1
|
Ngo ACR, Haarmann M, Weindorf N, Guanzon DAV, Linke V, Smitka J, Tischler D. Golden Gate Cloning in Actinobacteria: Opportunities and Challenges. Methods Mol Biol 2025; 2850:377-386. [PMID: 39363083 DOI: 10.1007/978-1-0716-4220-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
As we exploit biological machineries and circuits to redesign nature, it is just important to use efficient cloning strategies and methods to heterologously express the resulting DNA constructs. Golden Gate cloning allows the assembly of multiple fragments in a single reaction, making the process efficient and seamless. Although Golden Gate strategies have already been employed for different organisms, it is still not well-established for Actinobacteria. Here, we describe methods for Golden Gate cloning and how it can be utilized for Actinobacteria.
Collapse
Affiliation(s)
| | - Melody Haarmann
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Nils Weindorf
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Vivian Linke
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Joe Smitka
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Nie Q, Sun C, Liu S, Gao X. Exploring Bioactive Fungal RiPPs: Advances, Challenges, and Future Prospects. Biochemistry 2024. [PMID: 39499622 DOI: 10.1021/acs.biochem.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Fungal ribosomally synthesized and post-translationally modified peptides (RiPPs) are a vital class of natural products known for their biological activities including anticancer, antitubulin, antinematode, and immunosuppressant properties. These bioactive fungal RiPPs play key roles in chemical ecology and have a significant therapeutic potential. Their structural diversity, which arises from intricate post-translational modifications of precursor peptides, is particularly remarkable. Despite their biological and ecological importance, the discovery of fungal RiPPs has been historically challenging and only a limited number have been identified. To date, known fungal RiPPs are primarily grouped into three groups: cycloamanides and borosins from basidiomycetes and dikaritins from ascomycetes. Recent advancements in bioinformatics have revealed the vast untapped potential of fungi to produce RiPPs, offering new opportunities for their discovery. This review highlights recent progress in fungal RiPP biosynthesis and genome-guided discovery strategies. We propose that combining the knowledge of fungal RiPP biosynthetic pathways with advanced gene-editing technologies and bioinformatic tools will significantly accelerate the discovery of novel bioactive fungal RiPPs.
Collapse
Affiliation(s)
- Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chunxiao Sun
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shuai Liu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Lee Y, Choe D, Palsson BO, Cho B. Machine-Learning Analysis of Streptomyces coelicolor Transcriptomes Reveals a Transcription Regulatory Network Encompassing Biosynthetic Gene Clusters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403912. [PMID: 39264300 PMCID: PMC11538686 DOI: 10.1002/advs.202403912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/26/2024] [Indexed: 09/13/2024]
Abstract
Streptomyces produces diverse secondary metabolites of biopharmaceutical importance, yet the rate of biosynthesis of these metabolites is often hampered by complex transcriptional regulation. Therefore, a fundamental understanding of transcriptional regulation in Streptomyces is key to fully harness its genetic potential. Here, independent component analysis (ICA) of 454 high-quality gene expression profiles of the model species Streptomyces coelicolor is performed, of which 249 profiles are newly generated for S. coelicolor cultivated on 20 different carbon sources and 64 engineered strains with overexpressed sigma factors. ICA of the transcriptome dataset reveals 117 independently modulated groups of genes (iModulons), which account for 81.6% of the variance in the dataset. The genes in each iModulon are involved in specific cellular responses, which are often transcriptionally controlled by specific regulators. Also, iModulons accurately predict 25 secondary metabolite biosynthetic gene clusters encoded in the genome. This systemic analysis leads to reveal the functions of previously uncharacterized genes, putative regulons for 40 transcriptional regulators, including 30 sigma factors, and regulation of secondary metabolism via phosphate- and iron-dependent mechanisms in S. coelicolor. ICA of large transcriptomic datasets thus enlightens a new and fundamental understanding of transcriptional regulation of secondary metabolite synthesis along with interconnected metabolic processes in Streptomyces.
Collapse
Affiliation(s)
- Yongjae Lee
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Donghui Choe
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Bernhard O. Palsson
- Department of BioengineeringUniversity of California San DiegoLa JollaCA92093USA
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKemitorvet, KongensLyngby2800Denmark
| | - Byung‐Kwan Cho
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
- Graduate School of Engineering BiologyKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
4
|
Massicard JM, Noel D, Calderari A, Le Jeune A, Pauthenier C, Weissman KJ. Modular Cloning Tools for Streptomyces spp. and Application to the De Novo Biosynthesis of Flavokermesic Acid. ACS Synth Biol 2024; 13:3354-3365. [PMID: 39307986 DOI: 10.1021/acssynbio.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The filamentous Streptomyces are among the most prolific producers of bioactive natural products and are thus attractive chassis for the heterologous expression of native and designed biosynthetic pathways. Although suitable Streptomyces hosts exist, including genetically engineered cluster-free mutants, the approach is currently limited by the relative paucity of synthetic biology tools facilitating the de novo assembly of multicomponent gene clusters. Here, we report a modular system (MoClo) for Streptomyces including a set of adapted vectors and genetic elements, which allow for the construction of complete genetic circuits. Critical functional validation of each of the elements was obtained using the previously reported β-glucuronidase (GusA) reporter system. Furthermore, we provide proof-of-principle for the toolbox inS. albus, demonstrating the efficient assembly of a biosynthetic pathway to flavokermesic acid (FK), an advanced precursor of the commercially valuable carminic acid.
Collapse
Affiliation(s)
| | - Delphine Noel
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France
| | | | - André Le Jeune
- Abolis Biotechnologies, 5 Rue Henri Auguste Desbruères Bâtiment 6, 91030 Évry, France
| | - Cyrille Pauthenier
- Abolis Biotechnologies, 5 Rue Henri Auguste Desbruères Bâtiment 6, 91030 Évry, France
| | | |
Collapse
|
5
|
Lee SI, Kim DR, Kwak YS. Genome analysis of Streptomyces recifensis SN1E1 to investigate mechanisms for inhibiting fire blight disease. J Appl Microbiol 2024; 135:lxae253. [PMID: 39363195 DOI: 10.1093/jambio/lxae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
AIM Fire blight, attributed to the bacterium Erwinia amylovora, significantly damages economically important crops, such as apples and pears. Conventional methods for managing fire blight involve the application of chemical pesticides, such as streptomycin and oxytetracycline. Nevertheless, apprehensions are increasing regarding developing antibiotic and pesticide-resistant strains, compounded by documented instances of plant toxicity. Here, we present that Streptomyces recifensis SN1E1 has exhibited remarkable efficacy in suppressing apple fire blight disease. This study aims to unravel the molecular-level antimicrobial mechanisms employed by the SN1E1 strain. METHODS AND RESULTS We identified four antimicrobial-associated biosynthetic gene clusters within the genomics of S. recifensis SN1E1. To validate antimicrobial activity against E. amylovora, knock-out mutants of biosynthetic genes linked to antimicrobial activity were generated using the CRISPR/Cas9 mutagenesis system. Notably, the whiE4 and phzB deficient mutants displayed statistically reduced antibacterial activity against E. amylovora. CONCLUSION This research establishes a foundation for environmental and biological control studies. The potential utilization of environmentally friendly microbial agents derived from the SN1E1 strain holds promise for the biological control of fire blight disease.
Collapse
Affiliation(s)
- Su In Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Da-Ran Kim
- Department of Plant Medicine and RILS, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
- Department of Plant Medicine and RILS, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| |
Collapse
|
6
|
Wang L, Hu J, Li K, Zhao Y, Zhu M. Advancements in gene editing technologies for probiotic-enabled disease therapy. iScience 2024; 27:110791. [PMID: 39286511 PMCID: PMC11403445 DOI: 10.1016/j.isci.2024.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Probiotics typically refer to microorganisms that have been identified for their health benefits, and they are added to foods or supplements to promote the health of the host. A growing number of probiotic strains have been identified lately and developed into valuable regulatory pharmaceuticals for nutritional and medical applications. Gene editing technologies play a crucial role in addressing the need for safe and therapeutic probiotics in disease treatment. These technologies offer valuable assistance in comprehending the underlying mechanisms of probiotic bioactivity and in the development of advanced probiotics. This review aims to offer a comprehensive overview of gene editing technologies applied in the engineering of both traditional and next-generation probiotics. It further explores the potential for on-demand production of customized products derived from enhanced probiotics, with a particular emphasis on the future of gene editing in the development of live biotherapeutics.
Collapse
Affiliation(s)
- Lixuan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wang S, Zeng X, Jiang Y, Wang W, Bai L, Lu Y, Zhang L, Tan GY. Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing. Nat Prod Rep 2024; 41:1441-1455. [PMID: 38888887 DOI: 10.1039/d4np00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: up to the end of 2023Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly Streptomyces spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.
Collapse
Affiliation(s)
- Shuliu Wang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Xiaoqian Zeng
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Yue Jiang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
8
|
Li H, Gao S, Shi S, Zhao X, Ye H, Luo Y. Rational construction of genome-minimized Streptomyces host for the expression of secondary metabolite gene clusters. Synth Syst Biotechnol 2024; 9:600-608. [PMID: 38774831 PMCID: PMC11106782 DOI: 10.1016/j.synbio.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
Streptomyces offer a wealth of naturally occurring compounds with diverse structures, many of which possess significant pharmaceutical values. However, new product exploration and increased yield of specific compounds in Streptomyces have been technically challenging due to their slow growth rate, complex culture conditions and intricate genetic backgrounds. In this study, we screened dozens of Streptomyces strains inhabiting in a plant rhizosphere for fast-growing candidates, and further employed CRISPR/Cas-based engineering techniques for stepwise refinement of a particular strain, Streptomyces sp. A-14 that harbors a 7.47 Mb genome. After strategic removal of nonessential genomic regions and most gene clusters, we reduced its genome size to 6.13 Mb, while preserving its growth rate to the greatest extent. We further demonstrated that cleaner metabolic background of this engineered strain was well suited for the expression and characterization of heterologous gene clusters, including the biosynthetic pathways of actinorhodin and polycyclic tetramate macrolactams. Moreover, this streamlined genome is anticipated to facilitate directing the metabolic flux towards the production of desired compounds and increasing their yields.
