1
|
Robert G, Wagner JR. Scavenging of Alkylperoxyl Radicals by Addition to Ascorbate: An Alternative Mechanism to Electron Transfer. Antioxidants (Basel) 2024; 13:1194. [PMID: 39456448 PMCID: PMC11504153 DOI: 10.3390/antiox13101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO•), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally attributed to its ability to undergo single-electron transfers with reactive species. According to this mechanism, the reaction between Asc and ROO• results in the formation of dehydroascorbate (DHA) and the corresponding hydroperoxides (ROOH). When studying the reactivity of DNA 5-(2'-deoxyuridinyl)methylperoxyl radicals, we discovered a novel pathway of ROO• scavenging by Asc. The purpose of this study is to elucidate the underlying mechanism of this reaction with emphasis on the characterization of intermediate and final decomposition products. We show that the trapping of ROO• by Asc leads to the formation of an alcohol (ROH) together with an unstable cyclic oxalyl-l-threonate intermediate (cOxa-Thr), which readily undergoes hydrolysis into a series of open-chain oxalyl-l-threonic acid regioisomers. The structure of products was determined by detailed MS and NMR analyses. The above transformation can be explained by initial peroxyl radical addition (PRA) onto the C2=C3 enediol portion of Asc. Following oxidation of the resulting adduct radical, the product subsequently undergoes Baeyer-Villiger rearrangement, which releases ROH and generates the ring expansion product cOxa-Thr. The present investigation provides robust clarifications of the peroxide-mediated oxidation chemistry of Asc and DHA that has largely been obscured in the past by interference with autooxidation reactions and difficulties in analyzing and characterizing oxidation products. Scavenging of ROO• by PRA onto Asc may have beneficial consequences since it directly converts ROO• into ROH, which prevents the formation of potentially deleterious ROOH, although it induces the breakdown of Asc into fragments of oxalyl-l-threonic acid.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - J. Richard Wagner
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
2
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Dasgupta S, Gao S, Yang H, Greenberg MM, Basu AK. 8-OxodGuo and Fapy•dG Mutagenicity in Escherichia coli Increases Significantly when They Are Part of a Tandem Lesion with 5-Formyl-2'-deoxyuridine. Chem Res Toxicol 2024; 37:1445-1452. [PMID: 39041427 PMCID: PMC11333159 DOI: 10.1021/acs.chemrestox.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Tandem lesions, which are defined by two or more contiguously damaged nucleotides, are a hallmark of ionizing radiation. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5-fdU) flanked by a 5'-8-OxodGuo or Fapy•dG were discovered, and they are more mutagenic in human cells than the isolated lesions. In the current study, we examined replication of these tandem lesions in Escherichia coli. Bypass efficiency of both tandem lesions was reduced by 30-40% compared to the isolated lesions. Mutation frequencies (MFs) of isolated 8-OxodGuo and Fapy•dG were low, and no mutants were isolated from replication of a 5-fdU construct. The types of mutations from 8-OxodGuo were targeted G → T transversion, whereas Fapy•dG predominantly gave G → T and G deletion. 5'-8-OxodGuo-5-fdU also gave exclusively G → T mutation, which was 3-fold and 11-fold greater, without and with SOS induction, respectively, compared to that of an isolated 8-OxodGuo. In mutY/mutM cells, the MF of 8-OxodGuo and 5'-8-OxodGuo-5-fdU increased 13-fold and 7-fold, respectively. The MF of 5'-8-OxodGuo-5-fdU increased 2-fold and 3-fold in Pol II- and Pol IV-deficient cells, respectively, suggesting that these polymerases carry out largely error-free bypass. The MF of 5'- Fapy•dG-5-fdU was similar without (13 ± 1%) and with (16 ± 2%) SOS induction. Unlike the complex mutation spectrum reported earlier in human cells for 5'- Fapy•dG-5-fdU, with G → T as the major type of errors, in E. coli, the mutations were predominantly from deletion of 5-fdU. We postulate that removal of adenine-incorporated opposite 8-OxodGuo by Fpg and MutY repair proteins is partially impaired in the tandem 5'-8-OxodGuo-5-fdU, resulting in an increase in the G → T mutations, whereas a slippage mechanism may be operating in the 5'- Fapy•dG-5-fdU mutagenesis. This study showed that not only are these tandem lesions more mutagenic than the isolated lesions but they may also exhibit different types of mutations in different organisms.
Collapse
Affiliation(s)
- Srijana Dasgupta
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
4
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Lukina MV, Zhdanova PV, Koval VV. Structural and Dynamic Features of the Recognition of 8-oxoguanosine Paired with an 8-oxoG-clamp by Human 8-oxoguanine-DNA Glycosylase. Curr Issues Mol Biol 2024; 46:4119-4132. [PMID: 38785521 PMCID: PMC11120029 DOI: 10.3390/cimb46050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in human cells. OGG1 is a bifunctional DNA glycosylase with N-glycosylase and AP lyase activities. Aspects of the detailed mechanism underlying the recognition of 8-oxoguanine among numerous intact bases and its subsequent interaction with the enzyme's active site amino acid residues are still debated. The main objective of our work was to determine the effect (structural and thermodynamic) of introducing an oxoG-clamp in model DNA substrates on the process of 8-oxoG excision by OGG1. Towards that end, we used DNA duplexes modeling OGG1-specific lesions: 8-oxoguanine or an apurinic/apyrimidinic site with either cytidine or the oxoG-clamp in the complementary strand opposite to the lesion. It was revealed that there was neither hydrolysis of the N-glycosidic bond at oxoG nor cleavage of the sugar-phosphate backbone during the reaction between OGG1 and oxoG-clamp-containing duplexes. Possible structural reasons for the absence of OGG1 enzymatic activity were studied via the stopped-flow kinetic approach and molecular dynamics simulations. The base opposite the damage was found to have a critical effect on the formation of the enzyme-substrate complex and the initiation of DNA cleavage. The oxoG-clamp residue prevented the eversion of the oxoG base into the OGG1 active site pocket and impeded the correct convergence of the apurinic/apyrimidinic site of DNA and the attacking nucleophilic group of the enzyme. An obtained three-dimensional model of the OGG1 complex with DNA containing the oxoG-clamp, together with kinetic data, allowed us to clarify the role of the contact of amino acid residues with DNA in the formation of (and rearrangements in) the enzyme-substrate complex.
Collapse
Affiliation(s)
- Maria V. Lukina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (ICBFM SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Tracing the serendipitous genesis of radiation resistance. Mol Microbiol 2024; 121:142-151. [PMID: 38082498 DOI: 10.1111/mmi.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Free-living organisms frequently encounter unfavorable abiotic environmental factors. Those who adapt and cope with sudden changes in the external environment survive. Desiccation is one of the most common and frequently encountered stresses in nature. On the contrary, ionizing radiations are limited to high local concentrations of naturally occurring radioactive materials and related anthropogenic activities. Yet, resistance to high doses of ionizing radiation is evident across the tree of life. The evolution of desiccation resistance has been linked to the evolution of ionizing radiation resistance, although, evidence to support the idea that the evolution of desiccation tolerance is a necessary precursor to ionizing radiation resistance is lacking. Moreover, the presence of radioresistance in hyperthermophiles suggests multiple paths lead to radiation resistance. In this minireview, we focus on the molecular aspects of damage dynamics and damage response pathways comprising protective and restorative functions with a definitive survival advantage, to explore the serendipitous genesis of ionizing radiation resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
7
|
Tew DJ, Hebert JM, Schmier BJ. Discovery and properties of a monoclonal antibody targeting 8-oxoA, an oxidized adenine lesion in DNA and RNA. Redox Biol 2023; 62:102658. [PMID: 36989571 PMCID: PMC10074937 DOI: 10.1016/j.redox.2023.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
8-oxoA, a major oxidation product of adenosine, is a mispairing, mutagenic lesion that arises in DNA and RNA when •OH radicals or one-electron oxidants attack the C8 adenine atom or polymerases misincorporate 8-oxo(d)ATP. The danger of 8-oxoA is underscored by the existence of dedicated cellular repair machinery that explicitly excise it from DNA, the attenuation of translation induced by 8-oxoA-mRNA or damaged ribosomes, and its potency as a TLR7 agonist. Here we present the discovery, purification, and biochemical characterization of a new mouse IgGk1 monoclonal antibody (6E4) that specifically targets 8-oxoA. Utilizing an AchE-based competitive ELISA assay, we demonstrate the selectivity of 6E4 for 8-oxoA over a plethora of canonical and chemically modified nucleosides including 8-oxoG, A, m6A, 2-oxoA, and 5-hoU. We further show the ability of 6E4 to exclusively recognize 8-oxoA in nucleoside triphosphates (8-oxoATP) and DNA/RNA oligonucleotides containing a single 8-oxoA. 6E4 also binds 8-oxoA in duplex DNA/RNA antigens where the lesion is either paired correctly or base mismatched. Our findings define the 8-oxoAde nucleobase as the critical epitope and indicate mAb 6E4 is ideally suited for a broad range of immunological applications in nucleic acid detection and quality control.
