Recent efforts make use of biocatalysts that are effective in diverting products from primary metabolism to yield fatty acid methyl esters in bacteria. These biotransformations require the fatty acid O-methyltransferase (FAMT) from Mycobacterium marinum (MmFAMT). Although this activity was first reported in the literature in 1970, the FAMTs have yet to be biochemically characterized. Here, we describe several crystal structures of MmFAMT, which highlight an unexpected structural conservation with methyltransferases that are involved in plant natural product metabolism. The determinants for ligand recognition are analyzed by kinetic analysis of structure-based active-site variants. These studies reveal how an architectural fold employed in plant natural product biosynthesis is used in bacterial fatty acid O-methylation.
Collapse
Affiliation(s)
- Nektaria Petronikolou
- Department of Biochemistry, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology and University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Roger Adams Lab Room 430, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
32
|
Kim J, Pérez-Pantoja D, Silva-Rocha R, Oliveros JC, de Lorenzo V. High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Environ Microbiol 2015; 18:3327-3341. [PMID: 26373670 DOI: 10.1111/1462-2920.13054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/30/2015] [Accepted: 09/12/2015] [Indexed: 11/28/2022]
Abstract
Pseudomonas putida mt-2 metabolizes m-xylene and other aromatic compounds through the enzymes encoded by the xyl operons of the TOL plasmid pWW0 along with other chromosomally encoded activities. Tiling arrays of densely overlapping oligonucleotides were designed to cover every gene involved in this process, allowing dissection of operon structures and exposing the interplay of plasmid and chromosomal functions. All xyl sequences were transcribed in response to aromatic substrates and the 3'-termini of both upper and lower mRNA operons extended beyond their coding regions, i.e. the 3'-end of the lower operon mRNA penetrated into the convergent xylS regulatory gene. Furthermore, xylR mRNA for the master m-xylene responsive regulator of the system was decreased by aromatic substrates, while the cognate upper operon mRNA was evenly stable throughout its full length. RNA sequencing confirmed these data at a single nucleotide level and refined the formerly misannotated xylL sequence. The chromosomal ortho route for degradation of benzoate (the ben, cat clusters and some pca genes) was activated by this aromatic, but not by the TOL substrates, toluene or m-xylene. We advocate this scenario as a testbed of natural retroactivity between a pre-existing metabolic network and a new biochemical pathway implanted through gene transfer.
Collapse
Affiliation(s)
- Juhyun Kim
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Danilo Pérez-Pantoja
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Rafael Silva-Rocha
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Juan Carlos Oliveros
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
33
|
Ichikawa S, Karita S. Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases. FEMS Microbiol Lett 2015; 362:fnv202. [DOI: 10.1093/femsle/fnv202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2015] [Indexed: 01/15/2023] Open
|
34
|
Affiliation(s)
- Kristin Hagen
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Margret Engelhard
- EA European Academy of Technology and Innovation Assessment GmbH, Bad Neuenahr-Ahrweiler, Germany
| | - Georg Toepfer
- Center for Literary and Cultural Research Berlin, Berlin, Germany
| |
Collapse
|
35
|
Papoutsakis ET. Reassessing the Progress in the Production of Advanced Biofuels in the Current Competitive Environment and Beyond: What Are the Successes and Where Progress Eludes Us and Why. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01695] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eleftherios T. Papoutsakis
- Molecular Biotechnology Laboratory, Department of Chemical & Biomolecular Engineering, Department of Biological Sciences & the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| |
Collapse
|
36
|
McCann MC, Carpita NC. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4109-18. [PMID: 26060266 DOI: 10.1093/jxb/erv267] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recalcitrance of plant biomass to enzymatic hydrolysis for biofuel production is thought to be a property conferred by lignin or lignin-carbohydrate complexes. However, chemical catalytic and thermochemical conversion pathways, either alone or in combination with biochemical and fermentative pathways, now provide avenues to utilize lignin and to expand the product range beyond ethanol or butanol. To capture all of the carbon in renewable biomass, both lignin-derived aromatics and polysaccharide-derived sugars need to be transformed by catalysts to liquid hydrocarbons and high-value co-products. We offer a new definition of recalcitrance as those features of biomass which disproportionately increase energy requirements in conversion processes, increase the cost and complexity of operations in the biorefinery, and/or reduce the recovery of biomass carbon into desired products. The application of novel processing technologies applied to biomass reveal new determinants of recalcitrance that comprise a broad range of molecular, nanoscale, and macroscale factors. Sampling natural genetic diversity within a species, transgenic approaches, and synthetic biology approaches are all strategies that can be used to select biomass for reduced recalcitrance in various pretreatments and conversion pathways.