Collapse
Affiliation(s)
- Hui Li
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sheng Gao
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sanyuan Shi
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaomin Zhao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haoyu Ye
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunzi Luo
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
9
|
Mathuria A, Vora C, Ali N, Mani I. Advances in CRISPR-Cas systems for human bacterial disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:19-41. [PMID: 39266183 DOI: 10.1016/bs.pmbts.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.
Collapse
Affiliation(s)
- Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Chaitali Vora
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
10
|
Poudel PB, Dhakal D, Magar RT, Parajuli N, Sohng JK. Genome Mining and Genetic Manipulation Reveal New Isofuranonaphthoquinones in Nocardia Species. Int J Mol Sci 2024; 25:8847. [PMID: 39201533 PMCID: PMC11354674 DOI: 10.3390/ijms25168847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The identification of specialized metabolites isolated from microorganisms is urgently needed to determine their roles in treating cancer and controlling multidrug-resistant pathogens. Naphthoquinones act as anticancer agents in various types of cancers, but some toxicity indicators have been limited in their appropriate application. In this context, new isofuranonaphthoquinones (ifnq) that are less toxic to humans could be promising lead compounds for developing anticancer drugs. The aim of this study is to identify and characterize novel furanonaphthoquinones (fnqs) from Nocardia sp. CS682 and to evaluate their potential therapeutic applications. Analysis of the genome of Nocardia sp. CS682 revealed the presence of a furanonaphthoquinone (fnq) gene cluster, which displays a similar genetic organization and high nucleotide sequence identity to the ifnq gene cluster from Streptomyces sp. RI-77, a producer of the naphthoquinones JBIR-76 and JBIR-77. In this study, the overexpression of the Streptomyces antibiotic regulatory protein (SARP) in Nocardia sp. CS682DR (nargenicin gene-deleted mutant) explicitly produced new fnqs, namely, NOC-IBR1 and NOC-IBR2. Subsequently, the role of the SARP regulator was confirmed by gene inactivation using CRISPR-Cas9 and complementation studies. Furthermore, antioxidant, antimicrobial, and cytotoxicity assays were performed for the isolated compounds, and it was found that NOC-IBR2 exhibited superior activities to NOC-IBR1. In addition, a flexible methyltransferase substrate, ThnM3, was found to be involved in terminal methylation of NOC-IBR1, which was confirmed by in vitro enzyme assays. Thus, this study supports the importance of genome mining and genome editing approaches for exploring new specialized metabolites in a rare actinomycete called Nocardia.
Collapse
Affiliation(s)
- Purna Bahadur Poudel
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
| | - Rubin Thapa Magar
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
| | - Niranjan Parajuli
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Institute of Biomolecule Reconstruction (iBR), Sun Moon University, Asan 31460, Republic of Korea; (P.B.P.); (D.D.); (R.T.M.); (N.P.)
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
11
|
Foo M, Frietze LR, Enghiad B, Yuan Y, Katanski CD, Zhao H, Pan T. Prokaryotic RNA N1-Methyladenosine Erasers Maintain tRNA m1A Modification Levels in Streptomyces venezuelae. ACS Chem Biol 2024; 19:1616-1625. [PMID: 38912606 DOI: 10.1021/acschembio.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
tRNA modifications help maintain tRNA structure and facilitate translation and stress response. Found in all three kingdoms of life, m1A tRNA modification occurs in the T loop of many tRNAs, stabilizes tertiary tRNA structure, and impacts translation. M1A in the T loop is reversible by three mammalian demethylase enzymes, which bypasses the need of turning over the tRNA molecule to adjust its m1A levels in cells. However, no prokaryotic tRNA demethylase enzyme has been identified that acts on endogenous RNA modifications. Using Streptomyces venezuelae as a model organism, we confirmed the presence and quantitative m1A tRNA signatures using mass spectrometry and high-throughput tRNA sequencing. We identified two RNA demethylases that can remove m1A in tRNA and validated the activity of a previously annotated tRNA m1A writer. Using single-gene knockouts of these erasers and the m1A writer, we found dynamic changes of m1A levels in many tRNAs under stress conditions. Phenotypic characterization highlighted changes in their growth and altered antibiotic production. Our identification of the first prokaryotic tRNA demethylase enzyme paves the way for investigating new mechanisms of translational regulation in bacteria.
Collapse
Affiliation(s)
- Marcus Foo
- Committee on Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Luke R Frietze
- Department of Biochemistry & Molecular Biology,, The University of Chicago, Chicago, Illinois60637, United States
| | - Behnam Enghiad
- Department of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Yujie Yuan
- Department of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Christopher D Katanski
- Department of Biochemistry & Molecular Biology,, The University of Chicago, Chicago, Illinois60637, United States
| | - Huimin Zhao
- Department of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Tao Pan
- Committee on Microbiology, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Biochemistry & Molecular Biology,, The University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
12
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Wang J, Wang K, Deng Z, Zhong Z, Sun G, Mei Q, Zhou F, Deng Z, Sun Y. Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces. Nat Commun 2024; 15:5687. [PMID: 38971862 PMCID: PMC11227558 DOI: 10.1038/s41467-024-49987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.
Collapse
Affiliation(s)
- Jian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhe Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhiyu Zhong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qing Mei
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Schlüter L, Busche T, Bondzio L, Hütten A, Niehaus K, Schneiker-Bekel S, Pühler A, Kalinowski J. Sigma Factor Engineering in Actinoplanes sp. SE50/110: Expression of the Alternative Sigma Factor Gene ACSP50_0507 (σH As) Enhances Acarbose Yield and Alters Cell Morphology. Microorganisms 2024; 12:1241. [PMID: 38930623 PMCID: PMC11205660 DOI: 10.3390/microorganisms12061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Sigma factors are transcriptional regulators that are part of complex regulatory networks for major cellular processes, as well as for growth phase-dependent regulation and stress response. Actinoplanes sp. SE50/110 is the natural producer of acarbose, an α-glucosidase inhibitor that is used in diabetes type 2 treatment. Acarbose biosynthesis is dependent on growth, making sigma factor engineering a promising tool for metabolic engineering. ACSP50_0507 is a homolog of the developmental and osmotic-stress-regulating Streptomyces coelicolor σHSc. Therefore, the protein encoded by ACSP50_0507 was named σHAs. Here, an Actinoplanes sp. SE50/110 expression strain for the alternative sigma factor gene ACSP50_0507 (sigHAs) achieved a two-fold increased acarbose yield with acarbose production extending into the stationary growth phase. Transcriptome sequencing revealed upregulation of acarbose biosynthesis genes during growth and at the late stationary growth phase. Genes that are transcriptionally activated by σHAs frequently code for secreted or membrane-associated proteins. This is also mirrored by the severely affected cell morphology, with hyperbranching, deformed and compartmentalized hyphae. The dehydrated cell morphology and upregulation of further genes point to a putative involvement in osmotic stress response, similar to its S. coelicolor homolog. The DNA-binding motif of σHAs was determined based on transcriptome sequencing data and shows high motif similarity to that of its homolog. The motif was confirmed by in vitro binding of recombinantly expressed σHAs to the upstream sequence of a strongly upregulated gene. Autoregulation of σHAs was observed, and binding to its own gene promoter region was also confirmed.
Collapse
Affiliation(s)
- Laura Schlüter
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
- Medical School East Westphalia-Lippe, Bielefeld University, 33594 Bielefeld, Germany
| | - Laila Bondzio
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Andreas Hütten
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33594 Bielefeld, Germany;
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
| |
Collapse
|
15
|
Verschoor JA, Croese MRJ, Lakemeier SE, Mugge A, Burgers CMC, Innocenti P, Willemse J, Crooijmans ME, van Wezel GP, Ram AFJ, de Winde JH. Polyester degradation by soil bacteria: identification of conserved BHETase enzymes in Streptomyces. Commun Biol 2024; 7:725. [PMID: 38867087 PMCID: PMC11169514 DOI: 10.1038/s42003-024-06414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
The rising use of plastic results in an appalling amount of waste which is scattered into the environment. One of these plastics is PET which is mainly used for bottles. We have identified and characterized an esterase from Streptomyces, annotated as LipA, which can efficiently degrade the PET-derived oligomer BHET. The Streptomyces coelicolor ScLipA enzyme exhibits varying sequence similarity to several BHETase/PETase enzymes, including IsPETase, TfCut2, LCC, PET40 and PET46. Of 96 Streptomyces strains, 18% were able to degrade BHET via one of three variants of LipA, named ScLipA, S2LipA and S92LipA. SclipA was deleted from S. coelicolor resulting in reduced BHET degradation. Overexpression of all LipA variants significantly enhanced BHET degradation. All variants were expressed in E. coli for purification and biochemical analysis. The optimum conditions were determined as pH 7 and 25 °C for all variants. The activity on BHET and amorphous PET film was investigated. S2LipA efficiently degraded BHET and caused roughening and indents on the surface of PET films, comparable to the activity of previously described TfCut2 under the same conditions. The abundance of the S2LipA variant in Streptomyces suggests an environmental advantage towards the degradation of more polar substrates including these polluting plastics.
