1
|
Li C, Wang X, Zhu X, Liu J, Ye Y. A novel NIR fluorescent probe to image HNO during ferroptosis. Anal Chim Acta 2024; 1330:343265. [PMID: 39489948 DOI: 10.1016/j.aca.2024.343265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND As an important reactive nitrogen species (RNS), HNO has been identified as an essential signaling molecule in many physiological processes. Ferroptosis produces a large amount of reactive oxygen species and reactive nitrogen species. However, the detailed mechanism of HNO during process of ferroptosis is rarely reported, especially in the near-infrared range. So, we designed a new near-infrared (NIR) HNO fluorescent probe X-1 based on a tricyanofuran (TCF) derivative and then applied it in ferroptosis imaging. The TCF derivative was chosen as the NIR fluorophore and 2-(diphenylphosphino)benzoate was used as the recognition group. RESULTS In this paper, a novel NIR HNO fluorescent probe X-1 based on tricyanofuran (TCF) derivatives was synthesized using the Staudinger linkage reaction. X-1 exhibited high selectivity for HNO in the near-infrared region (λem = 660 nm). When the recognition group undergoes the Staudinger linkage reaction with HNO, the NIR fluorescence emission increased significantly with the enhancement of the ICT effect. The response mechanism of X-1 to HNO was verified by high-resolution mass spectrometry (HRMS). Probe X-1 has the advantages of fast response (5 min), low detection limit, a large Stokes shift (120 nm) and strong anti-interference ability for HNO recognition. CCK-8 staining result indicates that the probe X-1 has good biocompatibility and little toxic effect on the cells. The probe was successfully applied to imaging the exogenous and endogenous HNO in living cells. SIGNIFICANCE In the near-infrared range, HNO was discovered as a mediator of cellular signaling molecules, increasing in concentration during the process of ferroptosis. Furthermore, using this probe, it was further verified that sorafenib, a commonly used drug for cancer treatment, exerts its therapeutic effect by inducing ferroptosis in cancer cells, leading to cell death.
Collapse
Affiliation(s)
- Changyi Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaokai Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaofei Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jianfei Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Chakraborty S, Choudhuri A, Mishra A, Sengupta R. The hunt for transnitrosylase. Nitric Oxide 2024; 152:31-47. [PMID: 39299646 DOI: 10.1016/j.niox.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The biochemical interplay between antioxidants and pro-oxidants maintains the redox homeostatic balance of the cell, which, when perturbed to moderate or high extents, has been implicated in the onset and/or progression of chronic diseases such as diabetes mellitus, cancer, and neurodegenerative diseases. Thioredoxin, glutaredoxin, and lipoic acid-like thiol oxidoreductase systems constitute a unique ensemble of robust cellular antioxidant defenses, owing to their indispensable roles as S-denitrosylases, S-deglutathionylases, and disulfide reductants in maintaining a reduced free thiol state with biological relevance. Thus, in cells subjected to nitrosative stress, cellular antioxidants will S-denitrosylate their cognate S-nitrosoprotein substrates, rather than participate in trans-S-nitrosylation via protein-protein interactions. Researchers have been at the forefront of vaguely establishing the concept of 'transnitrosylation' and its influence on pathophysiology with experimental evidence from in vitro studies that lack proper biochemical logic. The suggestive and reiterative use of antioxidants as transnitrosylases in the scientific literature leaves us on a cliffhanger with several open-ended questions that prompted us to 'hunt' for scientific logic behind the trans-S-nitrosylation chemistry. Given the gravity of the situation and to look at the bigger picture of 'trans-S-nitrosylation', we aim to present a novel attempt at justifying the hesitance in accepting antioxidants as capable of transnitrosylating their cognate protein partners and reflecting on the need to resolve the controversy that would be crucial from the perspective of understanding therapeutic outcomes involving such cellular antioxidants in disease pathogenesis. Further characterization is required to identify the regulatory mechanisms or conditions where an antioxidant like Trx, Grx, or DJ-1 can act as a cellular transnitrosylase.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
3
|
Chu JM, Baizhigitova D, Nguyen V, Zhang Y. Reusable HNO Sensors Derived from Cu Cyclam: A DFT Study on the Mechanistic Origin of High Reactivity and Favorable Conformation Changes and Potential Improvements. Inorg Chem 2024; 63:3586-3598. [PMID: 38307037 PMCID: PMC10880060 DOI: 10.1021/acs.inorgchem.3c04506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Nitroxyl (HNO) exhibits unique favorable properties in regulating biological and pharmacological activities. However, currently, there is only one Cu-based HNO sensor that can be recycled for reusable detection, which is a Cu cyclam derivative with a mixed thia/aza ligand. To elucidate the missing mechanistic origin of its high HNO reactivity and subsequent favorable conformation change toward a stable CuI product that is critical to be oxidized back by the physiological O2 level for HNO detection again, a density functional theory (DFT) computational study was performed. It not only reproduced experimental structural and reaction properties but also, more importantly, revealed an unknown role of the coordination atom in high reactivity. Its conformation change mechanism was found to not follow the previously proposed one but involve a novel favorable rotation pathway. Several newly designed complexes incorporating beneficial effects of coordination atoms and substituents to further enhance HNO reactivity while maintaining or even improving favorable conformation changes for reusable HNO detection were computationally validated. These novel results will facilitate the future development of reusable HNO sensors for true spatiotemporal resolution and repeated detection.
Collapse
Affiliation(s)
- Jia-Min Chu
- Department of Chemistry and
Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Dariya Baizhigitova
- Department of Chemistry and
Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Vy Nguyen
- Department of Chemistry and
Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Yong Zhang
- Department of Chemistry and
Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| |
Collapse
|
4
|
da Silva CDS, Ferreira KQ, Meira CS, Soares MBP, Moraes RDA, Araújo FA, Flavia Silva D, de Sá DS. Ru(II) based dual nitric oxide donors: electrochemical and photochemical reactivities and vasorelaxant effect with no cytotoxicity. Dalton Trans 2023; 52:17176-17184. [PMID: 37937931 DOI: 10.1039/d3dt02760k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The synthesized complexes, cis-[Ru(NO)(NO2)(phen)2](PF6)2 (NONO2P) and cis-[Ru(NO)(NO2)(bpy)2](PF6)2 (NONO2B), were characterized by using elemental analysis, voltammetry and electronic and vibrational spectroscopy. Under electrochemical and photochemical stimulation in an aqueous medium, there are indications of the formation of complexes, which suggests that the nitro and nitrosyl groups are converted into nitric oxide. Both compounds do not show cytotoxic activity against human umbilical vein endothelial cells (HUVECs). The cis-[Ru(NO)(NO2)(phen)2](PF6)2 complex presented vasorelaxation activity in superior mesenteric arteries from Wistar rats: the biphasic concentration-response curve indicates two sites of action. In the presence of NO scavengers, we observed an impaired relaxing effect induced by NONO2P, suggesting that the vasorelaxant effect is due to NO production from this compound.