Collapse
Affiliation(s)
- Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | - Nicholas C Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-1392, USA
| |
Collapse
|
37
|
Tashiro Y, Desai SH, Atsumi S. Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nat Commun 2015; 6:7488. [PMID: 26108471 PMCID: PMC4491173 DOI: 10.1038/ncomms8488] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/13/2015] [Indexed: 11/21/2022] Open
Abstract
For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. Achieving high carbon yields is crucial for biotechnological production of metabolites in engineered microorganisms. Here, Tashiro et al. generate E. coli strains that produce acetyl-CoA and a derived metabolite (isobutyl acetate) in the absence of pyruvate decarboxylation, leading to increased carbon yields.
Collapse
Affiliation(s)
- Yohei Tashiro
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Shuchi H Desai
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA.,Microbiology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA.,Microbiology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
38
|
Shokri A, Que L. Conversion of Aldehyde to Alkane by a Peroxoiron(III) Complex: A Functional Model for the Cyanobacterial Aldehyde-Deformylating Oxygenase. J Am Chem Soc 2015; 137:7686-91. [PMID: 26030345 DOI: 10.1021/jacs.5b01053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyanobacterial aldehyde-deformylating oxygenase (cADO) converts long-chain fatty aldehydes to alkanes via a proposed diferric-peroxo intermediate that carries out the oxidative deformylation of the substrate. Herein, we report that the synthetic iron(III)-peroxo complex [Fe(III)(η(2)-O2)(TMC)](+) (TMC = tetramethylcyclam) causes a similar transformation in the presence of a suitable H atom donor, thus serving as a functional model for cADO. Mechanistic studies suggest that the H atom donor can intercept the incipient alkyl radical formed in the oxidative deformylation step in competition with the oxygen rebound step typically used by most oxygenases for forming C-O bonds.
Collapse
Affiliation(s)
- Alireza Shokri
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 2015; 33:1-7. [DOI: 10.1016/j.copbio.2014.09.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 11/22/2022]
|
40
|
Grant JL, Hsieh CH, Makris TM. Decarboxylation of fatty acids to terminal alkenes by cytochrome P450 compound I. J Am Chem Soc 2015; 137:4940-3. [PMID: 25843451 DOI: 10.1021/jacs.5b01965] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OleT(JE), a cytochrome P450, catalyzes the conversion of fatty acids to terminal alkenes using hydrogen peroxide as a cosubstrate. Analytical studies with an eicosanoic acid substrate show that the enzyme predominantly generates nonadecene and that carbon dioxide is the one carbon coproduct of the reaction. The addition of hydrogen peroxide to a deuterated substrate-enzyme (E-S) complex results in the transient formation of an iron(IV) oxo π cation radical (Compound I) intermediate which is spectroscopically indistinguishable from those that perform oxygen insertion chemistries. A kinetic isotope effect for Compound I decay suggests that it abstracts a substrate hydrogen atom to initiate fatty acid decarboxylation. Together, these results indicate that the initial mechanism for alkene formation, which does not result from oxygen rebound, is similar to that widely suggested for P450 monooxygenation reactions.
Collapse
Affiliation(s)
- Job L Grant
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Chun H Hsieh
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Thomas M Makris
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
41
|
Lian J, Zhao H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth Biol 2015; 4:332-41. [PMID: 24959659 DOI: 10.1021/sb500243c] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Functionally reversing the β-oxidation cycle represents an efficient and versatile strategy for synthesis of a wide variety of fuels and chemicals. However, due to the compartmentalization of cellular metabolisms, reversing the β-oxidation cycle in eukaryotic systems remains elusive. Here, we report the first successful reversal of the β-oxidation cycle in Saccharomyces cerevisiae, an important cell factory for large-scale production of fuels and chemicals. After extensive gene cloning and enzyme activity assays, a reversed β-oxidation pathway was functionally constructed in the yeast cytosol, which led to the synthesis of n-butanol, medium-chain fatty acids (MCFAs), and medium-chain fatty acid ethyl esters (MCFAEEs). The resultant recombinant strain provides a new broadly applicable platform for synthesis of fuels and chemicals in S. cerevisiae.