Collapse
Affiliation(s)
- Jo-Anne Verschoor
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Martijn R J Croese
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Sven E Lakemeier
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Annemiek Mugge
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Charlotte M C Burgers
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Paolo Innocenti
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Joost Willemse
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Marjolein E Crooijmans
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Arthur F J Ram
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Johannes H de Winde
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| |
Collapse
|
16
|
Liang S, Ma N, Li X, Yun K, Meng QF, Ma K, Yue L, Rao L, Chen X, Wang Z. A Guanidinobenzol-Rich Polymer Overcoming Cascade Delivery Barriers for CRISPR-Cas9 Genome Editing. NANO LETTERS 2024; 24:6872-6880. [PMID: 38683656 DOI: 10.1021/acs.nanolett.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The efficient cytosolic delivery of the CRISPR-Cas9 machinery remains a challenge for genome editing. Herein, we performed ligand screening and identified a guanidinobenzol-rich polymer to overcome the cascade delivery barriers of CRISPR-Cas9 ribonucleoproteins (RNPs) for genome editing. RNPs were stably loaded into the polymeric nanoparticles (PGBA NPs) by their inherent affinity. The polymer facilitated rapid endosomal escape of RNPs via a dynamic multiple-step cascade process. Importantly, the incorporation of fluorescence in the polymer helps to identify the correlation between cellular uptake and editing efficiency, increasing the efficiency up to 70% from the initial 30% for the enrichment of edited cells. The PGBA NPs efficiently deliver RNPs for in vivo gene editing via both local and systemic injections and dramatically reduce PCSK9 level. These results indicate that PGBA NPs enable the cascade delivery of RNPs for genome editing, showing great promise in broadening the therapeutic potential of the CRISPR-Cas9 technique.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ludan Yue
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 1 Biopolis Way, Helios 138667, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Kim DR, Jeon CW, Kwak YS. Antifungal Properties of Streptomyces bacillaris S8 for Biological Control Applications. THE PLANT PATHOLOGY JOURNAL 2024; 40:322-328. [PMID: 38835303 PMCID: PMC11162865 DOI: 10.5423/ppj.nt.01.2024.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/06/2024]
Abstract
Soybean (Glycine max), a crucial global crop, experiences yearly yield reduction due to diseases such as anthracnose (Colletotrichum truncatum) and root rot (Fusarium spp.). The use of fungicides, which have traditionally been employed to control these phytopathogens, is now facing challenges due to the emergence of fungicide-resistant strains. Streptomyces bacillaris S8 strain S8 is previously known to produce valinomycin t through a nonribosomal peptide synthetase (NRPS) pathway. The objective of this study was to evaluate the antifungal activity of S. bacillaris S8 against C. truncatum and Fusarium sp., assessing its efficacy against soybean pathogens. The results indicate that strain S8 effectively controlled both above-ground and underground soybean diseases, using the NRPS and NRPS-related compound, suggesting its potential as a biological control in plant-microbe interactions. These findings underscore the pivotal role of the stain S8 in fostering healthy soybean microbial communities and emphasize the significance of microbiota structure studies in unveiling potent biocontrol agents.
Collapse
Affiliation(s)
- Da-Ran Kim
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Chang-Wook Jeon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Youn-Sig Kwak
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
18
|
Lim SR, Lee SJ. Multiplex CRISPR-Cas Genome Editing: Next-Generation Microbial Strain Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11871-11884. [PMID: 38744727 PMCID: PMC11141556 DOI: 10.1021/acs.jafc.4c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Genome editing is a crucial technology for obtaining desired phenotypes in a variety of species, ranging from microbes to plants, animals, and humans. With the advent of CRISPR-Cas technology, it has become possible to edit the intended sequence by modifying the target recognition sequence in guide RNA (gRNA). By expressing multiple gRNAs simultaneously, it is possible to edit multiple targets at the same time, allowing for the simultaneous introduction of various functions into the cell. This can significantly reduce the time and cost of obtaining engineered microbial strains for specific traits. In this review, we investigate the resolution of multiplex genome editing and its application in engineering microorganisms, including bacteria and yeast. Furthermore, we examine how recent advancements in artificial intelligence technology could assist in microbial genome editing and engineering. Based on these insights, we present our perspectives on the future evolution and potential impact of multiplex genome editing technologies in the agriculture and food industry.
Collapse
Affiliation(s)
- Se Ra Lim
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| |
Collapse
|
19
|
Hu Z, Gu D, Skyrud W, Du Y, Zhai R, Wang J, Zhang W. Engineered Biosynthesis and Anticancer Studies of Ring-Expanded Antimycin-Type Depsipeptides. ACS Synth Biol 2024; 13:1562-1571. [PMID: 38679882 PMCID: PMC11483242 DOI: 10.1021/acssynbio.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Respirantins are 18-membered antimycin-type depsipeptides produced by Streptomyces sp. and Kitasatospora sp. These compounds have shown extraordinary anticancer activities against a panel of cancer cell lines with nanomolar levels of IC50 values. However, further investigation has been impeded by the low titers of the natural producers and the challenging chemical synthesis due to their structural complexity. The biosynthetic gene cluster (BGC) of respirantin was previously proposed based on a bioinformatic comparison of the four members of antimycin-type depsipeptides. In this study, we report the first successful reconstitution of respirantin in Streptomyces albus using a synthetic BGC. This heterologous system serves as an accessible platform for the production and diversification of respirantins. Through polyketide synthase pathway engineering, biocatalysis, and chemical derivatization, we generated nine respirantin compounds, including six new derivatives. Cytotoxicity screening against human MCF-7 and Hela cancer cell lines revealed a unique biphasic dose-response profile of respirantin. Furthermore, a structure-activity relationship study has elucidated the essential functional groups that contribute to its remarkable cytotoxicity. This work paves the way for respirantin-based anticancer drug discovery and development.
Collapse
Affiliation(s)
- Zhijuan Hu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, 600 Dunyu Road, Xihu District, Hangzhou 310024, China
| | - Di Gu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Will Skyrud
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Rui Zhai
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Juan Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Ji CH, Je HW, Kim H, Kang HS. Promoter engineering of natural product biosynthetic gene clusters in actinomycetes: concepts and applications. Nat Prod Rep 2024; 41:672-699. [PMID: 38259139 DOI: 10.1039/d3np00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Covering 2011 to 2022Low titers of natural products in laboratory culture or fermentation conditions have been one of the challenging issues in natural products research. Many natural product biosynthetic gene clusters (BGCs) are also transcriptionally silent in laboratory culture conditions, making it challenging to characterize the structures and activities of their metabolites. Promoter engineering offers a potential solution to this problem by providing tools for transcriptional activation or optimization of biosynthetic genes. In this review, we summarize the 10 years of progress in promoter engineering approaches in natural products research focusing on the most metabolically talented group of bacteria actinomycetes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
21
|
Tan LL, Heng E, Leong CY, Ng V, Yang LK, Seow DCS, Koduru L, Kanagasundaram Y, Ng SB, Peh G, Lim YH, Wong FT. Application of Cas12j for Streptomyces Editing. Biomolecules 2024; 14:486. [PMID: 38672502 PMCID: PMC11048056 DOI: 10.3390/biom14040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, CRISPR-Cas toolboxes for Streptomyces editing have rapidly accelerated natural product discovery and engineering. However, Cas efficiencies are oftentimes strain-dependent, and the commonly used Streptococcus pyogenes Cas9 (SpCas9) is notorious for having high levels of off-target toxicity effects. Thus, a variety of Cas proteins is required for greater flexibility of genetic manipulation within a wider range of Streptomyces strains. This study explored the first use of Acidaminococcus sp. Cas12j, a hypercompact Cas12 subfamily, for genome editing in Streptomyces and its potential in activating silent biosynthetic gene clusters (BGCs) to enhance natural product synthesis. While the editing efficiencies of Cas12j were not as high as previously reported efficiencies of Cas12a and Cas9, Cas12j exhibited higher transformation efficiencies compared to SpCas9. Furthermore, Cas12j demonstrated significantly improved editing efficiencies compared to Cas12a in activating BGCs in Streptomyces sp. A34053, a strain wherein both SpCas9 and Cas12a faced limitations in accessing the genome. Overall, this study expanded the repertoire of Cas proteins for genome editing in actinomycetes and highlighted not only the potential of recently characterized Cas12j in Streptomyces but also the importance of having an extensive genetic toolbox for improving the editing success of these beneficial microbes.
Collapse
Affiliation(s)
- Lee Ling Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
| | - Elena Heng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Veronica Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Deborah Chwee San Seow
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #02-01, Singapore 138669, Singapore; (C.Y.L.); (V.N.); (L.K.Y.); (D.C.S.S.); (Y.K.); (S.B.N.)
| | - Guangrong Peh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (Y.H.L.)
| | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (Y.H.L.)
| | - Fong Tian Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos #07-06, Singapore 138673, Singapore; (L.L.T.); (E.H.)