Collapse
Affiliation(s)
- Carlos D S da Silva
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, 40170-290 Salvador, BA, Brazil.
| | - Kleber Q Ferreira
- Department of Chemistry, Federal Institute of Bahia (IFBA), Salvador, 40301-15, Brazil
| | - Cássio S Meira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710 Salvador, Bahia, Brazil
- SENAI Institute of Innovation in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, BA 41650-010, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), 40296-710 Salvador, Bahia, Brazil
| | - Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, BA, 40231-300, Brazil
- Postgraduate Program in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Fênix Alexandra Araújo
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, BA, 40231-300, Brazil
- Postgraduate Program in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Darizy Flavia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Av. Reitor Miguel Calmon, s/n - Canela, Salvador, BA, 40231-300, Brazil
- Postgraduate Program in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | - Denise S de Sá
- Institute of Chemistry, Federal University of Bahia, Campus Ondina, 40170-290 Salvador, BA, Brazil.
| |
Collapse
|
5
|
Gee LB, Lim J, Kroll T, Sokaras D, Alonso-Mori R, Lee CM. Unraveling Metal-Ligand Bonding in an HNO-Evolving {FeNO} 6 Complex with a Combined X-ray Spectroscopic Approach. J Am Chem Soc 2023; 145:20733-20738. [PMID: 37610249 PMCID: PMC10876219 DOI: 10.1021/jacs.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Photolytic delivery of nitric oxide and nitroxide has substantial biomedical and phototherapeutic applications. Here, we utilized hard X-ray spectroscopic methods to identify key geometric and electronic structural features of two photolabile {FeNO}6 complexes where the compounds differ in the presence of a pendant thiol in [Fe(NO)(TMSPS2)(TMSPS2H)] and thioether in [Fe(NO)(TMSPS2)(TMSPS2CH3)] with the former complex being the only transition metal system to photolytically generate HNO. Fe Kβ XES identifies the photoreactant systems as essentially Fe(II)-NO+, while valence-to-core XES extracts a NO oxidation state of +0.5. Finally, the pre-edge of the Fe high-energy-resolution fluorescence detected (HERFD) XAS spectra is shown to be acutely sensitive to perturbation of the Fe-NO covalency enhanced by the 3d-4p orbital mixing dipole intensity contribution. Collectively, this X-ray spectroscopic approach enables future time-resolved insights in these systems and extensions to other challenging redox noninnocent {FeNO}x systems.
Collapse
Affiliation(s)
- Leland B. Gee
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jinkyu Lim
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas Kroll
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Roberto Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Chien-Ming Lee
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| |
Collapse
|
6
|
Guo Q, Qian X, Chen J, Wu Y, Fu K, Sun Z, Zheng Z, Liu Y, Zhou Y. Synthesis and nitroxyl (HNO) donating properties of benzoxadiazole-based Piloty's acids. Nitric Oxide 2023:S1089-8603(23)00048-4. [PMID: 37217001 DOI: 10.1016/j.niox.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Developing functional nitroxyl (HNO) donors play a significant role in the further exploration of endogenous HNO in biochemistry and pharmacology. In this work, two novel Piloty's acids (SBD-D1 and SBD-D2) were proposed by incorporating benzoxadiazole-based fluorophores, in order to achieve the dual-function of releasing both HNO and a fluorophore in situ. Under physiological conditions, both SBD-D1 and SBD-D2 efficiently donated HNO (t1/2 = 10.96 and 8.18 min, respectively). The stoichiometric generation of HNO was determined by both vitamin B12 and phosphine compound traps. Interestingly, due to the different substitution groups on the aromatic ring, SBD-D1 with the chlorine showed no fluorescence emission, but SBD-D2 was strongly fluorescent due to the presence of the dimethylamine group. Specifically, the fluorescent signal would decrease during the release process of HNO. Moreover, theoretical calculations were performed to understand the emission difference. A strong radiation derived from benzoxadiazole with dimethylamine group due to the large transition dipole moment (∼4.3 Debye), while the presence of intramolecular charge transfer process in the donor with chlorine group caused a small transition dipole moment (<0.1 Debye). Finally, these studies would contribute to the future design and application of novel functional HNO donors for the exploration of HNO biochemistry and pharmacology.
Collapse
Affiliation(s)
- Qingwei Guo
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Xin Qian
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Jiajun Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Yangyang Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Kun Fu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
| | - Zhicheng Sun
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing, 102600, China
| | - Zilong Zheng
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China.
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
7
|
Lu S, Shang C, Sun B, Xiang Y. Dominant Dissolved Oxygen-Independent Pathway to Form Hydroxyl Radicals and the Generation of Reactive Chlorine and Nitrogen Species in Breakpoint Chlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:150-159. [PMID: 36512687 DOI: 10.1021/acs.est.2c05540] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to the complexities of the interactions between ammonia, chlor(am)ine, and intermediate species such as ONOOH, the radical formation in breakpoint chlorination and the consequential removal of micropollutants remain largely unexplored. In this study, the dominant generation pathway of HO•, as a primary radical in breakpoint chlorination, was examined, and the generations of HO•, reactive chlorine species (RCS), and reactive nitrogen species (RNS) were quantitatively evaluated. A dissolved oxygen (DO)-independent pathway was verified by 18O labeling and contributed over 90% to HO• generation. The commonly believed pathway, the decomposition of ONOOH involving DO, contributed only 7% to HO• formation in breakpoint chlorination. The chlorine to nitrogen (Cl/N) ratio and pH greatly affected the generations and speciations of the reactive species. An optimum Cl/N mass ratio for HO•, Cl2•-, and RNS generations occurred at the breakpoint (i.e., Cl/N mass ratio = 9), whereas excessive free chlorine shifted the radical speciation toward ClO• at Cl/N mass ratios above the breakpoint. Basic conditions inhibited the generations of HO• and RNS but significantly promoted that of ClO•. These findings improved the fundamental understanding of the radical chemistry of breakpoint chlorination, which can be extended to estimate the degradations of micropollutants of known rate constants toward the reactive species with influences from the Cl/N ratio and pH in real-world applications.
Collapse
Affiliation(s)
- Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon000, Hong Kong SAR, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon000, Hong Kong SAR, China
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon000, Hong Kong SAR, China
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong26637, China
| | - Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon000, Hong Kong SAR, China
| |
Collapse
|
8
|
Shi Y, Stella G, Chu J, Zhang Y. Mechanistic Origin of Favorable Substituent Effects in Excellent Cu Cyclam Based HNO Sensors. Angew Chem Int Ed Engl 2022; 61:e202211450. [PMID: 36048138 PMCID: PMC9633564 DOI: 10.1002/anie.202211450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 01/11/2023]
Abstract
HNO has broad chemical and biomedical properties. Metal complexes and derivatives are widely used to make excellent HNO sensors. However, their favorable mechanistic origins are largely unknown. Cu cyclam is a useful platform to make excellent HNO sensors including imaging agents. A quantum chemical study of Cu cyclams with various substitutions was performed, which reproduced diverse experimental reactivities. Structural, electronic, and energetic profiles along reaction pathways show the importance of HNO binding and a proton-coupled electron transfer mechanism for HNO reaction. Results reveal that steric effect is primary and electronic factor is secondary (if the redox potential is sufficient), but their interwoven effects can lead to unexpected reactivity, which looks mysterious experimentally but can be explained computationally. This work suggests rational substituent design ideas and recommends a theoretical study of a new design to save time and cost due to its subtle effect.