Collapse
Affiliation(s)
- Jiazhang Lian
- Department of Chemical and Biomolecular Engineering, ‡Energy Biosciences Institute, Institute
for Genomic Biology, §Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, ‡Energy Biosciences Institute, Institute
for Genomic Biology, §Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Becerra M, Cerdán ME, González-Siso MI. Biobutanol from cheese whey. Microb Cell Fact 2015; 14:27. [PMID: 25889728 PMCID: PMC4404668 DOI: 10.1186/s12934-015-0200-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
At present, due to environmental and economic concerns, it is urgent to evolve efficient, clean and secure systems for the production of advanced biofuels from sustainable cheap sources. Biobutanol has proved better characteristics than the more widely used bioethanol, however the main disadvantage of biobutanol is that it is produced in low yield and titer by ABE (acetone-butanol-ethanol) fermentation, this process being not competitive from the economic point of view. In this review we summarize the natural metabolic pathways for biobutanol production by Clostridia and yeasts, together with the metabolic engineering efforts performed up to date with the aim of either enhancing the yield of the natural producer Clostridia or transferring the butanol production ability to other hosts with better attributes for industrial use and facilities for genetic manipulation. Molasses and starch-based feedstocks are main sources for biobutanol production at industrial scale hitherto. We also review herewith (and for the first time up to our knowledge) the research performed for the use of whey, the subproduct of cheese making, as another sustainable source for biobutanol production. This represents a promising alternative that still needs further research. The use of an abundant waste material like cheese whey, that would otherwise be considered an environmental pollutant, for biobutanol production, makes economy of the process more profitable.
Collapse
Affiliation(s)
- Manuel Becerra
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| | - María Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| | - María Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
43
|
Davies FK, Jinkerson RE, Posewitz MC. Toward a photosynthetic microbial platform for terpenoid engineering. PHOTOSYNTHESIS RESEARCH 2015; 123:265-84. [PMID: 24510550 DOI: 10.1007/s11120-014-9979-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/23/2014] [Indexed: 05/20/2023]
Abstract
Plant terpenoids are among the most diverse group of naturally-occurring organic compounds known, and several are used in contemporary consumer products. Terpene synthase enzymes catalyze complex rearrangements of carbon skeleton precursors to yield thousands of unique chemical structures that range in size from the simplest five carbon isoprene unit to the long polymers of rubber. Such chemical diversity has established plant terpenoids as valuable commodity chemicals with applications in the pharmaceutical, neutraceutical, cosmetic, and food industries. More recently, terpenoids have received attention as a renewable alternative to petroleum-derived fuels and as the building blocks of synthetic biopolymers. However, the current plant- and petrochemical-based supplies of commodity terpenoids have major limitations. Photosynthetic microorganisms provide an opportunity to generate terpenoids in a renewable manner, employing a single consolidated host organism that is able to use solar energy, H2O and CO2 as the primary inputs for terpenoid biosynthesis. Advances in synthetic biology have seen important breakthroughs in microbial terpenoid engineering, traditionally via fermentative pathways in yeast and Escherichia coli. This review draws on the knowledge obtained from heterotrophic microbial engineering to propose strategies for the development of microbial photosynthetic platforms for industrial terpenoid production. The importance of utilizing the wealth of genetic information provided by nature to unravel the regulatory mechanisms of terpenoid biosynthesis is highlighted.
Collapse
Affiliation(s)
- Fiona K Davies
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, 80401, USA,
| | | | | |
Collapse
|
44
|
Ito Y, Yamanishi M, Ikeuchi A, Matsuyama T. A highly tunable system for the simultaneous expression of multiple enzymes in Saccharomyces cerevisiae. ACS Synth Biol 2015; 4:12-6. [PMID: 24927017 DOI: 10.1021/sb500096y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Control of the expression levels of multiple enzymes in transgenic yeasts is essential for the effective production of complex molecules through fermentation. Here, we propose a tunable strategy for the control of expression levels based on the design of terminator regions and other gene-expression control elements in Saccharomyces cerevisiae. Our genome-integrated system, which is capable of producing high expression levels over a wide dynamic range, will broadly enable metabolic engineering and synthetic biology. We demonstrated that the activities of multiple cellulases and the production of ethanol were doubled in a transgenic yeast constructed with our system compared with those achieved with a standard expression system.