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; (G.P.); (Y.H.L.)
| |
Collapse
|
22
|
Rill A, Zhao L, Bode HB. Genetic toolbox for Photorhabdus and Xenorhabdus: pSEVA based heterologous expression systems and CRISPR/Cpf1 based genome editing for rapid natural product profiling. Microb Cell Fact 2024; 23:98. [PMID: 38561780 PMCID: PMC10983751 DOI: 10.1186/s12934-024-02363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Bacteria of the genus Photorhabdus and Xenorhabdus are motile, Gram-negative bacteria that live in symbiosis with entomopathogenic nematodes. Due to their complex life cycle, they produce a large number of specialized metabolites (natural products) encoded in biosynthetic gene clusters (BGC). Genetic tools for Photorhabdus and Xenorhabdus have been rare and applicable to only a few strains. In the past, several tools have been developed for the activation of BGCs and the deletion of individual genes. However, these often have limited efficiency or are time consuming. Among the limitations, it is essential to have versatile expression systems and genome editing tools that could facilitate the practical work. RESULTS In the present study, we developed several expression vectors and a CRISPR-Cpf1 genome editing vector for genetic manipulations in Photorhabdus and Xenorhabdus using SEVA plasmids. The SEVA collection is based on modular vectors that allow exchangeability of different elements (e.g. origin of replication and antibiotic selection markers with the ability to insert desired sequences for different end applications). Initially, we tested different SEVA vectors containing the broad host range origins and three different resistance genes for kanamycin, gentamycin and chloramphenicol, respectively. We demonstrated that these vectors are replicative not only in well-known representatives, e.g. Photorhabdus laumondii TTO1, but also in other rarely described strains like Xenorhabdus sp. TS4. For our CRISPR/Cpf1-based system, we used the pSEVA231 backbone to delete not only small genes but also large parts of BGCs. Furthermore, we were able to activate and refactor BGCs to obtain high production titers of high value compounds such as safracin B, a semisynthetic precursor for the anti-cancer drug ET-743. CONCLUSIONS The results of this study provide new inducible expression vectors and a CRISPR/CPf1 encoding vector all based on the SEVA (Standard European Vector Architecture) collection, which can improve genetic manipulation and genome editing processes in Photorhabdus and Xenorhabdus.
Collapse
Affiliation(s)
- Alexander Rill
- Department of Natural Products in Organismic Interactions, Max-Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Chemistry, Chemical Biology, Phillips University Marburg, 35043, Marburg, Germany
| | - Lei Zhao
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max-Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
- Department of Chemistry, Chemical Biology, Phillips University Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043, Marburg, Germany.
- Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt, Germany.
| |
Collapse
|
23
|
Hua HM, Xu JF, Huang XS, Zimin AA, Wang WF, Lu YH. Low-Toxicity and High-Efficiency Streptomyces Genome Editing Tool Based on the Miniature Type V-F CRISPR/Cas Nuclease AsCas12f1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5358-5367. [PMID: 38427033 DOI: 10.1021/acs.jafc.3c09101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Genome editing tools based on SpCas9 and FnCpf1 have facilitated strain improvements for natural product production and novel drug discovery in Streptomyces. However, due to high toxicity, their editing requires high DNA transformation efficiency, which is unavailable in most streptomycetes. The transformation efficiency of an all-in-one editing tool based on miniature Cas nuclease AsCas12f1 was significantly higher than those of SpCas9 and FnCpf1 in tested streptomycetes, which is due to its small size and weak DNA cleavage activity. Using this tool, in Streptomyces coelicolor, we achieved 100% efficiency for single gene or gene cluster deletion and 46.7 and 40% efficiency for simultaneous deletion of two genes and two gene clusters, respectively. AsCas12f1 was successfully extended to Streptomyces hygroscopicus SIPI-054 for efficient genome editing, in which SpCas9/FnCpf1 does not work well. Collectively, this work offers a low-toxicity, high-efficiency genome editing tool for streptomycetes, particularly those with low DNA transformation efficiency.
Collapse
Affiliation(s)
- Hui-Min Hua
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia-Feng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xue-Shuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Andrei A Zimin
- G.K. Scriabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino 142290, Russia
| | - Wen-Fang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yin-Hua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
24
|
Sood U, Müller M, Lan T, Garg G, Singhvi N, Hira P, Singh P, Nigam A, Verma M, Lata P, Kaur H, Kumar A, Rawat CD, Lal S, Aldrich C, Bechthold A, Lal R. Amycolatopsis mediterranei: A Sixty-Year Journey from Strain Isolation to Unlocking Its Potential of Rifamycin Analogue Production by Combinatorial Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2024; 87:424-438. [PMID: 38289177 DOI: 10.1021/acs.jnatprod.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Ever since the isolation of Amycolatopsis mediterranei in 1957, this strain has been the focus of research worldwide. In the last 60 years or more, our understanding of the taxonomy, development of cloning vectors and conjugation system, physiology, genetics, genomics, and biosynthetic pathway of rifamycin B production in A. mediterranei has substantially increased. In particular, the development of cloning vectors, transformation system, characterization of the rifamycin biosynthetic gene cluster, and the regulation of rifamycin B production by the pioneering work of Heinz Floss have made the rifamycin polyketide biosynthetic gene cluster (PKS) an attractive target for extensive genetic manipulations to produce rifamycin B analogues which could be effective against multi-drug-resistant tuberculosis. Additionally, a better understanding of the regulation of rifamycin B production and the application of newer genomics tools, including CRISPR-assisted genome editing systems, might prove useful to overcome the limitations associated with low production of rifamycin analogues.
Collapse
Affiliation(s)
- Utkarsh Sood
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Moritz Müller
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Tian Lan
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gauri Garg
- Department of Zoology, Kirori Mal College, University of Delhi, Delhi-110007, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand 248007, India
| | - Princy Hira
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Priya Singh
- Department of Zoology, Maitreyi College, University of Delhi, Delhi-110003, India
| | - Aeshna Nigam
- Department of Zoology, Shivaji College, University of Delhi, Delhi-110027, India
| | - Mansi Verma
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
| | - Pushp Lata
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Abhilash Kumar
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi-110007, India
| | - Sukanya Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
| | - Courtney Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andreas Bechthold
- Institute of Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Straße 19, 79104, Freiburg, Germany
| | - Rup Lal
- PhiXGen Private Limited, Gurugram, Haryana-122001, India
- Acharya Narendra Dev College, University of Delhi, Delhi-110019, India
| |
Collapse
|
25
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
26
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
27
|
Lee Y, Hwang S, Kim W, Kim JH, Palsson BO, Cho BK. CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2024; 51:kuae009. [PMID: 38439699 PMCID: PMC10949845 DOI: 10.1093/jimb/kuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/02/2024] [Indexed: 03/06/2024]
Abstract
The demand for discovering novel microbial secondary metabolites is growing to address the limitations in bioactivities such as antibacterial, antifungal, anticancer, anthelmintic, and immunosuppressive functions. Among microbes, the genus Streptomyces holds particular significance for secondary metabolite discovery. Each Streptomyces species typically encodes approximately 30 secondary metabolite biosynthetic gene clusters (smBGCs) within its genome, which are mostly uncharacterized in terms of their products and bioactivities. The development of next-generation sequencing has enabled the identification of a large number of potent smBGCs for novel secondary metabolites that are imbalanced in number compared with discovered secondary metabolites. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has revolutionized the translation of enormous genomic potential into the discovery of secondary metabolites as the most efficient genetic engineering tool for Streptomyces. In this review, the current status of CRISPR/Cas applications in Streptomyces is summarized, with particular focus on the identification of secondary metabolite biosynthesis gene clusters and their potential applications.This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production. ONE-SENTENCE SUMMARY This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.
Collapse
Affiliation(s)
- Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate school of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
28
|
Karimian S, Farahmandzad N, Mohammadipanah F. Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol 2024; 40:65. [PMID: 38191749 DOI: 10.1007/s11274-023-03861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Most biosynthetic gene clusters (BGCs) of Actinobacteria are either silent or expressed less than the detectable level. The non-genetic approaches including biological interactions, chemical agents, and physical stresses that can be used to awaken silenced pathways are compared in this paper. These non-genetic induction strategies often need screening approaches, including one strain many compounds (OSMAC), reporter-guided mutant selection, and high throughput elicitor screening (HiTES) have been developed. Different types of genetic manipulations applied in the induction of cryptic BGCs of Actinobacteria can be categorized as genome-wide pleiotropic and targeted approaches like manipulation of global regulatory systems, modulation of regulatory genes, ribosome and engineering of RNA polymerase or phosphopantheteine transferases. Targeted approaches including genome editing by CRISPR, mutation in transcription factors and modification of BGCs promoters, inactivation of the highly expressed biosynthetic pathways, deleting the suppressors or awakening the activators, heterologous expression, or refactoring of gene clusters can be applied for activation of pathways which are predicted to synthesize new bioactive structures in genome mining studies of Acinobacteria. In this review, the challenges and advantages of employing these approaches in induction of Actinobacteria BGCs are discussed. Further, novel natural products needed as drug for pharmaceutical industry or as biofertilizers in agricultural industry can be discovered even from known species of Actinobactera by the innovative approaches of metabolite biosynthesis elicitation.