Collapse
|
8
|
Robert G, Wagner JR, Cadet J. Oxidatively generated tandem DNA modifications by pyrimidinyl and 2-deoxyribosyl peroxyl radicals. Free Radic Biol Med 2023; 196:22-36. [PMID: 36603668 DOI: 10.1016/j.freeradbiomed.2022.12.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Molecular oxygen sensitizes DNA to damage induced by ionizing radiation, Fenton-like reactions, and other free radical-mediated reactions. It rapidly converts carbon-centered radicals within DNA into peroxyl radicals, giving rise to a plethora of oxidized products consisting of nucleobase and 2-deoxyribose modifications, strand breaks and abasic sites. The mechanism of formation of single oxidation products has been extensively studied and reviewed. However, much evidence shows that reactive peroxyl radicals can propagate damage to vicinal components in DNA strands. These intramolecular reactions lead to the dual alteration of two adjacent nucleotides, designated as tandem or double lesions. Herein, current knowledge about the formation and biological implications of oxidatively generated DNA tandem lesions is reviewed. Thus far, most reported tandem lesions have been shown to arise from peroxyl radicals initially generated at pyrimidine bases, notably thymine, followed by reaction with 5'-flanking bases, especially guanine, although contiguous thymine lesions have also been characterized. Proper biomolecular processing is impaired by several tandem lesions making them refractory to base excision repair and potentially more mutagenic.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Jean Cadet
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
9
|
Baptista MS, Cadet J, Greer A, Thomas AH. Practical Aspects in the Study of Biological Photosensitization Including Reaction Mechanisms and Product Analyses: A Do's and Don'ts Guide †. Photochem Photobiol 2022; 99:313-334. [PMID: 36575651 DOI: 10.1111/php.13774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation]. In here, these processes are discussed by considering a wide variety of approaches including time-resolved and steady-state techniques, together with solvent, quencher, and scavenger effects. The main aim of this survey is to provide a description of general techniques and approaches that can be used to investigate photosensitization reactions of biomolecules together with basic recommendations on good practices. Illustration of the suitability of these approaches is provided by the measurement of key biomarkers of singlet oxygen and one-electron oxidation reactions in both isolated and cellular DNA. Our work is an educational review that is mostly addressed to students and beginners.
Collapse
Affiliation(s)
- Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
10
|
Ultrasensitive Simultaneous Detection of Multiple Rare Modified Nucleosides as Promising Biomarkers in Low-Put Breast Cancer DNA Samples for Clinical Multi-Dimensional Diagnosis. Molecules 2022; 27:molecules27207041. [DOI: 10.3390/molecules27207041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Early cancer diagnosis is essential for successful treatment and prognosis, and modified nucleosides have attracted widespread attention as a promising group of cancer biomarkers. However, analyzing these modified nucleosides with an extremely low abundance is a great challenge, especially analyzing multiple modified nucleosides with a different abundance simultaneously. In this work, an ultrasensitive quantification method based on chemical labeling, coupled with LC-MS/MS analysis, was established for the simultaneous quantification of 5hmdC, 5fdC, 5hmdU and 5fdU. Additionally, the contents of 5mdC and canonical nucleosides could be obtained at the same time. Upon derivatization, the detection sensitivities of 5hmdC, 5fdC, 5hmdU and 5fdU were dramatically enhanced by several hundred times. The established method was further applied to the simultaneous detection of nine nucleosides with different abundances in about 2 μg genomic DNA of breast tissues from 20 breast cancer patients. The DNA consumption was less than other overall reported quantification methods, thereby providing an opportunity to monitor rare, modified nucleosides in precious samples and biology processes that could not be investigated before. The contents of 5hmdC, 5hmdU and 5fdU in tumor tissues and normal tissues adjacent to the tumor were significantly changed, indicating that these three modified nucleosides may play certain roles in the formation and development of tumors and be potential cancer biomarkers. While the detection rates of 5hmdC, 5hmdU and 5fdU alone as a biomarker for breast cancer samples were 95%, 75% and 85%, respectively, by detecting these three cancer biomarkers simultaneously, two of the three were 100% consistent with the overall trend. Therefore, simultaneous detection of multiple cancer biomarkers in clinical samples greatly improved the accuracy of cancer diagnosis, indicating that our method has great application potential in clinical multidimensional diagnosis.
Collapse
|
11
|
Cadet J, Angelov D, Wagner JR. Hydroxyl radical is predominantly involved in oxidatively generated base damage to cellular DNA exposed to ionizing radiation. Int J Radiat Biol 2022; 98:1-7. [PMID: 35475423 DOI: 10.1080/09553002.2022.2067363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LBMC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, Turkey
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
12
|
Yu B, Zhang Y, Wang X, Gao H, Sun J, Gao X. Identification of DNA modification sites based on elastic net and bidirectional gated recurrent unit with convolutional neural network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
El-Yazbi AF, Khalil HA, Belal TS, El-Kimary EI. Inexpensive bioluminescent genosensor for sensitive determination of DNA damage induced by some commonly used sunscreens. Anal Biochem 2022; 651:114700. [DOI: 10.1016/j.ab.2022.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022]
|
14
|
Tang F, Yuan J, Yuan BF, Wang Y. DNA-Protein Cross-Linking Sequencing for Genome-Wide Mapping of Thymidine Glycol. J Am Chem Soc 2022; 144:454-462. [PMID: 34978433 PMCID: PMC8755629 DOI: 10.1021/jacs.1c10490] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thymidine glycol (Tg) is the most prevalent form of oxidatively induced pyrimidine lesions in DNA. Tg can arise from direct oxidation of thymidine in DNA. In addition, 5-methyl-2'-deoxycytidine (5-mdC) can be oxidized to 5-mdC glycol, and its subsequent deamination also yields Tg. However, Tg's distribution in the human genome remains unknown. Here, we presented a DNA-protein cross-linking sequencing (DPC-Seq) method for genome-wide mapping of Tg in human cells. Our approach capitalizes on the specificity of a bifunctional DNA glycosylase, i.e., NTHL1, for the covalent labeling, as well as DPC pulldown, SDS-PAGE fractionation, and membrane transfer for highly efficient and selective enrichment of Tg-bearing DNA. By employing DPC-Seq, we detected thousands of Tg sites in the human genome, where dual ablation of NTHL1 and NEIL1, the major DNA glycosylases responsible for Tg repair, led to pronounced increases in the number of Tg peaks. In addition, Tg is depleted in genomic regions associated with active transcription but enriched at nucleosome-binding sites, especially at heterochromatin sites marked with H3K9me2. Collectively, we developed a DPC-Seq method for highly efficient enrichment of Tg-containing DNA and for genome-wide mapping of Tg in human cells. Our work offers a robust tool for future functional studies of Tg in DNA, and we envision that the method can also be adapted for mapping other modified nucleosides in genomic DNA in the future.