Collapse
Affiliation(s)
- Yoichiro Ito
- Matsuyama Research Group and ‡Biotechnology Laboratory, Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Mamoru Yamanishi
- Matsuyama Research Group and ‡Biotechnology Laboratory, Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Akinori Ikeuchi
- Matsuyama Research Group and ‡Biotechnology Laboratory, Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Takashi Matsuyama
- Matsuyama Research Group and ‡Biotechnology Laboratory, Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
45
|
Müller JEN, Meyer F, Litsanov B, Kiefer P, Potthoff E, Heux S, Quax WJ, Wendisch VF, Brautaset T, Portais JC, Vorholt JA. Engineering Escherichia coli for methanol conversion. Metab Eng 2015; 28:190-201. [PMID: 25596507 DOI: 10.1016/j.ymben.2014.12.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/31/2014] [Indexed: 11/24/2022]
Abstract
Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer.
Collapse
Affiliation(s)
- Jonas E N Müller
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Fabian Meyer
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Boris Litsanov
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Eva Potthoff
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Stéphanie Heux
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Wim J Quax
- Department of Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Volker F Wendisch
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Trygve Brautaset
- Department of Molecular Biology, SINTEF Materials and Chemistry, Trondheim, Norway; Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jean-Charles Portais
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| |
Collapse
|
46
|
Yan J, Liu Y, Wang C, Han B, Li S. Assembly of lipase and P450 fatty acid decarboxylase to constitute a novel biosynthetic pathway for production of 1-alkenes from renewable triacylglycerols and oils. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:34. [PMID: 25763106 PMCID: PMC4355466 DOI: 10.1186/s13068-015-0219-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/04/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Biogenic hydrocarbons (biohydrocarbons) are broadly accepted to be the ideal 'drop-in' biofuel alternative to petroleum-based fuels due to their highly similar chemical composition and physical characteristics. The biological production of aliphatic hydrocarbons is largely dependent on engineering of the complicated enzymatic network surrounding fatty acid biosynthesis. RESULT In this work, we developed a novel system for bioproduction of terminal fatty alkenes (1-alkenes) from renewable and low-cost triacylglycerols (TAGs) based on the lipase hydrolysis coupled to the P450 catalyzed decarboxylation. This artificial biosynthetic pathway was constituted using both cell-free systems including purified enzymes or cell-free extracts, and cell-based systems including mixed resting cells or growing cells. The issues of high cost of fatty acid feedstock and complicated biosynthesis network were addressed by replacement of the de novo biosynthesized fatty acids with the fed cheap TAGs. This recombinant tandem enzymatic pathway consisting of the Thermomyces lanuginosus lipase (Tll) and the P450 fatty acid decarboxylase OleTJE resulted in the production of 1-alkenes from purified TAGs or natural oils with 6.7 to 46.0% yields. CONCLUSION Since this novel hydrocarbon-producing pathway only requires two catalytically efficient enzymatic steps, it may hold great potential for industrial application by fulfilling the large-scale and cost-effective conversion of renewable TAGs into biohydrocarbons. This work highlights the power of designing and implementing an artificial pathway for production of advanced biofuels.
Collapse
Affiliation(s)
- Jinyong Yan
- />Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101 Qingdao, Shandong China
| | - Yi Liu
- />Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101 Qingdao, Shandong China
- />University of Chinese Academy of Sciences, No. 19A Yuquan Road, 100049 Beijing, China
| | - Cong Wang
- />Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101 Qingdao, Shandong China
| | - Bingnan Han
- />Key Laboratory for Marine Drugs, Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 145 Shandongzhong Road, 200127 Shanghai, China
| | - Shengying Li
- />Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, 266101 Qingdao, Shandong China
| |
Collapse
|
47
|
Fast AG, Schmidt ED, Jones SW, Tracy BP. Acetogenic mixotrophy: novel options for yield improvement in biofuels and biochemicals production. Curr Opin Biotechnol 2014; 33:60-72. [PMID: 25498292 DOI: 10.1016/j.copbio.2014.11.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 01/06/2023]
Abstract
Mass yields of biofuels and chemicals from sugar fermentations are limited by the decarboxylation reactions involved in Embden-Meyerhof-Parnas (EMP) glycolysis. This paper reviews one route to recapture evolved CO2 using the Wood-Ljungdahl carbon fixation pathway (WLP) in a process called anaerobic, non-photosynthetic (ANP) mixotrophic fermentation. In ANP mixotrophic fermentation, the two molecules of CO2 and eight electrons produced from glycolysis are used by the WLP to generate three molecules of acetyl-CoA from glucose, rather than the two molecules that are produced by typical fermentation processes. In this review, we define the bounds of ANP mixotrophy, calculate the potential metabolic advantages, and discuss the viability in a number of host organisms. Additionally, we highlight recent accomplishments in the field, including the recent discovery of electron bifurcation in acetogens, and close with recommendations to realize mixotrophic biofuel and biochemical production.