Collapse
Affiliation(s)
- Sanaz Karimian
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Navid Farahmandzad
- Department of Biosystems Engineering, Auburn university, Auburn, AL 36849, USA
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, 14155-6455, Iran.
| |
Collapse
|
29
|
Fluegel LL, Deng MR, Su P, Kalkreuter E, Yang D, Rudolf JD, Dong LB, Shen B. Development of platensimycin, platencin, and platensilin overproducers by biosynthetic pathway engineering and fermentation medium optimization. J Ind Microbiol Biotechnol 2024; 51:kuae003. [PMID: 38262768 PMCID: PMC10847714 DOI: 10.1093/jimb/kuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
The platensimycin (PTM), platencin (PTN), and platensilin (PTL) family of natural products continues to inspire the discovery of new chemistry, enzymology, and medicine. Engineered production of this emerging family of natural products, however, remains laborious due to the lack of practical systems to manipulate their biosynthesis in the native-producing Streptomyces platensis species. Here we report solving this technology gap by implementing a CRISPR-Cas9 system in S. platensis CB00739 to develop an expedient method to manipulate the PTM, PTN, and PTL biosynthetic machinery in vivo. We showcase the utility of this technology by constructing designer recombinant strains S. platensis SB12051, SB12052, and SB12053, which, upon fermentation in the optimized PTM-MS medium, produced PTM, PTN, and PTL with the highest titers at 836 mg L-1, 791 mg L-1, and 40 mg L-1, respectively. Comparative analysis of these resultant recombinant strains also revealed distinct chemistries, catalyzed by PtmT1 and PtmT3, two diterpene synthases that nature has evolved for PTM, PTN, and PTL biosynthesis. The ΔptmR1/ΔptmT1/ΔptmT3 triple mutant strain S. platensis SB12054 could be envisaged as a platform strain to engineer diterpenoid biosynthesis by introducing varying ent-copalyl diphosphate-acting diterpene synthases, taking advantage of its clean metabolite background, ability to support diterpene biosynthesis in high titers, and the promiscuous tailoring biosynthetic machinery. ONE-SENTENCE SUMMARY Implementation of a CRISPR-Cas9 system in Streptomyces platensis CB00739 enabled the construction of a suite of designer recombinant strains for the overproduction of platensimycin, platencin, and platensilin, discovery of new diterpene synthase chemistries, and development of platform strains for future diterpenoid biosynthesis engineering.
Collapse
Affiliation(s)
- Lucas L Fluegel
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
| | - Ming-Rong Deng
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ping Su
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Liao-Bin Dong
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
30
|
Zhang Y, Qi H, Wang M. CRISPR/Cas9-Mediated Promoter Engineering in Saccharopolyspora erythraea. Methods Mol Biol 2024; 2844:123-132. [PMID: 39068336 DOI: 10.1007/978-1-0716-4063-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In situ promoter engineering is an effective way to alter target gene expression without introducing excess DNA sequences. Recently, the CRISPR/Cas9 technologies have been proved to be efficient tools for genome editing in actinomycetes, making it easier and more efficient to perform gene insertion and substitution in actinomycetes in a scarless manner. In this chapter, we describe a routine protocol for CRISPR/Cas9-mediated promoter engineering in Saccharopolyspora erythraea NRRL 23338, which is the wild-type producer of erythromycin. This protocol can be adapted to CRISPR/Cas9-mediated gene editing, not limited to promoter engineering, in other actinomycetes, with modifications.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, China.
| | - Hui Qi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
- School of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin, China
| | - Meng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, China.
| |
Collapse
|
31
|
Ravagnan G, Meliawati M, Schmid J. CRISPR-Cas9-Mediated Genome Editing in Paenibacillus polymyxa. Methods Mol Biol 2024; 2760:267-280. [PMID: 38468094 DOI: 10.1007/978-1-0716-3658-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
In recent years, the clustered regularly interspaced palindromic repeats-Cas (CRISPR-Cas) technology has become the method of choice for precision genome editing in many organisms due to its simplicity and efficacy. Multiplex genome editing, point mutations, and large genomic modifications are attractive features of the CRISPR-Cas9 system. These applications facilitate both the ease and velocity of genetic manipulations and the discovery of novel functions. In this protocol chapter, we describe the use of a CRISPR-Cas9 system for multiplex integration and deletion modifications, and deletions of large genomic regions by the use of a single guide RNA (sgRNA), and, finally, targeted point mutation modifications in Paenibacillus polymyxa.
Collapse
Affiliation(s)
- Giulia Ravagnan
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Meliawati Meliawati
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
32
|
Li C, Urem M, Du C, Zhang L, van Wezel GP. Systems-wide analysis of the ROK-family regulatory gene rokL6 and its role in the control of glucosamine toxicity in Streptomyces coelicolor. Appl Environ Microbiol 2023; 89:e0167423. [PMID: 37982622 PMCID: PMC10734537 DOI: 10.1128/aem.01674-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/29/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Central metabolism plays a key role in the control of growth and antibiotic production in streptomycetes. Specifically, aminosugars act as signaling molecules that affect development and antibiotic production, via metabolic interference with the global repressor DasR. While aminosugar metabolism directly connects to other major metabolic routes such as glycolysis and cell wall synthesis, several important aspects of their metabolism are yet unresolved. Accumulation of N-acetylglucosamine 6-phosphate or glucosamine 6-phosphate is lethal to many bacteria, a yet unresolved phenomenon referred to as "aminosugar sensitivity." We made use of this concept by selecting for suppressors in genes related to glucosamine toxicity in nagB mutants, which showed that the gene pair of rok-family regulatory gene rokL6 and major facilitator superfamily transporter gene sco1448 forms a cryptic rescue mechanism. Inactivation of rokL6 resulted in the expression of sco1448, which then prevents the toxicity of amino sugar-derived metabolites in Streptomyces. The systems biology of RokL6 and its transcriptional control of sco1448 shed new light on aminosugar metabolism in streptomycetes and on the response of bacteria to aminosugar toxicity.
Collapse
Affiliation(s)
- Chao Li
- Molecular Biotechnology, Leiden University, Leiden, the Netherlands
| | - Mia Urem
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Chao Du
- Molecular Biotechnology, Leiden University, Leiden, the Netherlands
| | - Le Zhang
- Molecular Biotechnology, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
33
|
Chen H, Shi H, Chen C, Jiao Y, Wang P, Chen C, Li J, Wu LF, Song T. Effects of static magnetic field on the sulfate metabolic pathway involved in Magnetospirillum magneticum AMB-1 cell growth and magnetosome formation. J Appl Microbiol 2023; 134:lxad302. [PMID: 38066686 DOI: 10.1093/jambio/lxad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
AIMS Magnetotactic bacteria (MTB) can use their unique intracellular magnetosome organelles to swim along the Earth's magnetic field. They play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have shown that the applied magnetic fields could affect the magnetosome formation and antioxidant defense systems in MTB. However, the molecular mechanisms by which magnetic fields affect MTB cells remain unclear. We aim to better understand the dark at 28°C-29°C for 20 h, as shownthe interactions between magnetic fields and cells, and the mechanism of MTB adaptation to magnetic field at molecular levels. METHODS AND RESULTS We performed microbiological, transcriptomic, and genetic experiments to analyze the effects of a weak static magnetic field (SMF) exposure on the cell growth and magnetosome formation in the MTB strain Magnetospirillum magneticum AMB-1. The results showed that a 1.5 mT SMF significantly promoted the cell growth but reduced magnetosome formation in AMB-1, compared to the geomagnetic field. Transcriptomic analysis revealed decreased expression of genes primarily involved in the sulfate reduction pathway. Consistently, knockout mutant lacking adenylyl-sulfate kinase CysC did no more react to the SMF and the differences in growth and Cmag disappeared. Together with experimental findings of increased reactive oxidative species in the SMF-treated wild-type strain, we proposed that cysC, as a key gene, can participate in the cell growth and mineralization in AMB-1 by SMF regulation. CONCLUSIONS This study suggests that the magnetic field exposure can trigger a bacterial oxidative stress response involved in AMB-1 growth and magnetosome mineralization by regulating the sulfur metabolism pathway. CysC may serve as a pivotal enzyme in mediating sulfur metabolism to synchronize the impact of SMF on both growth and magnetization of AMB-1.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongkai Shi
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingping Wang
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinhua Li
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS, F-13402 Marseille, France
- Aix Marseille University, CNRS, LCB, F-13402 Marseille, France
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Liu Z, Liu J, Yang Z, Zhu L, Zhu Z, Huang H, Jiang L. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes. Biotechnol Adv 2023; 68:108241. [PMID: 37633620 DOI: 10.1016/j.biotechadv.2023.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing in various prokaryotes. However, the perturbation of DNA homeostasis and the inherent toxicity of Cas9/12a proteins could easily lead to cell death, which led to the development of endogenous CRISPR-Cas systems. Programming the widespread endogenous CRISPR-Cas systems for in situ genome editing represents a promising tool in prokaryotes, especially in genetically intractable species. Here, this review briefly summarizes the advances of endogenous CRISPR-Cas-mediated genome editing, covering aspects of establishing and optimizing the genetic tools. In particular, this review presents the application of different types of endogenous CRISPR-Cas tools for strain engineering, including genome editing and genetic regulation. Notably, this review also provides a detailed discussion of the transposon-associated CRISPR-Cas systems, and the programmable RNA-guided transposition using endogenous CRISPR-Cas systems to enable editing of microbial communities for understanding and control. Therefore, they will be a powerful tool for targeted genetic manipulation. Overall, this review will not only facilitate the development of standard genetic manipulation tools for non-model prokaryotes but will also enable more non-model prokaryotes to be genetically tractable.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
35
|
Bao HY, Li HJ, Zhang YY, Bechthold A, Yu XP, Ma Z. Transposon-based identification of genes involved in the rimocidin biosynthesis in Streptomyces rimosus M527. World J Microbiol Biotechnol 2023; 39:359. [PMID: 37891332 DOI: 10.1007/s11274-023-03814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
The transposon mutagenesis strategy has been employed to generate random insertion mutants and analyze the correlation between genes and secondary metabolites in the genus Streptomyces. In this study, our primary objective was to identify an unknown gene involved in rimocidin biosynthesis and elucidate its role in rimocidin production in Streptomyces rimosus M527. To achieve this, we established a random mutant library of S. rimosus M527 using a Tn5 transposon-mediated random mutagenesis strategy. Among the 137 isolated mutants, M527-G10 and M527-W5 exhibited the most significant variations in antagonistic activity against the plant pathogenic fungus Fusarium oxysporum f. sp. cucumerinum. Specifically, M527-G10 displayed a 72.93% reduction, while M527-W5 showed a 49.8% increase in rimocidin production compared to the wild-type (WT) strain S. rimosus M527. Subsequently, we employed a plasmid rescue strategy to identify the insertion loci of the transposon in the genomes of mutants M527-G10 and M527-W5, revealing a response regulator transcription factor (rrt) and a hypothetical protein (hyp), respectively. The roles of rrt and hyp in rimocidin biosynthesis were determined through gene deletion, overexpression in the WT strain, and complemented expression in the transposon mutants. Notably, the gene-deletion mutants M527-ΔRRT and M527-ΔHYP exhibited similar behavior in rimocidin production compared to the corresponding transposon mutants M527-G10 and M527-W5, suggesting that transposon insertions in genes rrt and hyp led to alterations in rimocidin production. Furthermore, both gene deletion and overexpression of rrt and hyp had no discernible effects on cell growth. These results reveal that genes rrt and hyp have positive and negative impacts on rimocidin production in S. rimosus M527, respectively.