Collapse
Affiliation(s)
- Feng Tang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jun Yuan
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
15
|
Fleming AM, Burrows CJ. Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences. Int J Radiat Biol 2022; 98:452-460. [PMID: 34747670 PMCID: PMC8881305 DOI: 10.1080/09553002.2021.2003464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE One outcome of DNA damage from hydroxyl radical generated by ionizing radiation (IR) or by the Fenton reaction is oxidation of the nucleobases, especially guanine (G). While 8-oxo-7,8-dihydroguanine (OG) is a commonly studied oxidized lesion, several others are formed in high abundance, including 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), a prevalent product in in vitro chemistry that is challenging to study from cellular sources. In this short review, we have a goal of explaining new insights into hydroxyl radical-induced oxidation chemistry of G in DNA and comparing it to endogenous DNA damage, as well as commenting on the biological outcomes of DNA base damage. CONCLUSIONS Pathways of oxidation of G are discussed and a comparison is made between IR (hydroxyl radical chemistry) and endogenous oxidative stress that largely forms carbonate radical anion as a reactive intermediate. These pathways overlap with the formation of OG and 2Ih, but other guanine-derived lesions are more pathway specific. The biological consequences of guanine oxidation include both mutagenesis and epigenetics; a new mechanism of gene regulation via the base excision repair pathway is described for OG, whereas the impact of IR in forming guanine modifications may be to confound this process in addition to introduction of mutagenic sites.
Collapse
|
16
|
Yamauchi K, Matsuoka Y, Takahashi M, Izumi Y, Naka H, Taniguchi Y, Kawai K, Bamba T, Yamada KI. Detection and structural analysis of pyrimidine-derived radicals generated on DNA using a profluorescent nitroxide probe. Chem Commun (Camb) 2021; 58:56-59. [PMID: 34897335 DOI: 10.1039/d1cc04998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidative damage of DNA is associated with aging and the development of various diseases. Although nucleoside-derived radicals play an important role in DNA oxidation, their analysis methods are limited. Herein, we propose a fluorometric detection and structural analysis of radicals on the surface of oxidatively damaged DNA using a profluorescent nitroxide probe combined with liquid chromatography-fluorometry and high-resolution tandem mass spectrometry.
Collapse
Affiliation(s)
- Kosho Yamauchi
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yuta Matsuoka
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Masatomo Takahashi
- Metabolomics Laboratory, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Metabolomics Laboratory, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideto Naka
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yosuke Taniguchi
- Frontier in Biofunction of Nucleic Acid and Organic Chemistry, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takeshi Bamba
- Metabolomics Laboratory, Research Center for Transomics Medicine, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
17
|
Ravanat JL, Dumont E. Reactivity of Singlet Oxygen with DNA, an Update. Photochem Photobiol 2021; 98:564-571. [PMID: 34931317 DOI: 10.1111/php.13581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022]
Abstract
The reactivity of singlet oxygen with DNA constituents and in particular with the guanine base has been studied during more than four decades but the exact mechanisms by which such a reactive oxygen species reacts with DNA is still a matter of debate. In this review article, a summary of the data that were obtained from several laboratories and using complementary experimental and theoretical approaches are presented. Reaction mechanisms of 1 O2 with guanine and its oxidation product 8-oxo7,8-dihydroguanine are presented both at the nucleoside level and when the base is inserted into DNA since significant differences have been observed. Efforts have been made to propose tentative mechanisms to explain the conflicting results that were sometimes reported and hypotheses have been put forward to tentatively explain still contradictory observations.
Collapse
Affiliation(s)
- Jean-Luc Ravanat
- CEA, CNRS, CIBEST, SyMMES, Univ. Grenoble Alpes, Grenoble, France
| | - Elise Dumont
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, Univ Lyon, Lyon, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
18
|
Tang J, Zou G, Chen C, Ren J, Wang F, Chen Z. Highly Selective Electrochemical Detection of 5-Formyluracil Relying on (2-Benzimidazolyl) Acetonitrile Labeling. Anal Chem 2021; 93:16439-16446. [PMID: 34813282 DOI: 10.1021/acs.analchem.1c03389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of formylpyrimidines in DNA is crucial for a better understanding of epigenetics. Although many techniques have been explored to detect their content, more accurate methods of formylpyrimidine determination are still required due to the relatively lower sensitivity or lack of selectivity in current methods. Herein, an electrochemical method based on the covalent bonding of the azido derivative of (2-benzimidazolyl) acetonitrile (azi-BIAN) and the aldehyde group of 5-formyluracil (5fU) was proposed for the selective detection of 5fU in the presence of 5-formylcytosine (5fC) and apyrimidinic (AP) sites. Target DNA containing 5fU was first treated with azi-BIAN and then incubated with DBCO-PEG4-Biotin to introduce a biotin group by copper-free click chemistry. Next, the sulfhydryl group was attached to the 5' end of above DNA through T4 polynucleotide kinase-catalyzed reaction. Subsequently, the labeled DNA was assembled onto the AuNPs-modified glassy carbon electrode (AuNPs/GCE) through Au-S bonds, and the streptavidin-horseradish peroxidase conjugate (SA-HRP) was further immobilized onto the surface of the above electrode by specific recognition between biotin and streptavidin. Finally, HRP catalyzed hydroquinone oxidation to benzoquinone to enhance the current signal, which was related to the amount of 5fU in nucleic acids. This method demonstrated a good linear relationship with 5fU concentrations ranging from 0.1 to 10 nM. Moreover, the level of 5fU in γ-irradiated nucleic acids was also successfully detected, indicating that the combination of molecule-depended chemical recognition and electrochemical sensing is a promising method for the selective and sensitive detection of 5fU.
Collapse
Affiliation(s)
- Jing Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080, China
| | - Guangrong Zou
- Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, School of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jing Ren
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fang Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology, Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100080, China
| |
Collapse
|
19
|
Novel inexpensive ‘turn-on’ fluorescent biosensor for the sensitive detection of DNA damage induced by epirubicin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Runtsch LS, Stadlmeier M, Schön A, Müller M, Carell T. Comparative Nucleosomal Reactivity of 5-Formyl-Uridine and 5-Formyl-Cytidine. Chemistry 2021; 27:12747-12752. [PMID: 34152627 PMCID: PMC8518870 DOI: 10.1002/chem.202102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/21/2022]
Abstract
5‐Formyl‐deoxyuridine (fdU) and 5‐formyl‐deoxycytidine (fdC) are formyl‐containing nucleosides that are created by oxidative stress in differentiated cells. While fdU is almost exclusively an oxidative stress lesion formed from deoxythymidine (T), the situation for fdC is more complex. Next to formation as an oxidative lesion, it is particularly abundant in stem cells, where it is more frequently formed in an epigenetically important oxidation reaction performed by α‐ketoglutarate dependent TET enzymes from 5‐methyl‐deoxycytidine (mdC). Recently, it was shown that genomic fdC and fdU can react with the ϵ‐aminogroups of nucleosomal lysines to give Schiff base adducts that covalently link nucleosomes to genomic DNA. Here, we show that fdU features a significantly higher reactivity towards lysine side chains compared with fdC. This result shows that depending on the amounts of fdC and fdU, oxidative stress may have a bigger impact on nucleosome binding than epigenetics.
Collapse
Affiliation(s)
- Leander Simon Runtsch
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Michael Stadlmeier
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Alexander Schön
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Markus Müller
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| |
Collapse
|
21
|
Tanaka M, Chock PB. Oxidative Modifications of RNA and Its Potential Roles in Biosystem. Front Mol Biosci 2021; 8:685331. [PMID: 34055897 PMCID: PMC8149912 DOI: 10.3389/fmolb.2021.685331] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated level of oxidized RNA was detected in vulnerable neurons in Alzheimer patients. Subsequently, several diseases and pathological conditions were reported to be associated with RNA oxidation. In addition to several oxidized derivatives, cross-linking and unique strand breaks are generated by RNA oxidation. With a premise that dysfunctional RNA mediated by oxidation is the pathogenetic molecular mechanism, intensive investigations have revealed the mechanism for translation errors, including premature termination, which gives rise to aberrant polypeptides. To this end, we and others revealed that mRNA oxidation could compromise its translational activity and fidelity. Under certain conditions, oxidized RNA can also induce several signaling pathways, to mediate inflammatory response and induce apoptosis. In this review, we focus on the oxidative modification of RNA and its resulting effect on protein synthesis as well as cell signaling. In addition, we will also discuss the potential roles of enzymatic oxidative modification of RNA in mediating cellular effects.