Collapse
Affiliation(s)
- Yelu Shi
- Department of Chemistry and Chemical BiologyStevens Institute of Technology1 Castle Point TerraceHobokenNJ 07030USA
| | - Gianna Stella
- Department of Chemistry and Chemical BiologyStevens Institute of Technology1 Castle Point TerraceHobokenNJ 07030USA
| | - Jia‐Min Chu
- Department of Chemistry and Chemical BiologyStevens Institute of Technology1 Castle Point TerraceHobokenNJ 07030USA
| | - Yong Zhang
- Department of Chemistry and Chemical BiologyStevens Institute of Technology1 Castle Point TerraceHobokenNJ 07030USA
| |
Collapse
|
9
|
Kosmachevskaya OV, Nasybullina EI, Pugachenko IS, Novikova NN, Topunov AF. Antiglycation and Antioxidant Effect of Nitroxyl towards Hemoglobin. Antioxidants (Basel) 2022; 11:antiox11102007. [PMID: 36290730 PMCID: PMC9599031 DOI: 10.3390/antiox11102007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/17/2023] Open
Abstract
Donors of nitroxyl and nitroxyl anion (HNO/NO−) are considered to be promising pharmacological treatments with a wide range of applications. Remarkable chemical properties allow nitroxyl to function as a classic antioxidant. We assume that HNO/NO− can level down the non-enzymatic glycation of biomolecules. Since erythrocyte hemoglobin (Hb) is highly susceptible to non-enzymatic glycation, we studied the effect of a nitroxyl donor, Angeli’s salt, on Hb modification with methylglyoxal (MG) and organic peroxide―tert-butyl hydroperoxide (t-BOOH). Nitroxyl dose-dependently decreased the amount of protein carbonyls and advanced glycation end products (AGEs) that were formed in the case of Hb incubation with MG. Likewise, nitroxyl effectively protected Hb against oxidative modification with t-BOOH. It slowed down the destruction of heme, formation of carbonyl derivatives and inter-subunit cross-linking. The protective effect of nitroxyl on Hb in this system is primarily associated with nitrosylation of oxidized Hb and reduction of its ferryl form, which lowers the yield of free radical products. We suppose that the dual (antioxidant and antiglycation) effect of nitroxyl makes its application possible as part of an additional treatment strategy for oxidative and carbonyl stress-associated diseases.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Elvira I. Nasybullina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Igor S. Pugachenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Correspondence: ; Tel.: +7-916-157-6367
| |
Collapse
|
10
|
Shi Y, Stella G, Chu JM, Zhang Y. Mechanistic Origin of Favorable Substituent Effects in Excellent Cu Cyclam Based HNO Sensors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yelu Shi
- Stevens Institute of Technology Department of Chemistry and Chemical Biology UNITED STATES
| | - Gianna Stella
- Stevens Institute of Technology Department of Chemistry and Chemical Biology UNITED STATES
| | - Jia-Min Chu
- Stevens Institute of Technology Department of Chemistry and Chemical Biology UNITED STATES
| | - Yong Zhang
- Stevens Institute of Technology Department of Chemistry and Chemical Biology 1 Castle Point on Hudson 7030 Hoboken UNITED STATES
| |
Collapse
|
11
|
Niu H, Mi X, Hua X, Zhang Y, Zhai Y, Qin F, Ye Y, Zhao Y. A bifunctional fluorescent probe based on "AND logic" for the simultaneous recognition of H 2S/HNO and its bioimaging applications. Anal Chim Acta 2022; 1192:339341. [PMID: 35057948 DOI: 10.1016/j.aca.2021.339341] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 12/21/2022]
Abstract
The reaction of NO and H2S to form HNO is a classical pathway in physiological conditions. The reported single recognition-type fluorescent probes are difficult to track precisely the relationships of H2S and HNO. It is necessary to develop a bifunctional fluorescence probe (NJA) for monitoring simultaneously the production of endogenous HNO and H2S. Using 7-Nitrobenzofurazan (NBD) and 2-(diphenylphosphine) benzoate as recognition sites, the obatined NJA can detect specifically HS- and HNO. The detection limit of HS- and HNO are 0.46 μM and 1.42 μM, respectively. Based on the dual recognition sites and input signals of the probe, a molecular "AND" logic gate was established to detect successfully H2S and HNO in MCF-7 cells. NJA based on "AND logic" provided a simple and robust tool for monitoring the production of endogenous HNO correlative with H2S and NO in living cells.
Collapse
Affiliation(s)
- Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Xintong Mi
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xinting Hua
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yuanyuan Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yaping Zhai
- Institute of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Fangyuan Qin
- Institute of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 450052, China
| |
Collapse
|
12
|
Kosmachevskaya OV, Nasybullina EI, Shumaev KB, Novikova NN, Topunov AF. Protective Effect of Dinitrosyl Iron Complexes Bound with Hemoglobin on Oxidative Modification by Peroxynitrite. Int J Mol Sci 2021; 22:13649. [PMID: 34948445 PMCID: PMC8703631 DOI: 10.3390/ijms222413649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Dinitrosyl iron complexes (DNICs) are a physiological form of nitric oxide (•NO) in an organism. They are able not only to deposit and transport •NO, but are also to act as antioxidant and antiradical agents. However, the mechanics of hemoglobin-bound DNICs (Hb-DNICs) protecting Hb against peroxynitrite-caused, mediated oxidative modification have not yet been scrutinized. Through EPR spectroscopy we show that Hb-DNICs are destroyed under the peroxynitrite action in a dose-dependent manner. At the same time, DNICs inhibit the oxidation of tryptophan and tyrosine residues and formation of carbonyl derivatives. They also prevent the formation of covalent crosslinks between Hb subunits and degradation of a heme group. These effects can arise from the oxoferryl heme form being reduced, and they can be connected with the ability of DNICs to directly intercept peroxynitrite and free radicals, which emerge due to its homolysis. These data show that DNICs may ensure protection from myocardial ischemia.