Collapse
Affiliation(s)
- Hai-Yue Bao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, China
| | - Hui-Jie Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, China
| | - Yong-Yong Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, China
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104, Freiburg, Germany
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province, 310018, China.
| |
Collapse
|
36
|
Heo KT, Lee B, Hwang GJ, Park B, Jang JP, Hwang BY, Jang JH, Hong YS. A unique dual acyltransferase system shared in the polyketide chain initiation of kidamycinone and rubiflavinone biosynthesis. Front Microbiol 2023; 14:1274358. [PMID: 38029143 PMCID: PMC10646177 DOI: 10.3389/fmicb.2023.1274358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
The pluramycin family of natural products has diverse substituents at the C2 position, which are closely related to their biological activity. Therefore, it is important to understand the biosynthesis of C2 substituents. In this study, we describe the biosynthesis of C2 moieties in Streptomyces sp. W2061, which produces kidamycin and rubiflavinone C-1, containing anthrapyran aglycones. Sequence analysis of the loading module (Kid13) of the PKS responsible for the synthesis of these anthrapyran aglycones is useful for confirming the incorporation of atypical primer units into the corresponding products. Kid13 is a ketosynthase-like decarboxylase (KSQ)-type loading module with unusual dual acyltransferase (AT) domains (AT1-1 and AT1-2). The AT1-2 domain primarily loads ethylmalonyl-CoA and malonyl-CoA for rubiflavinone and kidamycinone and rubiflavinone, respectively; however, the AT1-1 domain contributed to the functioning of the AT1-2 domain to efficiently load ethylmalonyl-CoA for rubiflavinone. We found that the dual AT system was involved in the production of kidamycinone, an aglycone of kidamycin, and rubiflavinone C-1 by other shared biosynthetic genes in Streptomyces sp. W2061. This study broadens our understanding of the incorporation of atypical primer units into polyketide products.
Collapse
Affiliation(s)
- Kyung Taek Heo
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Byeongsan Lee
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Gwi Ja Hwang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Beomcheol Park
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jun-Pil Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Jae-Hyuk Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju-si, Republic of Korea
| |
Collapse
|
37
|
Ma JX, He WY, Hua HM, Zhu Q, Zheng GS, Zimin AA, Wang WF, Lu YH. Development of a CRISPR/Cas9 D10A Nickase (nCas9)-Mediated Genome Editing Tool in Streptomyces. ACS Synth Biol 2023; 12:3114-3123. [PMID: 37722085 DOI: 10.1021/acssynbio.3c00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Streptomycetes have a strong ability to produce a vast array of bioactive natural products (NPs) widely used in agriculture and veterinary/human medicine. The recently developed CRISPR/Cas9-based genome editing tools have greatly facilitated strain improvement for target NP overproduction as well as novel NP discovery in Streptomyces. However, CRISPR/Cas9 shows high toxicity to the host, limiting its application in many Streptomyces strains with a low DNA transformation efficiency. In this study, we developed a low-toxicity CRISPR/Cas9D10A nickase (nCas9)-based genome editing tool in the model strain Streptomyces coelicolor M145. We showed that in the presence of both targeting sgRNA and Cas proteins, utilization of nCas9 instead of Cas9 significantly reduced the toxicity to the host and greatly enhanced cell survival. Using this tool, we achieved deletion of single genes and gene clusters with efficiencies of 87-100 and 63-87%, and simultaneous deletion of two genes or gene clusters with efficiencies of 47 and 43%, respectively. The editing efficiency of nCas9 is comparable to that of the Cas9-mediated editing tool. Finally, the nCas9-based editing tool was successfully applied for genome editing in the industrial rapamycin-producing strain Streptomyces rapamycinicus, in which CRISPR/Cas9 cannot work well. We achieved the deletion of three tested genes with an efficiency of 27.2-30%. Collectively, the CRISPR/nCas9-based editing tool offers a convenient and efficient genetic modification system for the engineering of streptomycetes, particularly those with low DNA transformation efficiency.
Collapse
Affiliation(s)
- Jia-Xiang Ma
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Yan He
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hui-Min Hua
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qian Zhu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Guo-Song Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Andrei A Zimin
- G.K. Scriabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino 142290, Russia
| | - Wen-Fang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yin-Hua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
38
|
Bai C, van Wezel GP. CUBIC: A Versatile Cumate-Based Inducible CRISPRi System in Streptomyces. ACS Synth Biol 2023; 12:3143-3147. [PMID: 37801665 PMCID: PMC10594651 DOI: 10.1021/acssynbio.3c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 10/08/2023]
Abstract
Streptomyces, a genus of Gram-positive bacteria, is known as nature's medicine maker, producing a plethora of natural products that have huge benefits for human health, agriculture, and biotechnology. To take full advantage of this treasure trove of bioactive molecules, better genetic tools are required for the genetic engineering and synthetic biology of Streptomyces. We therefore developed CUBIC, a novel CUmate-Based Inducible CRISPR interference (CRISPRi) system that allows highly efficient and inducible gene knockdown in Streptomyces. Its broad application is shown by the specific and nondisruptive knockdown of genes involved in growth, development and antibiotic production in various Streptomyces species. To facilitate hyper-efficient plasmid construction, we adapted the Golden Gate assembly to achieve 100% cloning efficiency of the protospacers. We expect that the versatile plug-and-play CUBIC system will create new opportunities for research and innovation in the field of Streptomyces.
Collapse
Affiliation(s)
- Chaoxian Bai
- Institute of Biology, Leiden University, Sylviusweg 72, 2333
BE, Leiden, Netherlands
| | - Gilles P. van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333
BE, Leiden, Netherlands
| |
Collapse
|
39
|
Li JY, Liang JY, Liu ZY, Yi YZ, Zhao J, Huang ZY, Chen J. Multicopy Chromosome Integration and Deletion of Negative Global Regulators Significantly Increased the Heterologous Production of Aborycin in Streptomyces coelicolor. Mar Drugs 2023; 21:534. [PMID: 37888469 PMCID: PMC10608281 DOI: 10.3390/md21100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Aborycin is a type I lasso peptide with a stable interlocked structure, offering a favorable framework for drug development. The aborycin biosynthetic gene cluster gul from marine sponge-associated Streptomyces sp. HNS054 was cloned and integrated into the chromosome of S. coelicolor hosts with different copies. The three-copy gul-integration strain S. coelicolor M1346::3gul showed superior production compared to the one-copy or two-copy gul-integration strains, and the total titer reached approximately 10.4 mg/L, i.e., 2.1 times that of the native strain. Then, five regulatory genes, phoU (SCO4228), wblA (SCO3579), SCO1712, orrA (SCO3008) and gntR (SCO1678), which reportedly have negative effects on secondary metabolism, were further knocked out from the M1346::3gul genome by CRISPR/Cas9 technology. While the ΔSCO1712 mutant showed a significant decrease (4.6 mg/L) and the ΔphoU mutant showed no significant improvement (12.1 mg/L) in aborycin production, the ΔwblA, ΔorrA and ΔgntR mutations significantly improved the aborycin titers to approximately 23.6 mg/L, 56.3 mg/L and 48.2 mg/L, respectively, which were among the highest heterologous yields for lasso peptides in both Escherichia coli systems and Streptomyces systems. Thus, this study provides important clues for future studies on enhancing antibiotic production in Streptomyces systems.