Collapse
Affiliation(s)
- Mikiei Tanaka
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - P Boon Chock
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
23
|
Chatgilialoglu C, Ferreri C, Krokidis MG, Masi A, Terzidis MA. On the relevance of hydroxyl radical to purine DNA damage. Free Radic Res 2021; 55:384-404. [PMID: 33494618 DOI: 10.1080/10715762.2021.1876855] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroxyl radical (HO•) is the most reactive toward DNA among the reactive oxygen species (ROS) generated in aerobic organisms by cellular metabolisms. HO• is generated also by exogenous sources such as ionizing radiations. In this review we focus on the purine DNA damage by HO• radicals. In particular, emphasis is given on mechanistic aspects for the various lesion formation and their interconnections. Although the majority of the purine DNA lesions like 8-oxo-purine (8-oxo-Pu) are generated by various ROS (including HO•), the formation of 5',8-cyclopurine (cPu) lesions in vitro and in vivo relies exclusively on the HO• attack. Methodologies generally utilized for the purine lesions quantification in biological samples are reported and critically discussed. Recent results on cPu and 8-oxo-Pu lesions quantification in various types of biological specimens associated with the cellular repair efficiency as well as with distinct pathologies are presented, providing some insights on their biological significance.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Center for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Athens, Greece
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.,Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Monterotondo, Italy
| | - Michael A Terzidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| |
Collapse
|
24
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
25
|
Khanal J, Lim DY, Tayara H, Chong KT. i6mA-stack: A stacking ensemble-based computational prediction of DNA N6-methyladenine (6mA) sites in the Rosaceae genome. Genomics 2020; 113:582-592. [PMID: 33010390 DOI: 10.1016/j.ygeno.2020.09.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023]
Abstract
DNA N6-methyladenine (6 mA) is an epigenetic modification that plays a vital role in a variety of cellular processes in both eukaryotes and prokaryotes. Accurate information of 6 mA sites in the Rosaceae genome may assist in understanding genomic 6 mA distributions and various biological functions such as epigenetic inheritance. Various studies have shown the possibility of identifying 6 mA sites through experiments, but the procedures are time-consuming and costly. To overcome the drawbacks of experimental methods, we propose an accurate computational paradigm based on a machine learning (ML) technique to identify 6 mA sites in Rosa chinensis (R.chinensis) and Fragaria vesca (F.vesca). To improve the performance of the proposed model and to avoid overfitting, a recursive feature elimination with cross-validation (RFECV) strategy is used to extract the optimal number of features (ONF) subset from five different DNA sequence encoding schemes, i.e., Binary Encoding (BE), Ring-Function-Hydrogen-Chemical Properties (RFHC), Electron-Ion-Interaction Pseudo Potentials of Nucleotides (EIIP), Dinucleotide Physicochemical Properties (DPCP), and Trinucleotide Physicochemical Properties (TPCP). Subsequently, we use the ONF subset to train a double layers of ML-based stacking model to create a bioinformatics tool named 'i6mA-stack'. This tool outperforms its peer tool in general and is currently available at http://nsclbio.jbnu.ac.kr/tools/i6mA-stack/.
Collapse
Affiliation(s)
- Jhabindra Khanal
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Dae Young Lim
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea; Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea; Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
26
|
Sensitive spectrofluorimetric and mass spectroscopic methods for the determination of nucleic acid damage induced by photosensitized anti-inflammatory drugs: Comparative study. J Pharm Biomed Anal 2020; 187:113326. [DOI: 10.1016/j.jpba.2020.113326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/28/2022]
|
27
|
Bui B, McConnell K, Obeidat M, Saenz D, Papanikolaou N, Shim EY, Kirby N. DNA dosimeter measurements of beam profile using a novel simultaneous processing technique. Appl Radiat Isot 2020; 165:109316. [PMID: 32745918 DOI: 10.1016/j.apradiso.2020.109316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/03/2020] [Accepted: 06/27/2020] [Indexed: 11/25/2022]
Abstract
A DNA dosimeter (DNAd) was previously developed that uses double-strand breaks (DSB) to measure dose. This dosimeter has been tested to measure dose in scenarios where transient-charged particle equilibrium (TCPE) has been established. The probability of double strand break (PDSBo), which is the ratio of broken double-stranded DNA (dsDNA) to the initial unbroken dsDNA in the dosimeter, was used to quantify DSBs and related to dose. The goal of this work is to produce a new technique to process and analyze the DNAd and quantify DNA-DSBs. This technique included simultaneously processing multiple DNAds and also establishing a new form to the probability of double strand break (PDSBn), which was then used to test the DNAd in a non-TCPE condition by taking beam penumbra measurements. The technique utilized a 384-well plate, and the measurements were made at the edge of a 10 × 10 cm field and compared to film measurements. During these penumbra measurements, while observing the positional differences in the higher gradient region at 4.1 and 4.55 cm from the center of the radiation field, the distance to agreement of PDSBo to film were 0.38 cm and 0.26 cm while the distance to agreement of PDSBn to film were 0.11 cm and 0.06 cm, respectively. Finally, the developed new separation technique reduced the time needed for the analysis of 25 samples from 200 min to 30 min.
Collapse
Affiliation(s)
- B Bui
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - K McConnell
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - M Obeidat
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - D Saenz
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - N Papanikolaou
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - E Y Shim
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - N Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
28
|
Taverna Porro ML, Saint-Pierre C, Gasparutto D, Ravanat JL. Solid-phase synthesis of branched oligonucleotides containing a biologically relevant dCyd341 interstrand crosslink DNA lesion. Org Biomol Chem 2020; 18:1892-1899. [PMID: 31960874 DOI: 10.1039/c9ob01021a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Branched oligonucleotides containing a biologically relevant DNA lesion, dCyd341, which involves an interstrand crosslink between a cytosine base on one strand and a ribose moiety on the opposite strand, were prepared in a single automated solid-phase synthesis. For this, we first prepared the phosphoramidite analogue of dCyd341 bearing an orthogonal levulinyl protecting group. Then, following the synthesis of the first DNA strand containing dCyd341, the levulinic group was removed and the synthesis was then continued from the free base hydroxyl group at the branching point, using traditional phosphoramidites. The synthesized oligonucleotides were fully characterized by MALDI-TOF/MS and were enzymatically digested, and the presence of the lesion was confirmed by HPLC-MS/MS and the sequence was finally controlled upon exonuclease digestion followed by MALDI-TOF/MS analysis. The developed strategy was successfully employed for the preparation of several short linear and branched oligonucleotides containing the aforementioned lesion.
Collapse
Affiliation(s)
| | | | - Didier Gasparutto
- Univ. Grenoble Alpes, CEA, CNRS IRIG/SyMMES, F-38054 Grenoble Cedex 9, France.
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS IRIG/SyMMES, F-38054 Grenoble Cedex 9, France.
| |
Collapse
|
29
|
Jun YW, Wilson DL, Kietrys AM, Lotsof ER, Conlon SG, David SS, Kool ET. An Excimer Clamp for Measuring Damaged-Base Excision by the DNA Repair Enzyme NTH1. Angew Chem Int Ed Engl 2020; 59:7450-7455. [PMID: 32109332 PMCID: PMC7180134 DOI: 10.1002/anie.202001516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/26/2020] [Indexed: 11/10/2022]
Abstract
Direct measurement of DNA repair enzyme activities is important both for the basic study of cellular repair pathways as well as for potential new translational applications in their associated diseases. NTH1, a major glycosylase targeting oxidized pyrimidines, prevents mutations arising from this damage, and the regulation of NTH1 activity is important in resisting oxidative stress and in suppressing tumor formation. Herein, we describe a novel molecular strategy for the direct detection of damaged DNA base excision activity by a ratiometric fluorescence change. This strategy utilizes glycosylase-induced excimer formation of pyrenes, and modified DNA probes, incorporating two pyrene deoxynucleotides and a damaged base, enable the direct, real-time detection of NTH1 activity in vitro and in cellular lysates. The probe design was also applied in screening for potential NTH1 inhibitors, leading to the identification of a new small-molecule inhibitor with sub-micromolar potency.