Collapse
Affiliation(s)
- Olga V. Kosmachevskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| | - Elvira I. Nasybullina
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| | - Konstantin B. Shumaev
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| | | | - Alexey F. Topunov
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry, 119071 Moscow, Russia; (O.V.K.); (E.I.N.); (K.B.S.)
| |
Collapse
|
13
|
Li H, Wang C, Cai L, Yu X, Wu L, Yuan N, Zhu Y, Jia N, James TD, Huang C. Versatile Ratiometric Fluorescent Probe Based on the Two-Isophorone Fluorophore for Sensing Nitroxyl. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huan Li
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Chengcheng Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Lei Cai
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xiang Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Nannan Yuan
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yiming Zhu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
14
|
Rice AM, Faig A, Wolff DE, King SB. Sodium borohydride and thiol mediated nitrite release from nitroaromatic antibiotics. Bioorg Med Chem Lett 2021; 48:128245. [PMID: 34242759 DOI: 10.1016/j.bmcl.2021.128245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Nitroaromatic antibiotics are used to treat a variety of bacterial and parasitic infections. These prodrugs require reductive bioactivation for activity, which provides a pathway for the release of nitrogen oxide species such as nitric oxide, nitrite, and/or nitroxyl. Using sodium borohydride and 2-aminoethanol as model reductants, this work examines release of nitrogen oxide species from various nitroaromatic compounds through several characterization methods. Specifically, 4- and 5-nitroimidazoles reproducibly generate higher amounts of nitrite (not nitric oxide or nitroxyl) than 2-nitroimidazoles during the reaction of model hydride donors or thiols. Mass spectrometric analysis shows clean formation of products resulting from nucleophile addition and nitro group loss. 2-Nitrofurans generate nitrite upon addition of sodium borohydride or 2-aminoethanethiol, but these complex reactions do not produce clean organic products. A mechanism that includes nucleophile addition to the carbon βto the nitro group to generate a nitronate anion followed by protonation and nitrous acid elimination explains the observed products and labeling studies. These systematic studies give a better understanding of the release mechanisms of nitrogen oxide species from these compounds allowing for the design of more efficient therapeutics.
Collapse
Affiliation(s)
- Allison M Rice
- Wake Forest University, Department of Chemistry, Winston-Salem, NC 27101, United States of America
| | - Allison Faig
- Wake Forest University, Department of Chemistry, Winston-Salem, NC 27101, United States of America
| | - David E Wolff
- Wake Forest University, Department of Chemistry, Winston-Salem, NC 27101, United States of America
| | - S Bruce King
- Wake Forest University, Department of Chemistry, Winston-Salem, NC 27101, United States of America.
| |
Collapse
|
15
|
Gallego CM, Mazzeo A, Vargas P, Suárez S, Pellegrino J, Doctorovich F. Azanone (HNO): generation, stabilization and detection. Chem Sci 2021; 12:10410-10425. [PMID: 34447533 PMCID: PMC8356739 DOI: 10.1039/d1sc02236a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
HNO (nitroxyl, azanone), joined the 'biologically relevant reactive nitrogen species' family in the 2000s. Azanone is impossible to store due to its high reactivity and inherent low stability. Consequently, its chemistry and effects are studied using donor compounds, which release this molecule in solution and in the gas phase upon stimulation. Researchers have also tried to stabilize this elusive species and its conjugate base by coordination to metal centers using several ligands, like metalloporphyrins and pincer ligands. Given HNO's high reactivity and short lifetime, several different strategies have been proposed for its detection in chemical and biological systems, such as colorimetric methods, EPR, HPLC, mass spectrometry, fluorescent probes, and electrochemical analysis. These approaches are described and critically compared. Finally, in the last ten years, several advances regarding the possibility of endogenous HNO generation were made; some of them are also revised in the present work.
Collapse
Affiliation(s)
- Cecilia Mariel Gallego
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Paola Vargas
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Sebastián Suárez
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica, y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria Pab. 2 C1428EHA Buenos Aires Argentina
| |
Collapse
|
16
|
Improvement in storage quality of postharvest tomato fruits by nitroxyl liposomes treatment. Food Chem 2021; 359:129933. [PMID: 33951606 DOI: 10.1016/j.foodchem.2021.129933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 01/22/2023]
Abstract
Nitroxyl (HNO) has attracted much attention due to its unique biological activity. To investigate the preservation effect of HNO on fruits, a nitroxyl liposome based on 1-nitrosocyclohexyl acetate was prepared and characterized by infrared spectroscopy and transmission electron microscopy. The optimal preparation conditions were explored, and then HNO liposomes were prepared under the optimal conditions to study the effect of HNO liposomes on postharvest quality of tomatoes. The tomato fruits were treated with different concentrations (0, 5, 10, 15 and 20 μmol L-1) of HNO liposomes and stored at room temperature. The results indicated that treatment with HNO liposomes can more effectively delay the browning and slow down the decrease in lightness of tomatoes. Additionally, HNO liposomes can reduce the activity of PPO and POD, inhibit the increase of MDA and total phenol content. These results suggest that treatment with HNO liposomes can effectively preserve the quality of tomatoes.
Collapse
|
17
|
Shi Y, Michael MA, Zhang Y. HNO to NO Conversion Mechanism with Copper Zinc Superoxide Dismutase, Comparison with Heme Protein Mediated Conversions, and the Origin of Questionable Reversibility. Chemistry 2021; 27:5019-5027. [PMID: 33398888 DOI: 10.1002/chem.202100015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 11/08/2022]
Abstract
The interconversion of NO and HNO, via copper zinc superoxide dismutase (CuZnSOD), is important in biomedicine and for HNO detection. Many mechanistic questions, including the decades-long debate on reversibility, were resolved in this work. Calculations of various active-site and full-protein models show that the basic mechanism is proton-coupled electron transfer with a computed barrier of 10.98 kcal mol-1 , which is in excellent agreement with experimental results (10.62 kcal mol-1 ), and this nonheme protein-mediated reaction has many significant mechanistic differences compared with the conversions mediated by heme proteins due to geometric and electronic factors. The reasons for the irreversible nature of this conversion and models with the first thermodynamically favorable and kinetically feasible mechanism for the experimental reverse reaction were discovered. Such results are the first for nonheme enzyme mediated HNO to NO conversions, which shall facilitate other related studies and HNO probe development.
Collapse
Affiliation(s)
- Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute, of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA.,College of Science and Technology, Wenzhou-Kean University, 88 Daxue Rd, Wenzhou, Zhejiang, 325060, P.R. China
| | - Matthew A Michael
- Department of Chemistry and Chemical Biology, Stevens Institute, of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute, of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| |
Collapse
|
18
|
He S, Zhu J, Xie P, Liu J, Zhang D, Tang J, Ye Y. A novel NIR fluorescent probe for the highly sensitive detection of HNO and its application in bioimaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj04015d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A “naked-eye” HNO probe based on xanthene was obtained.
Collapse
Affiliation(s)
- Shenwei He
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianming Zhu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Peiyao Xie
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianfei Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jun Tang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Liu Z, Sun Q. A near-infrared fluorescent probe for imaging of nitroxyl in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118680. [PMID: 32650249 DOI: 10.1016/j.saa.2020.118680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/08/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
A BODIPY-based NIR fluorescent probe, NitroxylBDP, for the rapid and specific, detection of HNO has been designed and synthesized. The merits of NIR fluorescence, and stable fluorescence output against pH changes, and good membrane permeability, enable the probe to serve as an ideal indicator for tracking HNO in living systems.