Collapse
Affiliation(s)
- Jia-Yi Li
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Jun-Yu Liang
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Zhao-Yuan Liu
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Yue-Zhao Yi
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Jing Zhao
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China
| | - Zhi-Yong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jun Chen
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China
| |
Collapse
|
40
|
Song X, Kong SJ, Seo S, Prabhakar RG, Shamoo Y. Methyl halide transferase-based gas reporters for quantification of filamentous bacteria in microdroplet emulsions. Appl Environ Microbiol 2023; 89:e0076423. [PMID: 37699129 PMCID: PMC10537575 DOI: 10.1128/aem.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
The application of microfluidic techniques in experimental and environmental studies is a rapidly emerging field. Water-in-oil microdroplets can serve readily as controllable micro-vessels for studies that require spatial structure. In many applications, it is useful to monitor cell growth without breaking or disrupting the microdroplets. To this end, optical reporters based on color, fluorescence, or luminescence have been developed. However, optical reporters suffer from limitations when used in microdroplets such as inaccurate readings due to strong background interference or limited sensitivity during early growth stages. In addition, optical detection is typically not amenable to filamentous or biofilm-producing organisms that have significant nonlinear changes in opacity and light scattering during growth. To overcome such limitations, we show that volatile methyl halide gases produced by reporter cells expressing a methyl halide transferase (MHT) can serve as an alternative nonoptical detection approach suitable for microdroplets. In this study, an MHT-labeled Streptomyces venezuelae reporter strain was constructed and characterized. Protocols were established for the encapsulation and incubation of S. venezuelae in microdroplets. We observed the complete life cycle for S. venezuelae including the vegetative expansion of mycelia, mycelial fragmentation, and late-stage sporulation. Methyl bromide (MeBr) production was detected by gas chromatography-mass spectrometry (GC-MS) from S. venezuelae gas reporters incubated in either liquid suspension or microdroplets and used to quantitatively estimate bacterial density. Overall, using MeBr production as a means of quantifying bacterial growth provided a 100- to 1,000-fold increase in sensitivity over optical or fluorescence measurements of a comparable reporter strain expressing fluorescent proteins. IMPORTANCE Quantitative measurement of bacterial growth in microdroplets in situ is desirable but challenging. Current optical reporter systems suffer from limitations when applied to filamentous or biofilm-producing organisms. In this study, we demonstrate that volatile methyl halide gas production can serve as a quantitative nonoptical growth assay for filamentous bacteria encapsulated in microdroplets. We constructed an S. venezuelae gas reporter strain and observed a complete life cycle for encapsulated S. venezuelae in microdroplets, establishing microdroplets as an alternative growth environment for Streptomyces spp. that can provide spatial structure. We detected MeBr production from both liquid suspension and microdroplets with a 100- to 1,000-fold increase in signal-to-noise ratio compared to optical assays. Importantly, we could reliably detect bacteria with densities down to 106 CFU/mL. The combination of quantitative gas reporting and microdroplet systems provides a valuable approach to studying fastidious organisms that require spatial structure such as those found typically in soils.
Collapse
Affiliation(s)
- Xinhao Song
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Sarah J. Kong
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Seokju Seo
- Department of BioSciences, Rice University, Houston, Texas, USA
| | | | - Yousif Shamoo
- Department of BioSciences, Rice University, Houston, Texas, USA
| |
Collapse
|
41
|
Chu J, Romero A, Taulbee J, Aran K. Development of Single Molecule Techniques for Sensing and Manipulation of CRISPR and Polymerase Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300328. [PMID: 37226388 PMCID: PMC10524706 DOI: 10.1002/smll.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Indexed: 05/26/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and polymerases are powerful enzymes and their diverse applications in genomics, proteomics, and transcriptomics have revolutionized the biotechnology industry today. CRISPR has been widely adopted for genomic editing applications and Polymerases can efficiently amplify genomic transcripts via polymerase chain reaction (PCR). Further investigations into these enzymes can reveal specific details about their mechanisms that greatly expand their use. Single-molecule techniques are an effective way to probe enzymatic mechanisms because they may resolve intermediary conformations and states with greater detail than ensemble or bulk biosensing techniques. This review discusses various techniques for sensing and manipulation of single biomolecules that can help facilitate and expedite these discoveries. Each platform is categorized as optical, mechanical, or electronic. The methods, operating principles, outputs, and utility of each technique are briefly introduced, followed by a discussion of their applications to monitor and control CRISPR and Polymerases at the single molecule level, and closing with a brief overview of their limitations and future prospects.
Collapse
Affiliation(s)
- Josephine Chu
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Andres Romero
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Jeffrey Taulbee
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea, San Diego, CA, 92121, USA
- University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
42
|
Meng W, Qiao K, Liu F, Gao X, Hu X, Liu J, Gao Y, Zhu J. Construction and application of a new CRISPR/Cas12a system in Stenotrophomonas AGS-1 from aerobic granular sludge. Biotechnol J 2023; 18:e2200596. [PMID: 37288647 DOI: 10.1002/biot.202200596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/29/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Aerobic granular sludge (AGS) is a microbial aggregate with a biofilm structure. Thus, investigating AGS in the aspect of biofilm and microbial attachment at the genetic level would help to reveal the mechanism of granule biofilm formation. In this work, a two-plasmid clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas)12a genome editing system was constructed to identify attachment genes for the first time in Stenotrophomonas AGS-1 from AGS. One plasmid contained a Cas12a cassette driven by an arabinose-inducible promoter, and another contained the specific crRNA and homologous arms (HAs). Acidaminococcus sp. Cas12a (AsCas12a) was adopted and proven to have mild toxicity (compared to Cas9) and strong cleavage activity for AGS-1. CRISPR/Cas12a-mediated rmlA knockout decreased attachment ability by 38.26%. Overexpression of rmlA in AGS-1 resulted in an increase of 30.33% in attachment ability. These results showed that the modulation of rmlA was an important factor for the biofilm formation of AGS-1. Moreover, two other genes (xanB and rpfF) were knocked out by CRISPR/Cas12a and identified as attachment-related genes in AGS-1. Also, this system could achieve point mutations. These data indicated that the CRISPR/Cas12a system could be an effective molecular platform for attachment gene function identification, which would be useful for the development of AGS in wastewater treatment.
Collapse
Affiliation(s)
- Wei Meng
- School of Environment, Beijing Normal University, Beijing, China
- R & D Centre of Aerobic Granule Technology, Beijing, China
| | - Kai Qiao
- School of Environment, Beijing Normal University, Beijing, China
- State Key Laboratory of Water Simulation, Beijing, China
| | - Fan Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Xu Gao
- School of Environment, Beijing Normal University, Beijing, China
| | - Xuan Hu
- School of Environment, Beijing Normal University, Beijing, China
- State Key Laboratory of Water Simulation, Beijing, China
| | - Jia Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Yiyun Gao
- School of Environment, Beijing Normal University, Beijing, China
| | - Jianrong Zhu
- School of Environment, Beijing Normal University, Beijing, China
- R & D Centre of Aerobic Granule Technology, Beijing, China
| |
Collapse
|
43
|
Whitford CM, Gren T, Palazzotto E, Lee SY, Tong Y, Weber T. Systems Analysis of Highly Multiplexed CRISPR-Base Editing in Streptomycetes. ACS Synth Biol 2023; 12:2353-2366. [PMID: 37402223 DOI: 10.1021/acssynbio.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
CRISPR tools, especially Cas9n-sgRNA guided cytidine deaminase base editors such as CRISPR-BEST, have dramatically simplified genetic manipulation of streptomycetes. One major advantage of CRISPR base editing technology is the possibility to multiplex experiments in genomically instable species. Here, we demonstrate scaled up Csy4 based multiplexed genome editing using CRISPR-mcBEST in Streptomyces coelicolor. We evaluated the system by simultaneously targeting 9, 18, and finally all 28 predicted specialized metabolite biosynthetic gene clusters in a single experiment. We present important insights into the performance of Csy4 based multiplexed genome editing at different scales. Using multiomics analysis, we investigated the systems wide effects of such extensive editing experiments and revealed great potentials and important bottlenecks of CRISPR-mcBEST. The presented analysis provides crucial data and insights toward the development of multiplexed base editing as a novel paradigm for high throughput engineering of Streptomyces chassis and beyond.
Collapse
Affiliation(s)
- Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Emilia Palazzotto
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Yaojun Tong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
44
|
Kawai S, Yamada A, Du D, Sugai Y, Katsuyama Y, Ohnishi Y. Identification and Analysis of the Biosynthetic Gene Cluster for the Hydrazide-Containing Aryl Polyene Spinamycin. ACS Chem Biol 2023; 18:1821-1828. [PMID: 37498311 DOI: 10.1021/acschembio.3c00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Natural products containing nitrogen-nitrogen (N-N) bonds have attracted much attention because of their bioactivities and chemical features. Several recent studies have revealed the nitrous acid-dependent N-N bond-forming machinery. However, the catalytic mechanisms of hydrazide synthesis using nitrous acid remain unknown. Herein, we focused on spinamycin, a hydrazide-containing aryl polyene produced by Streptomyces albospinus JCM3399. In the S. albospinus genome, we discovered a putative spinamycin biosynthetic gene (spi) cluster containing genes that encode a type II polyketide synthase and genes for the secondary metabolism-specific nitrous acid biosynthesis pathway. A gene inactivation experiment showed that this cluster was responsible for spinamycin biosynthesis. A feeding experiment using stable isotope-labeled sodium nitrite and analysis of nitrous acid-synthesizing enzymes in vitro strongly indicated that one of the nitrogen atoms of the hydrazide group was derived from nitrous acid. In vitro substrate specificity analysis of SpiA3, which is responsible for loading a starter substrate onto polyketide synthase, indicated that N-N bond formation occurs after starter substrate loading. In vitro analysis showed that the AMP-dependent ligase SpiA7 catalyzes the diazotization of an amino group on a benzene ring without a hydroxy group, resulting in a highly reactive diazo intermediate, which may be the key step in hydrazide group formation. Therefore, we propose the overall biosynthetic pathway of spinamycin. This study expands our knowledge of N-N bond formation in microbial secondary metabolism.