Collapse
Affiliation(s)
- Yong Woong Jun
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - David L Wilson
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Anna M Kietrys
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Elizabeth R Lotsof
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Savannah G Conlon
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Sheila S David
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
30
|
Jun YW, Wilson DL, Kietrys AM, Lotsof ER, Conlon SG, David SS, Kool ET. An Excimer Clamp for Measuring Damaged‐Base Excision by the DNA Repair Enzyme NTH1. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong Woong Jun
- Department of ChemistryStanford University Stanford CA 94305 USA
| | - David L. Wilson
- Department of ChemistryStanford University Stanford CA 94305 USA
| | - Anna M. Kietrys
- Department of ChemistryStanford University Stanford CA 94305 USA
| | | | - Savannah G. Conlon
- Department of ChemistryUniversity of California, Davis Davis CA 95616 USA
| | - Sheila S. David
- Department of ChemistryUniversity of California, Davis Davis CA 95616 USA
| | - Eric T. Kool
- Department of ChemistryStanford University Stanford CA 94305 USA
| |
Collapse
|
31
|
Xie SQ, Xing JF, Zhang XM, Liu ZY, Luan MW, Zhu J, Ling P, Xiao CL, Song XQ, Zheng J, Chen Y. N 6-Methyladenine DNA Modification in the Woodland Strawberry ( Fragaria vesca) Genome Reveals a Positive Relationship With Gene Transcription. Front Genet 2020; 10:1288. [PMID: 31998359 PMCID: PMC6967393 DOI: 10.3389/fgene.2019.01288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 11/22/2019] [Indexed: 01/24/2023] Open
Abstract
N 6-methyladenine (6mA) DNA modification has been detected in several eukaryotic organisms, where it plays important roles in gene regulation and epigenetic memory maintenance. However, the genome-wide distribution patterns and potential functions of 6mA DNA modification in woodland strawberry (Fragaria vesca) remain largely unknown. Here, we examined the 6mA landscape in the F. vesca genome by adopting single-molecule real-time sequencing technology and found that 6mA modification sites were broadly distributed across the woodland strawberry genome. The pattern of 6mA distribution in the long non-coding RNA was significantly different from that in protein-coding genes. The 6mA modification influenced the gene transcription and was positively associated with gene expression, which was validated by computational and experimental analyses. Our study provides new insights into the DNA methylation in F. vesca.
Collapse
Affiliation(s)
- Shang-Qian Xie
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, China
| | - Jian-Feng Xing
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Ming Zhang
- Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen, China
| | - Zhao-Yu Liu
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, China
| | - Mei-Wei Luan
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, China
| | - Jie Zhu
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, China
| | - Peng Ling
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xi-Qiang Song
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Natural Rubber Cooperative Innovation Centre of Hainan Province & Ministry of Education of China, Hainan University, Haikou, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Academy of Agricultural Sciences, Linfen, China
| | - Ying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Lineros-Rosa M, Francés-Monerris A, Monari A, Miranda MA, Lhiaubet-Vallet V. Experimental and theoretical studies on thymine photodimerization mediated by oxidatively generated DNA lesions and epigenetic intermediates. Phys Chem Chem Phys 2020; 22:25661-25668. [DOI: 10.1039/d0cp04557h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Combined spectroscopic and computational studies reveal that, in spite of their structural similarities, 5-formyluracil and 5-formylcytosine photosensitize cyclobutane thymine dimers through two different types of mechanisms.
Collapse
Affiliation(s)
- Mauricio Lineros-Rosa
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | | | - Antonio Monari
- Université de Lorraine and CNRS
- LPCT UMR 7019
- F-54000 Nancy
- France
| | - Miguel Angel Miranda
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnologia Química UPV-CSIC
- Universitat Politècnica de València
- 46022 Valencia
- Spain
| |
Collapse
|
33
|
Robert G, Wagner JR. Tandem Lesions Arising from 5-(Uracilyl)methyl Peroxyl Radical Addition to Guanine: Product Analysis and Mechanistic Studies. Chem Res Toxicol 2019; 33:565-575. [PMID: 31820932 DOI: 10.1021/acs.chemrestox.9b00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of hydroxyl radical (HO•) with thymine in DNA generates 5-(uracilyl)-methyl radicals (T•) and the corresponding methylperoxyl radical (TOO•) in the presence of O2, which in turn propagates damage by reacting with a vicinal nucleobase. This leads to so-called double or tandem lesions. Because methyl oxidation products of thymine are major products, we investigated the reactivity of TOO• using a photolabile precursor: 5-(phenylthiomethyl)uracil (TSPh). The precursor was prepared and incorporated into a DNA trinucleotide: 5'-d(GpTSPhpA)-3' (G-TSPh-A). Upon photolysis, the resulting products were characterized by LC-MS/MS. Thereby, we identified four tandem lesions involving GpT, which include either 2,6-diamino-4-hydroxy-5-formamidopyrimidine (fapyG) or 8-oxo-7,8-dihydroguanine (oxoG) in tandem with either 5-formyluracil (fU) or 5-hydroxymethyluracil (hmU). The formation of these tandem lesions is explained by initial addition of TOO• to the C8 of guanine moiety, giving an N7-guanine cross-linked radical. The latter radical undergoes either reduction to an 7,8-saturated endoperoxide or oxidation to an 7,8-unsaturated endoperoxide, which transform into fapyG-fU-A and oxoG-fU-A, respectively. This is supported by the effect of a reducing (dithiothreitol) and oxidizing agent (Fe3+) on product formation. This study expands the repertoire of tandem lesions that can occur at GpT sequences and underlines the importance of redox environment.
Collapse
Affiliation(s)
- Gabriel Robert
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Québec J1H 5N4 , Canada
| | - J Richard Wagner
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Québec J1H 5N4 , Canada.,Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Québec J1H 5N4 , Canada
| |
Collapse
|
34
|
Murray V, Hardie ME, Gautam SD. Comparison of Different Methods to Determine the DNA Sequence Preference of Ionising Radiation-Induced DNA Damage. Genes (Basel) 2019; 11:genes11010008. [PMID: 31861886 PMCID: PMC7016695 DOI: 10.3390/genes11010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
Ionising radiation (IR) is known to induce a wide variety of lesions in DNA. In this review, we compared three different techniques that examined the DNA sequence preference of IR-induced DNA damage at nucleotide resolution. These three techniques were: the linear amplification/polymerase stop assay, the end-labelling procedure, and Illumina next-generation genome-wide sequencing. The DNA sequence preference of IR-induced DNA damage was compared in purified DNA sequences including human genomic DNA. It was found that the DNA sequence preference of IR-induced DNA damage identified by the end-labelling procedure (that mainly detected single-strand breaks) and Illumina next-generation genome-wide sequencing (that mainly detected double-strand breaks) was at C nucleotides, while the linear amplification/polymerase stop assay (that mainly detected base damage) was at G nucleotides. A consensus sequence at the IR-induced DNA damage was found to be 5′-AGGC*C for the end-labelling technique, 5′-GGC*MH (where * is the cleavage site, M is A or C, H is any nucleotide except G) for the genome-wide technique, and 5′-GG* for the linear amplification/polymerase stop procedure. These three different approaches are important because they provide a deeper insight into the mechanism of action of IR-induced DNA damage.
Collapse
Affiliation(s)
- Vincent Murray
- Correspondence: ; Tel.: +61-2-9385-2028; Fax: +61-2-9385-1483
| | | | | |
Collapse
|
35
|
i6mA-DNCP: Computational Identification of DNA N6-Methyladenine Sites in the Rice Genome Using Optimized Dinucleotide-Based Features. Genes (Basel) 2019; 10:genes10100828. [PMID: 31635172 PMCID: PMC6826501 DOI: 10.3390/genes10100828] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
DNA N6-methyladenine (6mA) plays an important role in regulating the gene expression of eukaryotes. Accurate identification of 6mA sites may assist in understanding genomic 6mA distributions and biological functions. Various experimental methods have been applied to detect 6mA sites in a genome-wide scope, but they are too time-consuming and expensive. Developing computational methods to rapidly identify 6mA sites is needed. In this paper, a new machine learning-based method, i6mA-DNCP, was proposed for identifying 6mA sites in the rice genome. Dinucleotide composition and dinucleotide-based DNA properties were first employed to represent DNA sequences. After a specially designed DNA property selection process, a bagging classifier was used to build the prediction model. The jackknife test on a benchmark dataset demonstrated that i6mA-DNCP could obtain 84.43% sensitivity, 88.86% specificity, 86.65% accuracy, a 0.734 Matthew's correlation coefficient (MCC), and a 0.926 area under the receiver operating characteristic curve (AUC). Moreover, three independent datasets were established to assess the generalization ability of our method. Extensive experiments validated the effectiveness of i6mA-DNCP.