Collapse
Affiliation(s)
- Alan G Fast
- Molecular Biotechnology Laboratory, Department of Chemical & Biomolecular Engineering, & the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Ellinor D Schmidt
- Molecular Biotechnology Laboratory, Department of Chemical & Biomolecular Engineering, & the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Shawn W Jones
- Elcriton, Inc., 15 Reads Way, New Castle, DE 19720, USA
| | - Bryan P Tracy
- Elcriton, Inc., 15 Reads Way, New Castle, DE 19720, USA.
| |
Collapse
|
48
|
Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ. Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev 2014; 43:6954-81. [PMID: 25017039 DOI: 10.1039/c4cs00114a] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic biology is an emerging research field that focuses on using rational engineering strategies to program biological systems, conferring on them new functions and behaviours. By developing genetic parts and devices based on transcriptional, translational, post-translational modules, many genetic circuits and metabolic pathways had been programmed in single cells. Extending engineering capabilities from single-cell behaviours to multicellular microbial consortia represents a new frontier of synthetic biology. Herein, we first reviewed binary interaction modes of microorganisms in microbial consortia and their underlying molecular mechanisms, which lay the foundation of programming cell-cell interactions in synthetic microbial consortia. Systems biology studies on cellular systems enable systematic understanding of diverse physiological processes of cells and their interactions, which in turn offer insights into the optimal design of synthetic consortia. Based on such fundamental understanding, a comprehensive array of synthetic microbial consortia constructed in the last decade were reviewed, including isogenic microbial communities programmed by quorum sensing-based cell-cell communications, sender-receiver microbial communities with one-way communications, and microbial ecosystems wired by two-way (bi-directional) communications. Furthermore, many applications including using synthetic microbial consortia for distributed bio-computations, chemicals and bioenergy production, medicine and human health, and environments were reviewed. Synergistic development of systems and synthetic biology will provide both a thorough understanding of naturally occurring microbial consortia and rational engineering of these complicated consortia for novel applications.
Collapse
Affiliation(s)
- Hao Song
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | |
Collapse
|
49
|
Way JC, Collins JJ, Keasling JD, Silver PA. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 2014; 157:151-61. [PMID: 24679533 DOI: 10.1016/j.cell.2014.02.039] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/26/2013] [Accepted: 02/19/2014] [Indexed: 01/17/2023]
Abstract
Synthetic biology seeks to extend approaches from engineering and computation to redesign of biology, with goals such as generating new chemicals, improving human health, and addressing environmental issues. Early on, several guiding principles of synthetic biology were articulated, including design according to specification, separation of design from fabrication, use of standardized biological parts and organisms, and abstraction. We review the utility of these principles over the past decade in light of the field's accomplishments in building complex systems based on microbial transcription and metabolism and describe the progress in mammalian cell engineering.
Collapse
Affiliation(s)
- Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02115, USA
| | - Jay D Keasling
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint Bioenergy Institute, Emeryville, CA 94608, USA; Synthetic Biology Engineering Research Center (SynBERC), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Synthetic Biology Engineering Research Center (SynBERC), University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
Agudo R, Reetz MT. Designer cells for stereocomplementary de novo enzymatic cascade reactions based on laboratory evolution. Chem Commun (Camb) 2014; 49:10914-6. [PMID: 24135920 DOI: 10.1039/c3cc46229c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Designer cells for a synthetic cascade reaction harnessing selective redox reactions were devised, featuring two successive regioselective P450-catalyzed CH-activating oxidations of 1-cyclohexene carboxylic acid methyl ester followed by stereoselective olefin-reduction catalysed by (R)- or (S)-selective mutants of an enoate reductase.
Collapse
Affiliation(s)
- Rubén Agudo
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Str., 35032 Marburg, Germany
| | | |
Collapse
|