Collapse
Affiliation(s)
- Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Qian Sun
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
20
|
Wang Y, Xu S, Xian M. Specific Reactions of RSNO, HSNO, and HNO and Their Applications in the Design of Fluorescent Probes. Chemistry 2020; 26:11673-11683. [PMID: 32433809 PMCID: PMC8211375 DOI: 10.1002/chem.202001885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO)-derived species play essential roles in regulating cellular responses. Among these species, S-nitrosothiols (including RSNO and HSNO) and nitroxyl (HNO) are especially interesting. Owing to their high reactivity and short survival time, the detection of these molecules in biological settings can be challenging. In this regard, much effort has been invested in exploring novel reactions of RSNO/HSNO/HNO and applying these reactions to develop fluorescence probes. Herein, reported specific reactions of RSNO/HSNO/HNO are summarized and strategies used in the design of fluorescent probes are illustrated. The properties and potential problems of representative probes are also discussed.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
21
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Nie XW, Huang DJ, Sun MT, Bian JS. Role of nitroxyl (HNO) in cardiovascular system: From biochemistry to pharmacology. Pharmacol Res 2020; 159:104961. [DOI: 10.1016/j.phrs.2020.104961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/16/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
|
22
|
Unusual monodentate binding of a C-NONOate ligand in the nitrosyl complex (OEP)Ru(NO)(η1-ONN(t-Bu)O). Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Ju Y, Wang A, Li X, Xu X, Lu J. A caged 2-hydroxyethyl luciferin for bioluminescence imaging of nitroxyl in living cells. LUMINESCENCE 2020; 35:1384-1390. [PMID: 32542844 DOI: 10.1002/bio.3902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/07/2022]
Abstract
Nitroxyl (HNO), a one-electron reduction product of nitric oxide, demonstrates distinct biological and pharmacological activities. Here we designed a bioluminescent turn-on probe, HNO-8, that could be used to visualize HNO without the need for excitation light. HNO-8 was prepared by caging 2-hydroxyethyl luciferin with a triphenylphosphine unit, in which 2-hydroxyethyl luciferin as a novel substrate of firefly luciferase was characterized by stronger and more sustained bioluminescent signals than the most popular substrates of d-luciferin and 6'-aminoluciferin. In vitro experiments showed that HNO-8 could selectively respond to HNO generated from Angeli's salt(AS) in the range 1-50 μM, with a limit of detection of 0.196 μM. The probe was successfully applied for visualizing HNO in luciferase-transfected Huh7 cancer cells. We envision that HNO-8 could be used as a powerful bioluminescent sensor for researching HNO biological roles.
Collapse
Affiliation(s)
- Yong Ju
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Anni Wang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Xuewei Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| | - Xu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Jianzhong Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, China
| |
Collapse
|
24
|
Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS. Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxid Redox Signal 2020; 32:331-349. [PMID: 31617376 DOI: 10.1089/ars.2019.7904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: As one-electron reduced molecule of nitric oxide (NO), nitroxyl (HNO) has gained enormous attention because of its novel physiological or pharmacological properties, ranging from cardiovascular protective actions to antitumoricidal effects. Recent Advances: HNO is emerging as a new entity with therapeutic advantages over its redox sibling, NO. The interests in the chemical, pharmacological, and biological characteristics of HNO have broadened our current understanding of its role in physiology and pathophysiology. Critical Issues: In particular, the experimental evidence suggests the therapeutic potential of HNO in tumor pharmacology, such as neuroblastoma, gastrointestinal tumor, ovarian, lung, and breast cancers. Indeed, HNO donors have been demonstrated to attenuate tumor proliferation and angiogenesis. Future Directions: In this review, the generation and detection of HNO are outlined, and the roles of HNO in cancer progression are further discussed. We anticipate that the completion of this review might give novel insights into the roles of HNO in cancer pharmacology and open up a novel field of cancer therapy based on HNO.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Leng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
25
|
Zhang H, Qiao Z, Wei N, Zhang Y, Wang K. A rapid-response and near-infrared fluorescent probe for imaging of nitroxyl in living cells. Talanta 2020; 206:120196. [DOI: 10.1016/j.talanta.2019.120196] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023]
|
26
|
Mukherjee S. Insights into nitric oxide-melatonin crosstalk and N-nitrosomelatonin functioning in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6035-6047. [PMID: 31429913 DOI: 10.1093/jxb/erz375] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/06/2019] [Indexed: 05/23/2023]
Abstract
Similar to animal systems, plants have been suggested to possess both positive and antagonistic interactions between nitric oxide (NO) and melatonin. This review summarizes the current understanding of NO-melatonin crosstalk in plants with regard to redox homoeostasis, regulation of gene expression, and developmental changes. It also addresses the possible role of N-nitrosomelatonin (NOmela), which is likely to be associated with redox signaling and long-distance communication. Localization and quantification of NOmela are expected to add new insights into its precise role in plants. Methodological advances in imaging, isolation, and quantification of such a transient molecule require further attention. The quest for the biological role of NOmela in plants should lure physiologists to pursue investigations to obtain solid experimental evidence.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| |
Collapse
|
27
|
Mitochondria-targeting NIR fluorescent probe for rapid, highly sensitive and selective visualization of nitroxyl in live cells, tissues and mice. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9604-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Möller MN, Rios N, Trujillo M, Radi R, Denicola A, Alvarez B. Detection and quantification of nitric oxide-derived oxidants in biological systems. J Biol Chem 2019; 294:14776-14802. [PMID: 31409645 PMCID: PMC6779446 DOI: 10.1074/jbc.rev119.006136] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The free radical nitric oxide (NO•) exerts biological effects through the direct and reversible interaction with specific targets (e.g. soluble guanylate cyclase) or through the generation of secondary species, many of which can oxidize, nitrosate or nitrate biomolecules. The NO•-derived reactive species are typically short-lived, and their preferential fates depend on kinetic and compartmentalization aspects. Their detection and quantification are technically challenging. In general, the strategies employed are based either on the detection of relatively stable end products or on the use of synthetic probes, and they are not always selective for a particular species. In this study, we describe the biologically relevant characteristics of the reactive species formed downstream from NO•, and we discuss the approaches currently available for the analysis of NO•, nitrogen dioxide (NO2•), dinitrogen trioxide (N2O3), nitroxyl (HNO), and peroxynitrite (ONOO-/ONOOH), as well as peroxynitrite-derived hydroxyl (HO•) and carbonate anion (CO3•-) radicals. We also discuss the biological origins of and analytical tools for detecting nitrite (NO2-), nitrate (NO3-), nitrosyl-metal complexes, S-nitrosothiols, and 3-nitrotyrosine. Moreover, we highlight state-of-the-art methods, alert readers to caveats of widely used techniques, and encourage retirement of approaches that have been supplanted by more reliable and selective tools for detecting and measuring NO•-derived oxidants. We emphasize that the use of appropriate analytical methods needs to be strongly grounded in a chemical and biochemical understanding of the species and mechanistic pathways involved.
Collapse
Affiliation(s)
- Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Natalia Rios
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| |
Collapse
|
29
|
Yang M, Fan J, Sun W, Du J, Long S, Shao K, Peng X. A nitroxyl-responsive near-infrared fluorescent chemosensor for visualizing H 2S/NO crosstalk in biological systems. Chem Commun (Camb) 2019; 55:8583-8586. [PMID: 31274135 DOI: 10.1039/c9cc04060a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present a near-infrared (NIR) fluorescent probe, NR-HNO, which was successfully applied to visualizing H2S/NO "crosstalk" by the fluorescence detection of nitroxyl with a fast response time (5 min) and a large Stokes shift (131 nm) in living cells and tissue; it was also used to image nitroxyl in live mice.