Collapse
|
36
|
Su CH, Chen JW, Chen LD, Chang JC, Liu CS, Chang CC, Wang GJ. Organic small molecule for detection and photodegradation of mitochondrial DNA mutations. J Mater Chem B 2019; 7:5947-5955. [PMID: 31517375 DOI: 10.1039/c9tb01358j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A detection and degradation platform was developed to optically quantify the 6-enolate, 8-keto-dG, an important tautomer of mitochondrial mutated DNA 8-oxo-dG. We first found that 6-enolate, 8-keto-dG offers particular fluorescence emission under the conditions between pH ∼ 7 and ∼11. Thus, a mitochondria-targeting photosensitizer NV-12P was prepared to offer simultaneously photoinduced electron transfer and fluorescence resonance energy transfer (FRET) with 6-enolate, 8-keto-dG. Furthermore, NV-12P can also generate a reactive oxygen species to degrade 6-enolate, 8-keto-dG under irradiation conditions. This is the first publication about optical characterization, concentration detection and photodegradation of 6-enolate, 8-keto-dG, either in biological or in vitro applications.
Collapse
Affiliation(s)
- Chien-Hui Su
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Cadet J, Di Mascio P, Wagner JR. (5' R)-and (5' S)-purine 5',8-cyclo-2'-deoxyribonucleosides: reality or artifactual measurements? A reply to Chatgilialoglu's comments (this issue). Free Radic Res 2019; 53:1014-1018. [PMID: 31514561 DOI: 10.1080/10715762.2019.1667992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This rebuttal letter is aimed at refuting the poor and false arguments elaborated by Chatgilialoglu (preceding article) in his response to the position article (Cadet et al. Free Radic Res 2019;53:574-577) that focussed on the putative reliability of the HPLC-MS/MS measurements of five radiation-induced damage to cellular DNA, which included 8-oxo-7,8-dihydro-2'-deoxyadenosine and the (5'R) and (5'S) diastereomers of 5',8-cyclo-2'-deoxyadenosine and 5',8-cyclo-2'-deoxyadenosine (Krokidis et al. Free Radic Res 2017;51:470-482). Unfortunately, none of the main issues we raised on the suitability of the analytical approach and the shortcomings associated with DNA extraction in HPLC based measurement methods of oxidatively generated damage in cells were properly considered in Chatigilialolu's letter. The main questionable issues include the lack of information on the sensitivity of HPLC-MS/MS analysis, the absence of a dose curve that is essential in the formation of damage and the nonconsideration of artifactual oxidation.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke , Canada
| | - Paolo Di Mascio
- Instituto de Química, Universidade de São Paulo , São Paulo , Brazil
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
38
|
Hardie ME, Murray V. The sequence preference of gamma radiation-induced DNA damage as determined by a polymerase stop assay. Int J Radiat Biol 2019; 95:1613-1626. [PMID: 31498026 DOI: 10.1080/09553002.2019.1665216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose: The aim of this paper was to investigate the sequence preference of ionizing radiation (IR)-induced DNA damage as assessed by a linear amplification/polymerase stop (LA/PS) assay. The LA/PS assay is able to detect a wide range of IR-induced DNA lesions and this technique was utilized to quantitatively determine the preferential sites of gamma irradiation-induced DNA lesions in three different DNA sequences.Materials and methods: This analysis was performed on an automated DNA sequencer with capillary electrophoresis and laser-induced fluorescence detection.Results: The main outcome of this study was that G nucleotides were preferentially found at IR-induced polymerase stop sites. The individual nucleotides at the IR-induced DNA damage sites were analyzed and a consensus sequence of 5'-GG* (where * indicates the damaged nucleotide) was observed. In a separate method of analysis, the dinucleotides and trinucleotides at the IR-induced DNA damage sites were examined and 5'-GG* and 5'-G*G dinucleotides and 5'-GG*G trinucleotides were found to be the most prevalent. The use of the LA/PS assay permits a large number of IR-induced DNA lesions to be detected in the one procedure including: double- and single-strand breaks, apurinic/apyrimidinic sites and base damage.Conclusions: It was concluded that 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy-G) and the degradation products of 8-oxoG were possibly the main lesions detected. To our knowledge, this is the first occasion that the DNA sequence preference of IR-induced DNA damage as detected by a LA/PS assay has been reported.
Collapse
Affiliation(s)
- Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
39
|
Cadet J, Di Mascio P, Wagner JR. Radiation-induced (5' R)-and (5' S)-purine 5',8-cyclo-2'-deoxyribonucleosides in human cells: a revisited analysis of HPLC-MS/MS measurements. Free Radic Res 2019; 53:574-577. [PMID: 30961398 DOI: 10.1080/10715762.2019.1605169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jean Cadet
- a Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Canada
| | - Paolo Di Mascio
- b Departamento de Bioquimica, Instituto de Quimica , Universidade de São Paulo , São Paulo , Brazil
| | - J Richard Wagner
- a Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé , Université de Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
40
|
Shinmura K, Kato H, Kawanishi Y, Goto M, Tao H, Yoshimura K, Nakamura S, Misawa K, Sugimura H. Defective repair capacity of variant proteins of the DNA glycosylase NTHL1 for 5-hydroxyuracil, an oxidation product of cytosine. Free Radic Biol Med 2019; 131:264-273. [PMID: 30552997 DOI: 10.1016/j.freeradbiomed.2018.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
The NTHL1 gene encodes DNA glycosylase, which is involved in base excision repair, and biallelic mutations of this gene result in NTHL1-associated polyposis (NAP), a hereditary disease characterized by colorectal polyposis and multiple types of carcinomas. However, no proper functional characterization of variant NTHL1 proteins has been done so far. Herein, we report functional evaluation of variant NTHL1 proteins to aid in the accurate diagnosis of NAP. First, we investigated whether it would be appropriate to use 5-hydroxyuracil (5OHU), an oxidation product of cytosine, for the evaluation. In the supF forward mutation assay, 5OHU caused an increase of the mutation frequency in human cells, and the C→T mutation was predominant among the 5OHU-induced mutations. In addition, in DNA cleavage activity assay, 5OHU was excised by NTHL1 as well as four other DNA glycosylases (SMUG1, NEIL1, TDG, and UNG2). When human cells overexpressing the five DNA glycosylases were established, it was found that each of the five DNA glycosylases, including NTHL1, had the ability to suppress 5OHU-induced mutations. Based on the above results, we performed functional evaluation of eight NTHL1 variants using 5OHU-containing DNA substrate or shuttle plasmid. The DNA cleavage activity assay showed that the variants of NTHL1, Q90X, Y130X, R153X, and Q287X, but not R19Q, V179I, V217F, or G286S, showed defective repair activity for 5OHU and two other oxidatively damaged bases. Moreover, the supF forward mutation assay showed that the four truncated-type NTHL1 variants showed a reduced ability to suppress 5OHU-induced mutations in human cells. These results suggest that the NTHL1 variants Q90X, Y130X, R153X, and Q287X, but not R19Q, V179I, V217F, or G286S, were defective in 5OHU repair and the alleles encoding them were considered to be pathogenic for NAP.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan.