Collapse
Affiliation(s)
- Seiji Kawai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akito Yamada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Danyao Du
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshinori Sugai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
45
|
Li Y, Wang J, Li L, Song W, Li M, Hua X, Wang Y, Yuan J, Xue Z. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep 2023; 40:1303-1353. [PMID: 36454108 DOI: 10.1039/d2np00063f] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.
Collapse
Affiliation(s)
- Yanlin Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Linyong Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Wenhui Song
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Min Li
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Xin Hua
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| | - Yu Wang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Fujian, PR China.
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin, PR China.
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
46
|
Wang JH, Wu SJ, Li Y, Zhao Y, Liu ZM, Deng SL, Lian ZX. Improving the Efficiency of Precise Genome Editing with CRISPR/Cas9 to Generate Goats Overexpressing Human Butyrylcholinesterase. Cells 2023; 12:1818. [PMID: 37508483 PMCID: PMC10378061 DOI: 10.3390/cells12141818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The CRISPR/Cas9 system is widely used for genome editing in livestock production, although off-target effects can occur. It is the main method to produce genome-edited goats by somatic cell nuclear transfer (SCNT) of CRISPR/Cas9-mediated genome-edited primary goat fetal fibroblast cells (GFFs). Improving the double-strand break (DSB) efficiency of Cas9 in primary cells would improve the homologous repair (HR) efficiency. The low efficiency of HR remains a major hurdle in CRISPR/Cas9-mediated precise genome editing, increasing the work required to screen the genome-edited primary cell clones. In this study, we modified several essential parameters that affect the efficiency of the CRISPR/Cas9-mediated knock-in GFF cloning system, including establishing a high-efficiency transfection system for primary cells via nucleofection and optimizing homology arm (HA) length during HR. Here, we specifically inserted a recombinant human butyrylcholinesterase gene (rhBChE) into the goat fibroblast growth factor (FGF)-5 locus through the CRISPR/Cas9 system, thereby achieving simultaneous rhBChE insertion and FGF5 knock-out. First, this study introduced the Cas9, FGF5 knock-out small guide RNA, and rhBChE knock-in donors into GFFs by electroporation and obtained positive cell clones without off-target effects. Then, we demonstrated the expression of rhBChE in GFF clones and verified its function. Finally, we obtained a CRISPR/Cas9-mediated rhBChE-overexpression goat.
Collapse
Affiliation(s)
- Jia-Hao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Su-Jun Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yan Li
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China;
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhi-Mei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
McLean TC, Beaton ADM, Martins C, Saalbach G, Chandra G, Wilkinson B, Hutchings MI. Evidence of a role for CutRS and actinorhodin in the secretion stress response in Streptomyces coelicolor M145. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001358. [PMID: 37418299 PMCID: PMC10433416 DOI: 10.1099/mic.0.001358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
CutRS was the first two-component system to be identified in Streptomyces species and is highly conserved in this genus. It was reported >25 years ago that deletion of cutRS increases the production of the antibiotic actinorhodin in Streptomyces coelicolor. However, despite this early work, the function of CutRS has remained enigmatic until now. Here we show that deletion of cutRS upregulates the production of the actinorhodin biosynthetic enzymes up to 300-fold, explaining the increase in actinorhodin production. However, while ChIP-seq identified 85 CutR binding sites in S. coelicolor none of these are in the actinorhodin biosynthetic gene cluster, meaning the effect is indirect. The directly regulated CutR targets identified in this study are implicated in extracellular protein folding, including two of the four highly conserved HtrA-family foldases: HtrA3 and HtrB, and a putative VKOR enzyme, which is predicted to recycle DsbA following its catalysis of disulphide bond formation in secreted proteins. Thus, we tentatively propose a role for CutRS in sensing and responding to protein misfolding outside the cell. Since actinorhodin can oxidise cysteine residues and induce disulphide bond formation in proteins, its over production in the ∆cutRS mutant may be a response to protein misfolding on the extracellular face of the membrane.
Collapse
Affiliation(s)
- Thomas C. McLean
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norwich Research Park, NR4 7UH, UK
| | - Ainsley D. M. Beaton
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norwich Research Park, NR4 7UH, UK
| | - Carlo Martins
- Department Biochemistry and Metabolism, Proteomics Facility, John Innes Centre, Norwich, Norwich Research Park, NR4 7UH, UK
| | - Gerhard Saalbach
- Department Biochemistry and Metabolism, Proteomics Facility, John Innes Centre, Norwich, Norwich Research Park, NR4 7UH, UK
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norwich Research Park, NR4 7UH, UK
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norwich Research Park, NR4 7UH, UK
| | - Matthew I. Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich, Norwich Research Park, NR4 7UH, UK
| |
Collapse
|
48
|
Wang X, Zhou N, Wang B. Bacterial synthetic biology: tools for novel drug discovery. Expert Opin Drug Discov 2023; 18:1087-1097. [PMID: 37482696 DOI: 10.1080/17460441.2023.2239704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Bacterial synthetic biology has provided powerful tools to revolutionize the drug discovery process. These tools can be harnessed to generate bacterial novel pharmaceutical compounds with enhanced bioactivity and selectivity or to create genetically modified microorganisms as living drugs. AREAS COVERED This review provides a current overview of the state-of-the-art in bacterial synthetic biology tools for novel drug discovery. The authors discuss the application of these tools including bioinformatic tools, CRISPR tools, engineered bacterial transcriptional regulators, and synthetic biosensors for novel drug discovery. Additionally, the authors present the recent progress on reprogramming bacteriophages as living drugs to fight against antibiotic-resistant pathogens. EXPERT OPINION The field of using bacterial synthetic biology tools for drug discovery is rapidly advancing. However, challenges remain in developing reliable and robust methods to engineer bacteria. Further advancements in synthetic biology hold promise to speed up drug discovery, facilitating the development of novel therapeutics against various diseases.
Collapse
Affiliation(s)
- Xiyan Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Nan Zhou
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Research Center of Biological Computation, Zhejiang Laboratory, Hangzhou, China
| |
Collapse
|
49
|
Buyuklyan JA, Zakalyukina YV, Osterman IA, Biryukov MV. Modern Approaches to the Genome Editing of Antibiotic Biosynthetic Clusters in Actinomycetes. Acta Naturae 2023; 15:4-16. [PMID: 37908767 PMCID: PMC10615194 DOI: 10.32607/actanaturae.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 11/02/2023] Open
Abstract
Representatives of the phylum Actinomycetota are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described. There is a continuous "rediscovery" of known antibiotics, and new molecules become almost invisible against the general background. The established approaches aimed at increasing the production of novel antibiotics include: selection of optimal cultivation conditions by modifying the composition of nutrient media; co-cultivation methods; microfluidics, and the use of various transcription factors to activate silent genes. Unfortunately, these tools are non-universal for various actinomycete strains, stochastic in nature, and therefore do not always lead to success. The use of genetic engineering technologies is much more efficient, because they allow for a directed and controlled change in the production of target metabolites. One example of such technologies is mutagenesis-based genome editing of antibiotic biosynthetic clusters. This targeted approach allows one to alter gene expression, suppressing the production of previously characterized molecules, and thereby promoting the synthesis of other unknown antibiotic variants. In addition, mutagenesis techniques can be successfully applied both to new producer strains and to the genes of known isolates to identify new compounds.
Collapse
Affiliation(s)
- J A Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - Yu V Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - I A Osterman
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025 Russian Federation
| | - M V Biryukov
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| |
Collapse
|
50
|
Avramova MM, Stevenson CEM, Chandra G, Holmes NA, Bush MJ, Findlay KC, Buttner MJ. Global Effects of the Developmental Regulator BldB in Streptomyces venezuelae. J Bacteriol 2023; 205:e0013523. [PMID: 37249447 PMCID: PMC10294661 DOI: 10.1128/jb.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
In Streptomyces, the Bld (Bald) regulators control formation of the reproductive aerial hyphae. The functions of some of these regulators have been well characterized, but BldB has remained enigmatic. In addition to the bldB gene itself, Streptomyces venezuelae has 10 paralogs of bldB that sit next to paralogs of whiJ and abaA. Transcriptome sequencing (RNA-seq) revealed that loss of BldB function causes the dramatic transcriptional upregulation of the abaA paralogs and a novel inhibitor of sporulation, iosA, and that cooverexpression of just two of these genes, iosA and abaA6, was sufficient to recapitulate the bldB mutant phenotype. Further RNA-seq analysis showed that the transcription factor WhiJ9 is required for the activation of iosA seen in the bldB mutant, and biochemical studies showed that WhiJ9 mediates the activation of iosA expression by binding to direct repeats in the iosA-whiJ9 intergenic region. BldB and BldB9 hetero-oligomerize, providing a potential link between BldB and the iosA-whiJ9-bldB9 locus. This work greatly expands our overall understanding of the global effects of the BldB developmental regulator. IMPORTANCE To reproduce and disperse, the filamentous bacterium Streptomyces develops specialized reproductive structures called aerial hyphae. The formation of these structures is controlled by the bld (bald) genes, many of which encode transcription factors whose functions have been characterized. An exception is BldB, a protein whose biochemical function is unknown. In this study, we gain insight into the global effects of BldB function by examining the genome-wide transcriptional effects of deleting bldB. We identify a small set of genes that are dramatically upregulated in the absence of BldB. We show that their overexpression causes the bldB phenotype and characterize a transcription factor that mediates the upregulation of one of these target genes. Our results provide new insight into how BldB influences Streptomyces development.
Collapse
Affiliation(s)
- Marieta M. Avramova
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Clare E. M. Stevenson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Neil A. Holmes
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Matthew J. Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Kim C. Findlay
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mark J. Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|