Collapse
Affiliation(s)
- Mingwang Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China and Shenzhen Research Institute, Dalian University of Technology, Gaoxin South fourth Road, Nanshan District, Shenzhen 518057, P. R. China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China and Shenzhen Research Institute, Dalian University of Technology, Gaoxin South fourth Road, Nanshan District, Shenzhen 518057, P. R. China.
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China and Shenzhen Research Institute, Dalian University of Technology, Gaoxin South fourth Road, Nanshan District, Shenzhen 518057, P. R. China.
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China and Shenzhen Research Institute, Dalian University of Technology, Gaoxin South fourth Road, Nanshan District, Shenzhen 518057, P. R. China.
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China and Shenzhen Research Institute, Dalian University of Technology, Gaoxin South fourth Road, Nanshan District, Shenzhen 518057, P. R. China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China and Shenzhen Research Institute, Dalian University of Technology, Gaoxin South fourth Road, Nanshan District, Shenzhen 518057, P. R. China.
| |
Collapse
|
30
|
Odette WL, Payne NA, Khaliullin RZ, Mauzeroll J. Redox-Triggered Disassembly of Nanosized Liposomes Containing Ferrocene-Appended Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5608-5616. [PMID: 30916976 DOI: 10.1021/acs.langmuir.8b04267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a redox-responsive liposomal system capable of oxidatively triggered disassembly. We describe the synthesis, electrochemical characterization, and incorporation into vesicles of an alternative redox lipid with significantly improved synthetic efficiency and scalability compared to a ferrocene-appended phospholipid previously employed by our group in giant vesicles. The redox-triggered disassembly of both redox lipids is examined in nanosized liposomes as well as the influence of cholesterol mole fraction on liposome disassembly and suitability of various chemical oxidants for in vitro disassembly experiments. Electronic structure density functional theory calculations of membrane-embedded ferrocenes are provided to characterize the role of charge redistribution in the initial stages of the disassembly process.
Collapse
Affiliation(s)
- William L Odette
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A OB8 , Canada
| | - Nicholas A Payne
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A OB8 , Canada
| | - Rustam Z Khaliullin
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A OB8 , Canada
| | - Janine Mauzeroll
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A OB8 , Canada
| |
Collapse
|
31
|
Horton A, Schiefer IT. Pharmacokinetics and pharmacodynamics of nitric oxide mimetic agents. Nitric Oxide 2019; 84:69-78. [PMID: 30641123 DOI: 10.1016/j.niox.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Drug discovery focusing on NO mimetics has been hamstrung due to its unconventional nature. Central to these challenges is the fact that direct measurement of molecular NO in biological systems is exceedingly difficulty. Hence, drug development of NO mimetics must rely upon measurement of the NO donating specie (i.e., a prodrug) and a downstream marker of efficacy without directly measuring the molecule, NO, that is responsible for biological effect. The focus of this review is to catalog in vivo attempts to monitor the pharmacokinetics (PK) of the NO donating specie and the pharmacodynamic (PD) readout of NO bioactivity.
Collapse
Affiliation(s)
- Austin Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA.
| |
Collapse
|
32
|
Li JB, Wang Q, Liu HW, Yin X, Hu XX, Yuan L, Zhang XB. Engineering of a bioluminescent probe for imaging nitroxyl in live cells and mice. Chem Commun (Camb) 2019; 55:1758-1761. [DOI: 10.1039/c9cc00211a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A turn-on bioluminescent probe (BP-HNO) that is free of autofluorescence for bioimaging nitroxyl in live cells and mice is reported for the first time.
Collapse
Affiliation(s)
- Jun-Bin Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Life Sciences
- Hunan University
| | - Qianqian Wang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Life Sciences
- Hunan University
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Life Sciences
- Hunan University
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Life Sciences
- Hunan University
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Life Sciences
- Hunan University
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Life Sciences
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Life Sciences
- Hunan University
| |
Collapse
|
33
|
Fukuto JM. A recent history of nitroxyl chemistry, pharmacology and therapeutic potential. Br J Pharmacol 2019; 176:135-146. [PMID: 29859009 PMCID: PMC6295406 DOI: 10.1111/bph.14384] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Due to the excitement surrounding the discovery of NO as an endogenously generated signalling molecule, a number of other nitrogen oxides were also investigated as possible physiological mediators. Among these was nitroxyl (HNO). Over the past 25 years or so, a significant amount of work by this laboratory and many others has disclosed that HNO possesses unique chemical properties and important pharmacological utility. Indeed, the pharmacological potential for HNO as a treatment for heart failure, among other uses, has garnered this curious molecule a considerable amount of recent attention. This review summarizes the events that led to this recent attention as well as poses important questions that are still to be answered with regards to understanding the chemistry and biology of HNO. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of ChemistrySonoma State UniversityRohnert ParkCAUSA
| |
Collapse
|
34
|
Shi Y, Zhang Y. Mechanisms of HNO Reactions with Ferric Heme Proteins. Angew Chem Int Ed Engl 2018; 57:16654-16658. [PMID: 30347123 PMCID: PMC6522253 DOI: 10.1002/anie.201807699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Many HNO-scavenging pathways exist to regulate its biological and pharmacological activities. Such reactions often involve ferric heme proteins and form an important basis for HNO probe development. However, mechanisms of HNO reactions with ferric heme proteins are largely unknown. We performed a computational investigation using metmyoglobin and catalase as representative ferric heme proteins with neutral and negatively charged axial ligands to provide the first detailed pathways. The results reproduced experimental barriers well with an average error of 0.11 kcal mol-1 . The rate-limiting step was found to be dissociation of the resting ligand or HNO coordination when there is no resting ligand. For both heme proteins, in contrast to the non-heme case, the reductive nitrosylation step was found to be barrierless proton-coupled electron transfer, which provides the major thermodynamic driving force for the overall reaction. The origin of the difference in reactivity between metmyoglobin and catalase was also revealed.
Collapse
Affiliation(s)
- Yelu Shi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ, 07030, USA
| |
Collapse
|
35
|
|
36
|
Smulik-Izydorczyk R, Dębowska K, Pięta J, Michalski R, Marcinek A, Sikora A. Fluorescent probes for the detection of nitroxyl (HNO). Free Radic Biol Med 2018; 128:69-83. [PMID: 29704623 DOI: 10.1016/j.freeradbiomed.2018.04.564] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/19/2022]
Abstract
Nitroxyl (HNO), which according to the IUPAC recommended nomenclature should be named azanone, is the protonated one-electron reduction product of nitric oxide. Recently, it has gained a considerable attention due to the interesting pharmacological effects of its donors. Although there has been great progress in the understanding of HNO chemistry and chemical biology, it still remains the most elusive reactive nitrogen species, and its selective detection is a real challenge. The development of reliable methodologies for the direct detection of azanone is essential for the understanding of important signaling properties of this reactive intermediate and its pharmacological potential. Over the last decade, there has been considerable progress in the development of low-molecular-weight fluorogenic probes for the detection of HNO, and therefore, in this review, we have focused on the challenges and limitations of and perspectives on nitroxyl detection based on the use of such probes.