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| | - Yuichi Kawanishi
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masanori Goto
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hong Tao
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| | - Satoki Nakamura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi Ward, Hamamatsu, Japan
| |
Collapse
|
41
|
Liu ZY, Xing JF, Chen W, Luan MW, Xie R, Huang J, Xie SQ, Xiao CL. MDR: an integrative DNA N6-methyladenine and N4-methylcytosine modification database for Rosaceae. HORTICULTURE RESEARCH 2019; 6:78. [PMID: 31240103 PMCID: PMC6572862 DOI: 10.1038/s41438-019-0160-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 05/07/2023]
Abstract
Eukaryotic DNA methylation has been receiving increasing attention for its crucial epigenetic regulatory function. The recently developed single-molecule real-time (SMRT) sequencing technology provides an efficient way to detect DNA N6-methyladenine (6mA) and N4-methylcytosine (4mC) modifications at a single-nucleotide resolution. The family Rosaceae contains horticultural plants with a wide range of economic importance. However, little is currently known regarding the genome-wide distribution patterns and functions of 6mA and 4mC modifications in the Rosaceae. In this study, we present an integrated DNA 6mA and 4mC modification database for the Rosaceae (MDR, http://mdr.xieslab.org). MDR, the first repository for displaying and storing DNA 6mA and 4mC methylomes from SMRT sequencing data sets for Rosaceae, includes meta and statistical information, methylation densities, Gene Ontology enrichment analyses, and genome search and browse for methylated sites in NCBI. MDR provides important information regarding DNA 6mA and 4mC methylation and may help users better understand epigenetic modifications in the family Rosaceae.
Collapse
Affiliation(s)
- Zhao-Yu Liu
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Jian-Feng Xing
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| | - Wei Chen
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Mei-Wei Luan
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Rui Xie
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, 010031 Huhhot, China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Shang-Qian Xie
- Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Institute of Tropical Agriculture and Forestry, Hainan University, 570228 Haikou, China
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060 Guangzhou, China
| |
Collapse
|
42
|
Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 2018; 17:1816-1841. [PMID: 29405222 DOI: 10.1039/c7pp00395a] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UV-induced DNA damage plays a key role in the initiation phase of skin cancer. When left unrepaired or when damaged cells are not eliminated by apoptosis, DNA lesions express their mutagneic properties, leading to the activation of proto-oncogene or the inactivation of tumor suppression genes. The chemical nature and the amount of DNA damage strongly depend on the wavelength of the incident photons. The most energetic part of the solar spectrum at the Earth's surface (UVB, 280-320 nm) leads to the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (64PPs). Less energetic but 20-times more intense UVA (320-400 nm) also induces the formation of CPDs together with a wide variety of oxidatively generated lesions such as single strand breaks and oxidized bases. Among those, 8-oxo-7,8-dihydroguanine (8-oxoGua) is the most frequent since it can be produced by several mechanisms. Data available on the respective yield of DNA photoproducts in cells and skin show that exposure to sunlight mostly induces pyrimidine dimers, which explains the mutational signature found in skin tumors, with lower amounts of 8-oxoGua and strand breaks. The present review aims at describing the basic photochemistry of DNA and discussing the quantitative formation of the different UV-induced DNA lesions reported in the literature. Additional information on mutagenesis, repair and photoprotection is briefly provided.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, Québec JIH 5N4, Canada.
| | | |
Collapse
|
43
|
Liu C, Luo X, Chen Y, Wu F, Yang W, Wang Y, Zhang X, Zou G, Zhou X. Selective Labeling Aldehydes in DNA. Anal Chem 2018; 90:14616-14621. [PMID: 30441892 DOI: 10.1021/acs.analchem.8b04822] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A naphthalimide hydroxylamine probe has been designed and synthesized to selectively label the whole natural aldehydes present in DNAs including 5-formylcytosine, 5-formyluracil, and abasic sites. The fluorescence characteristics of the generated nucleosides have been examined in detail, and the reaction activities of hydroxylamine, amine groups toward aldehydes in DNA have been discussed with others, which will be a vital reference for designing chemicals for selective labeling of DNAs.
Collapse
Affiliation(s)
- Chaoxing Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Xiaomeng Luo
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Yuqi Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Fan Wu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, The Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology , Wuhan University , Wuhan , Hubei 430072 , P. R. China
| |
Collapse
|
44
|
Cadet J, Wagner JR, Angelov D. Biphotonic Ionization of DNA: From Model Studies to Cell. Photochem Photobiol 2018; 95:59-72. [PMID: 30380156 DOI: 10.1111/php.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
Abstract
Oxidation reactions triggered by low-intensity UV photons represent a minor contribution with respect to the overwhelming pyrimidine base dimerization in both isolated and cellular DNA. The situation is totally different when DNA is exposed to high-intensity UVC radiation under conditions where biphotonic ionization of the four main purine and pyrimidine bases becomes predominant at the expense of singlet excitation processes. The present review article provides a critical survey of the main chemical reactions of the base radical cations thus generated by one-electron oxidation of nucleic acids in model systems and cells. These include oxidation of the bases with the predominant formation of 8-oxo-7,8-dihydroguanine as the result of preferential hole transfer to guanine bases that act as sinks in isolated and cellular DNA. In addition to hydration, other nucleophilic addition reactions involving the guanine radical cation give rise to intra- and interstrand cross-links together with DNA-protein cross-links. Information is provided on the utilization of high-intensity UV laser pulses as molecular biology tools for studying DNA conformational features, nucleic acid-protein interactions and nucleic acid reactivity through DNA-protein cross-links and DNA footprinting experiments.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et Modélisation de la Cellule LBMC, CNRS-UMR 5239, Université de Lyon, École Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
45
|
Dorier M, Tisseyre C, Dussert F, Béal D, Arnal ME, Douki T, Valdiglesias V, Laffon B, Fraga S, Brandão F, Herlin-Boime N, Barreau F, Rabilloud T, Carriere M. Toxicological impact of acute exposure to E171 food additive and TiO 2 nanoparticles on a co-culture of Caco-2 and HT29-MTX intestinal cells. Mutat Res 2018; 845:402980. [PMID: 31561898 DOI: 10.1016/j.mrgentox.2018.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/04/2018] [Accepted: 11/18/2018] [Indexed: 11/25/2022]
Abstract
TiO2 particles are widely used in products for everyday consumption, such as cosmetics and food; their possible adverse effects on human health must therefore be investigated. The aim of this study was to document in vitro impact of the food additive E171, i.e. TiO2, and of TiO2 nanoparticles, on a co-culture of Caco-2 and HT29-MTX cells, which is an in vitro model for human intestine. Cells were exposed to TiO2 particles three days after seeding, i.e. while they were not fully differentiated. Cell viability, reactive oxygen species (ROS) levels and DNA integrity were assessed, by MTT assay, DCFH-DA assay, alkaline and Fpg-modified comet assay and 8-oxo-dGuo measurement by HPLC-MS/MS. The mRNA expression of genes involved in ROS regulation, DNA repair via base-excision repair, and endoplasmic reticulum stress was assessed by RT-qPCR. Exposure to TiO2 particles resulted in increased intracellular ROS levels, but did not impair cell viability and did not cause any oxidative damage to DNA. Only minor changes in mRNA expression were detected. Altogether, this shows that E171 food additive and TiO2 nanoparticles only produce minor effects to this in vitro intestinal cell model.
Collapse
Affiliation(s)
- Marie Dorier
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000, Grenoble, France
| | - Céline Tisseyre
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000, Grenoble, France
| | - Fanny Dussert
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000, Grenoble, France
| | - David Béal
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000, Grenoble, France
| | - Marie-Edith Arnal
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000, Grenoble, France
| | - Thierry Douki
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000, Grenoble, France
| | - Vanessa Valdiglesias
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A, Coruña, Spain
| | - Blanca Laffon
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A, Coruña, Spain
| | - Sónia Fraga
- National Institute of Health, Dept. of Environmental Health, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - Fátima Brandão
- National Institute of Health, Dept. of Environmental Health, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - Nathalie Herlin-Boime
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA, Saclay, 91191, Gif-sur-Yvette France
| | - Frédérick Barreau
- INSERM, UMR 1220, Institut de Recherche en Santé Digestive, Toulouse, France
| | - Thierry Rabilloud
- ProMD, UMR CNRS 5249, CEA Grenoble, DRF/BIG/CBM, Laboratory of Chemistry and Biology of Metals, 38000, Grenoble, France
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000, Grenoble, France.