Collapse
Affiliation(s)
- Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Andrzej Marcinek
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| |
Collapse
|
37
|
Ahmad S, Alam O, Naim MJ, Shaquiquzzaman M, Alam MM, Iqbal M. Pyrrole: An insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem 2018; 157:527-561. [PMID: 30119011 DOI: 10.1016/j.ejmech.2018.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/15/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
Pyrrole is a heterocyclic ring template with multiple pharmacophores that provides a way for the generation of library of enormous lead molecules. Owing to its vast pharmacological profile, pyrrole and its analogues have drawn much attention of the researchers/chemists round the globe to be explored exhaustively for the benefit of mankind. This review focusses on recent advancements; pertaining to pyrrole scaffold, discussing various aspects of structure activity relationship and its bioactivities.
Collapse
Affiliation(s)
- Shujauddin Ahmad
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India.
| | - Mohd Javed Naim
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - Mohammad Shaquiquzzaman
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - M Mumtaz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Dept. of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 62, India
| | - Muzaffar Iqbal
- Dept. of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Dong B, Kong X, Lin W. Reaction-Based Fluorescent Probes for the Imaging of Nitroxyl (HNO) in Biological Systems. ACS Chem Biol 2018; 13:1714-1720. [PMID: 29210560 DOI: 10.1021/acschembio.7b00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitroxyl (HNO) has been identified as an important signaling molecule in biological systems and plays critical roles in many physiological processes. Fluorescence imaging could provide a robust approach to explore the biological formation of HNO and its physiological functions. Herein, we summarize the organic reaction types for constructing HNO probes and specifically focus on review of the recent advances in the development of the reaction-based HNO probes and their imaging applications in living systems.
Collapse
Affiliation(s)
- Baoli Dong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Shandong 250022, People’s Republic of China
| |
Collapse
|
39
|
Li H, Yao Q, Xu F, Xu N, Ma X, Fan J, Long S, Du J, Wang J, Peng X. Recognition of Exogenous and Endogenous Nitroxyl in Living Cells via a Two-Photon Fluorescent Probe. Anal Chem 2018. [DOI: 10.1021/acs.analchem.7b05172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
41
|
Cao J, An W, Reeves AG, Lippert AR. A chemiluminescent probe for cellular peroxynitrite using a self-immolative oxidative decarbonylation reaction. Chem Sci 2018; 9:2552-2558. [PMID: 29732134 PMCID: PMC5914148 DOI: 10.1039/c7sc05087a] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 01/04/2023] Open
Abstract
Peroxynitrite is a damaging agent of oxidative stress that has been difficult to monitor in living cells. Here, an isatin-based chemiluminescent probe for peroxynitrite is reported.
Peroxynitrite (ONOO–) is a highly reactive oxygen species which has been recognized as an endogenous mediator of physiological activities like the immune response as well as a damaging agent of oxidative stress under pathological conditions. While its biological importance is becoming clearer, many of the details of its production and mechanism of action remain elusive due to the lack of available selective and sensitive detection methods. Herein, we report the development, characterization, and biological applications of a reaction-based chemiluminescent probe for ONOO– detection, termed as PNCL. PNCL reacts with ONOO–via an isatin moiety through an oxidative decarbonylation reaction to initiate light emission that can be observed instantly with high selectivity against other reactive sulphur, oxygen, and nitrogen species. Detailed studies were performed to study the reaction between isatin and ONOO–, which confirm selectivity for ONOO– over NO2˙. PNCL has been applied for ONOO– detection in aqueous solution and live cells. Moreover, PNCL can be employed to detect cellular ONOO– generated in macrophages stimulated to mount an immune response with lipopolysaccharide (LPS). The sensitivity granted by chemiluminescent detection together with the specificity of the oxidative decarbonylation reaction provides a useful tool to explore ONOO– chemistry and biology.
Collapse
Affiliation(s)
- Jian Cao
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA . .,Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA
| | - Weiwei An
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA . .,Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA
| | - Audrey G Reeves
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA .
| | - Alexander R Lippert
- Department of Chemistry , Southern Methodist University , Dallas , TX 75275-0314 , USA . .,Center for Drug Discovery , Design, and Delivery (CD4) , Southern Methodist University , Dallas , TX 75275-0314 , USA.,Center for Global Health Impact (CGHI) , Southern Methodist University , Dallas , TX 75275-0314 , USA
| |
Collapse
|
42
|
Ali F, Sreedharan S, Ashoka AH, Saeed HK, Smythe CGW, Thomas JA, Das A. A Super-Resolution Probe To Monitor HNO Levels in the Endoplasmic Reticulum of Cells. Anal Chem 2017; 89:12087-12093. [DOI: 10.1021/acs.analchem.7b02567] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Firoj Ali
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | | | - Anila Hoskere Ashoka
- Organic
Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Hiwa K. Saeed
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Carl G. W. Smythe
- Department
of Biomedical Science, University of Sheffield, Sheffield S10 2TN, U.K
| | - Jim A. Thomas
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Amitava Das
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
43
|
Suarez SA, Muñoz M, Alvarez L, Venâncio MF, Rocha WR, Bikiel DE, Marti MA, Doctorovich F. HNO Is Produced by the Reaction of NO with Thiols. J Am Chem Soc 2017; 139:14483-14487. [DOI: 10.1021/jacs.7b06968] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian A. Suarez
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Martina Muñoz
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Lucia Alvarez
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Mateus F. Venâncio
- Departamento
de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Willian R. Rocha
- Departamento
de Química, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Damian E. Bikiel
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Marcelo A. Marti
- Departamento
de Química Biológica, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Buenos
Aires C1428EHA, Argentina
| | - Fabio Doctorovich
- Departamento
de Química Inorgánica, Analítica y Química
Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
44
|
A kinetic study on the reactivity of azanone ( HNO ) toward its selected scavengers: Insight into its chemistry and detection. Nitric Oxide 2017; 69:61-68. [DOI: 10.1016/j.niox.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Accepted: 05/16/2017] [Indexed: 12/29/2022]
|
45
|
Wynne BM, Labazi H, Carneiro ZN, Tostes RC, Webb RC. Angeli's Salt, a nitroxyl anion donor, reverses endothelin-1 mediated vascular dysfunction in murine aorta. Eur J Pharmacol 2017; 814:294-301. [PMID: 28830679 DOI: 10.1016/j.ejphar.2017.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Nitroglycerin (Gtn) is a treatment for cardiovascular patients due to its vasodilatory actions, but induces tolerance when given chronically. A proposed mechanism is the superoxide (O2-)-oxidative stress hypothesis, which suggests that Gtn increases O2- production. Nitric oxide (NO) exists in three different redox states; the protonated, reduced state, nitroxyl anion (HNO) is an emerging candidate in vascular regulation. HNO is resistant to scavenging and of particular interest in conditions where high levels of reactive oxygen species (ROS) exist. We hypothesize that treatment with Gtn will exacerbate endothelin 1 (ET-1) induced vascular dysfunction via an increase in ROS, while treatment with Angeli's Salt (AS), an HNO donor, will not. Aorta from mice were isolated and divided into four groups: vehicle, ET-1 [0.1μM, 1μM], ET-1+Gtn [Gtn 1μM] and ET-1+AS [AS 1μM]. Concentration response curves (CRCs) to acetylcholine (ACh) and phenylephrine (Phe) were performed. Aorta incubated with ET-1 (for 20-22h) exhibited a decreased relaxation response to ACh and an increase in Phe-mediated contraction. Aorta incubated with AS exhibited a reversal in ET-1 induced vascular and endothelial dysfunction. ET-1 increased ROS in aortic vascular smooth muscle cells (VSMCs), visualized by dihydroethidium (DHE) staining. AS incubated reduced this ROS generation, yet maintained with Gtn treatment. These data suggest that aorta incubated with the HNO donor, AS, can reverse ET-1 mediated vascular dysfunction, which may be through a decrease or prevention of ROS generation. We propose that HNO may be vasoprotective and that HNO donors studied as a therapeutic option where other organic nitrates are contraindicative.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States; Department of Medicine, Renal Division, Emory University, 615 Michael St. Ste 605C, Atlanta, GA 30322, United States.