| |
Collapse
|
46
|
Lu W, Sun Y, Tsai M, Zhou W, Liu J. Singlet O 2 Oxidation of a Deprotonated Guanine-Cytosine Base Pair and Its Entangling with Intra-Base-Pair Proton Transfer. Chemphyschem 2018; 19:2645-2654. [PMID: 30047606 DOI: 10.1002/cphc.201800643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 12/24/2022]
Abstract
We report an experimental and computational study on the 1 O2 oxidation of gas-phase deprotonated guanine-cytosine base pair [G ⋅ C-H]- that is composed of 9HG ⋅ [C-H]- and 7HG ⋅ [C-H]- (pairing 9H- or 7H-guanine with N1-deprotonated cytosine), and 9HG ⋅ [C-H]- _PT and 7HG ⋅ [C-H]- _PT (formed by intra-base-pair proton transfer from the N1 of guanine to the N3 of [C-H]- ). The conformer-averaged reaction product ions and cross section were measured over a center-of-mass collision energy range from 0.1 to 0.5 eV using a guided-ion-beam tandem mass spectrometer. To explore conformation-specific reactivity, collision dynamics of 1 O2 with each of the four [G ⋅ C-H]- conformers was simulated at B3LYP/6-31G(d). Trajectories showed that the 1 O2 oxidation of the base pair entangles with intra-base-pair proton transfer, and prefers to occur in a collision when the base pair adopts a proton-transferred structure; trajectories also indicate that the 9HG-containing base pair favors stepwise formation of 4,8-endoperoxide of guanine, whereas the 7HG-containing base pair prefers concerted formation of guanine 5,8-endoperoxide. Using trajectory results as a guide, potential energy surfaces (PESs) along all possible reaction pathways were established using the approximately spin-projected ωB97XD/6-311++G(d,p)//B3LYP/6-311++G(d,p) method. PESs have not only rationalized trajectory findings but provided more accurate energetics and indicated that the proton-transferred base-pair conformers have lower activation barriers for oxidation than their non-proton-transferred counterparts.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, the, Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| | - Yan Sun
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, the, Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY, 11101, USA
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, the, Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| |
Collapse
|
47
|
Obeidat M, McConnell KA, Li X, Bui B, Stathakis S, Papanikolaou N, Rasmussen K, Ha CS, Lee SE, Shim EY, Kirby N. DNA double-strand breaks as a method of radiation measurements for therapeutic beams. Med Phys 2018; 45:3460-3465. [PMID: 29745994 DOI: 10.1002/mp.12956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Many types of dosimeters are used to measure radiation dose and calibrate radiotherapy equipment, but none directly measure the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. METHODS A DNA dosimeter, consisting of magnetic streptavidin beads attached to four kilobase pair DNA strands labeled with biotin and fluorescein amidite (FAM) on opposing ends, was suspended in phosphate-buffered saline (PBS). Fifty microliter samples were placed in plastic tubes inside a water tank setup and irradiated at the dose levels of 25, 50, 100, 150, and 200 Gy. After irradiation, the dosimeters were mechanically separated into beads (intact DNA) and supernatant (broken DNA/FAM) using a magnet. The fluorescence was read and the probability of DSB was calculated. This DNA dosimeter response was benchmarked against a Southern blot analysis technique for the measurement of DSB probability. RESULTS For the DNA dosimeter, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.043, 0.081, 0.149, 0.196, and 0.242, respectively, and the standard errors of the mean were 0.002, 0.003, 0.006, 0.005, and 0.011, respectively. For the Southern blot method, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.053, 0.105, 0.198, 0.235, and 0.264, respectively, and the standard errors of the mean were 0.013, 0.024, 0.040, 0.044, and 0.063, respectively. CONCLUSIONS A DNA dosimeter can accurately determine the probability of DNA double-strand break (DSB), one of the most toxic effects of radiotherapy, for absorbed radiation doses from 25 to 200 Gy. This is an important step in demonstrating the viability of DNA dosimeters as a measurement technique for radiation.
Collapse
Affiliation(s)
- Mohammad Obeidat
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kristen A McConnell
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xiaolei Li
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian Bui
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sotirios Stathakis
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Niko Papanikolaou
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Karl Rasmussen
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Chul Soo Ha
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sang Eun Lee
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Neil Kirby
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
48
|
Aparici-Espert I, Garcia-Lainez G, Andreu I, Miranda MA, Lhiaubet-Vallet V. Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chem Biol 2018; 13:542-547. [PMID: 29300457 DOI: 10.1021/acschembio.7b01097] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this work, the attention is focused on UVA-photosensitized reactions triggered by a DNA chromophore-containing lesion, namely 5-formyluracil. This is a major oxidatively generated lesion that exhibits an enhanced light absorption in the UVB-UVA region. The mechanistic study combining photochemical and photobiological techniques shows that irradiation of 5-formyluracil leads to a triplet excited state capable of sensitizing formation of cyclobutane pyrimidine dimers in DNA via a triplet-triplet energy transfer. This demonstrates for the first time that oxidatively generated DNA damage can behave as an intrinsic sensitizer and result in an important extension of the active fraction of the solar spectrum with photocarcinogenic potential. Overall, this raises the question of an aggravated photomutagenicity of the 5-formyluracil lesion.
Collapse
Affiliation(s)
- Isabel Aparici-Espert
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia (Spain)
| | - Guillermo Garcia-Lainez
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain)
| | - Inmaculada Andreu
- Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando Abril Martorell 106, 46026 Valencia (Spain)
| | - Miguel Angel Miranda
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia (Spain)
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos, s/n, 46022, Valencia (Spain)
| |
Collapse
|
49
|
Gautam SD, Hardie ME, Murray V. The Sequence Preference of Gamma-Radiation-Induced Damage in End-Labeled DNA after Heat Treatment. Radiat Res 2017; 189:238-250. [PMID: 29286256 DOI: 10.1667/rr14886.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this work, we examined the DNA sequence preference of gamma-radiation-induced DNA damage in purified DNA sequences after heat treatment. DNA was fluorescently end-labeled and gamma-radiation-induced DNA cleavage was examined using capillary electrophoresis with laser-induced fluorescence detection. Our findings provide evidence that gamma-radiation-induced DNA damage to end-labeled DNA is nonrandom and has a sequence preference. The degree of cleavage was quantified at each nucleotide, and we observed that preferential cleavage occurred at C nucleotides with lesser cleavage at G nucleotides, while being very low at T nucleotides. The differences in percentage cleavage at individual nucleotides ranged up to sixfold. The DNA sequences surrounding the most intense radiation-induced DNA cleavage sites were examined and a consensus sequence 5'-AGGC*C (where C* is the cleavage site) was found. The highest intensity gamma-radiation-induced DNA cleavage sites were found at the dinucleotides, 5'-GG*, 5'-GC*, 5'-C*C and 5'-G*G and at the trinucleotides, 5'-GG*C, 5'-TC*A, 5'-GG*G and 5'-GC*C. These findings have implications for our understanding of ionizing radiation-induced DNA damage.
Collapse
Affiliation(s)
- Shweta D Gautam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan E Hardie
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
50
|
Shafirovich V, Geacintov NE. Removal of oxidatively generated DNA damage by overlapping repair pathways. Free Radic Biol Med 2017; 107:53-61. [PMID: 27818219 PMCID: PMC5418118 DOI: 10.1016/j.freeradbiomed.2016.10.507] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/31/2022]
Abstract
It is generally believed that the mammalian nucleotide excision repair pathway removes DNA helix-distorting bulky DNA lesions, while small non-bulky lesions are repaired by base excision repair (BER). However, recent work demonstrates that the oxidativly generated guanine oxidation products, spiroimininodihydantoin (Sp), 5-guanidinohydantoin (Gh), and certain intrastrand cross-linked lesions, are good substrates of NER and BER pathways that compete with one another in human cell extracts. The oxidation of guanine by peroxynitrite is known to generate 5-guanidino-4-nitroimidazole (NIm) which is structurally similar to Gh, except that the 4-nitro group in NIm is replaced by a keto group in Gh. However, unlike Gh, NIm is an excellent substrate of BER, but not of NER. These and other related results are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA.
| | - Nicholas E Geacintov
- Chemistry Department, New York University, 31 Washington Place, New York, NY 10003-5180, USA
| |
Collapse
|