| | - Hicham Labazi
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States; Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, United States.
| | - Zidonia N Carneiro
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States.
| | - Rita C Tostes
- Pharmacology Department, Medical School of Ribeirão Preto, University of São Paulo, Av Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
46
|
Zhou C, Liang J, Cheng S, Shi T, Houk KN, Wei DQ, Zhao YL. Ab initio molecular metadynamics simulation for S-nitrosylation by nitric oxide: S-nitroxide as the key intermediate. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1319059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chao Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Juan Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shangli Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
47
|
Deka H, Ghosh S, Gogoi K, Saha S, Mondal B. Nitric Oxide Reactivity of a Cu(II) Complex of an Imidazole-Based Ligand: Aromatic C-Nitrosation Followed by the Formation of N-Nitrosohydroxylaminato Complex. Inorg Chem 2017; 56:5034-5040. [PMID: 28387516 DOI: 10.1021/acs.inorgchem.7b00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A binuclear Cu(II) complex, 1, [Cu2(L-)2(OAc)](OAc) of imidazole-based ligand LH {LH = 2-(bis(2-ethyl-5-methyl-1H-imidazol-4-yl)methyl)phenol} was synthesized and characterized spectroscopically and structurally. Addition of an equivalent amount of nitric oxide (NO) by a gastight syringe to the acetonitrile:methanol (5:1, v/v) solution of complex 1 at room temperature resulted in the reduction of Cu(II) center to Cu(I) with concomitant C-nitrosation of the ligand. Spectroscopic characterization of the resulting Cu(I) complex (1a) of the C-nitrosylated ligand, L' {L' = 2-(bis(2-ethyl-5-methyl-1H-imidazol-4-yl)methyl)-4-nitroso-phenol} has been done. The Cu(I) complex, 1a, further reacted with NO to result in the corresponding N-nitrosohydroxylaminato complex, 2, [Cu2(L-ONNO)2](OAc)2 through the formation of a Cu(I)-nitrosyl intermediate. A small fraction of the nitrosyl intermediate decomposed to the corresponding Cu(II) complex 3, [Cu(L')2], and N2O in a parallel reaction.
Collapse
Affiliation(s)
- Hemanta Deka
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| | - Kuldeep Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| | - Soumen Saha
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati , North Guwahati, Assam 781039, India
| |
Collapse
|
48
|
Ivanova LV, Cibich D, Deye G, Talipov MR, Timerghazin QK. Modeling of
S
‐Nitrosothiol–Thiol Reactions of Biological Significance: HNO Production by S‐Thiolation Requires a Proton Shuttle and Stabilization of Polar Intermediates. Chembiochem 2017; 18:726-738. [DOI: 10.1002/cbic.201600556] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Lena V. Ivanova
- Department of Chemistry Marquette University 535 N. 14th Street Milwaukee WI 53233 USA
| | - Daniel Cibich
- Department of Chemistry Marquette University 535 N. 14th Street Milwaukee WI 53233 USA
| | - Gregory Deye
- Department of Chemistry Marquette University 535 N. 14th Street Milwaukee WI 53233 USA
| | - Marat R. Talipov
- Department of Chemistry Marquette University 535 N. 14th Street Milwaukee WI 53233 USA
| | - Qadir K. Timerghazin
- Department of Chemistry Marquette University 535 N. 14th Street Milwaukee WI 53233 USA
| |
Collapse
|
49
|
Church DC, Nourian S, Lee CU, Yakelis NA, Toscano JP, Boydston AJ. Amphiphilic Copolymers Capable of Concomitant Release of HNO and Small Molecule Organics. ACS Macro Lett 2017; 6:46-49. [PMID: 35632877 DOI: 10.1021/acsmacrolett.6b00887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate concomitant release of HNO and small molecule organics from amphiphilic poly(norbornene)-based copolymers. This key function was achieved by incorporation of thermally labile oxazine units within random and block copolymer architectures. Upon thermolysis, we observed generation of HNO and release of a small molecule conjugate. Importantly, the release kinetics of HNO and a UV-active small molecule (4-nitroaniline) were found to be 1:1, signifying an ability to monitor HNO production indirectly, or to simultaneously release organic therapeutics (e.g., nonsteroidal anti-inflammatory drugs) along with HNO. To our knowledge, these are the first reported polymeric materials demonstrating HNO release from covalently attached HNO donors.
Collapse
Affiliation(s)
- Derek C. Church
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Saghar Nourian
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chang-Uk Lee
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Neal A. Yakelis
- Department
of Chemistry, Pacific Lutheran University, Tacoma, Washington 98447, United States
| | - John P. Toscano
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Andrew J. Boydston
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
50
|
Liu C, Wang Y, Tang C, Liu F, Ma Z, Zhao Q, Wang Z, Zhu B, Zhang X. A reductant-resistant ratiometric, colorimetric and far-red fluorescent probe for rapid and ultrasensitive detection of nitroxyl. J Mater Chem B 2017; 5:3557-3564. [DOI: 10.1039/c6tb03359h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reductant-resistant ratiometric, colorimetric and far-red fluorescent probe for rapid and ultrasensitive detection of nitroxyl was developed.
Collapse
Affiliation(s)
- Caiyun Liu
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Yawei Wang
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Chengcheng Tang
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Fang Liu
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Zhenmin Ma
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Qiang Zhao
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Zhongpeng Wang
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Baocun Zhu
- School of Resources and Environment
- University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
- Jinan 250022
- China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry
- Beijing Institute of Technology
- Beijing 100081
- China
| |
Collapse
|