1
|
Mourikes VE, Santacruz-Márquez R, Deviney A, Laws MJ, Ulanov AV, La Frano MR, Flaws JA. Ovarian antral follicles metabolize imidacloprid in vitro. Toxicol Sci 2023; 196:229-237. [PMID: 37632782 PMCID: PMC10682976 DOI: 10.1093/toxsci/kfad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023] Open
Abstract
Neonicotinoid insecticides are synthetic nicotine derivatives that have high affinity for invertebrate nicotine receptors and low affinity for mammalian nicotine receptors. However, imidacloprid (IMI), the most commonly used neonicotinoid, can be bioactivated by the liver in mammals to desnitro-imidacloprid, an intermediate metabolite that effectively binds and activates mammalian receptors. However, it is not known if other tissues such as the ovaries can metabolize IMI. Thus, the present study tested the hypothesis that ovarian antral follicles metabolize and bioactivate IMI. Antral follicles were dissected from the ovaries of CD-1 mice and cultured in media containing dimethyl sulfoxide or IMI (0.2-200 µg/ml) for 48 and 96 h. Media were subjected to liquid chromatography-mass spectrometry for detection of phase I IMI metabolites. Follicles from the cultures were used for gene expression analysis of metabolic enzymes associated with IMI metabolism. All IMI metabolites were detected at 48 and 96 h. Oxidized IMI intermediates were detected in media from cultured follicles, but not environmental controls. Reduced IMI intermediates were detected in media from cultured follicles and the environmental controls. At 48 h, IMI did not affect expression of any metabolic enzymes compared with control. At 96 h, IMI induced Cyp2e1 and Cyp4f18 compared with control. These data indicate that mouse ovarian follicles metabolize IMI and that IMI induces ovarian Cyp expression over time.
Collapse
Affiliation(s)
- Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Ashley Deviney
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Michael R La Frano
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| |
Collapse
|
2
|
Isin EM. Unusual Biotransformation Reactions of Drugs and Drug Candidates. Drug Metab Dispos 2023; 51:413-426. [PMID: 36653118 DOI: 10.1124/dmd.121.000744] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Detailed assessment of the fate of drugs in nonclinical test species and humans is essential to ensure the safety and efficacy of medicines in patients. In this context, biotransformation of drugs and drug candidates has been an area of keen interest over many decades in the pharmaceutical industry as well as academia. Although many of the enzymes and biotransformation pathways involved in the metabolism of xenobiotics and more specifically drugs have been well characterized, each drug molecule is unique and constitutes specific challenges for the biotransformation scientist. In this mini-review written for the special issue on the occasion of the 50th Anniversary celebration of Drug Metabolism and Disposition and to celebrate contributions of F. Peter Guengerich, one of the pioneers of the drug metabolism field, recently reported "unusual" biotransformation reactions are presented. Scientific and technological advances in the "toolbox" of the biotransformation scientists are summarized. As the pharmaceutical industry continues to explore therapeutic modalities different from the traditional small molecule drugs, the new challenges confronting the biotransformation scientist as well as future opportunities are discussed. SIGNIFICANCE STATEMENT: For the biotransformation scientists, it is essential to share and be aware of unexpected biotransformation reactions so that they can increase their confidence in predicting metabolites of drugs in humans to ensure the safety and efficacy of these metabolites before the medicines reach large numbers of patients. The purpose of this review is to highlight recent observations of "unusual" metabolites so that the scientists working in the area of drug metabolism can strengthen their readiness in expecting the unexpected.
Collapse
Affiliation(s)
- Emre M Isin
- Translational Medicine, Servier, 25/27 Rue Eugène Vignat, 45000, Orléans, France
| |
Collapse
|
3
|
Penning TM, Su AL, El-Bayoumy K. Nitroreduction: A Critical Metabolic Pathway for Drugs, Environmental Pollutants, and Explosives. Chem Res Toxicol 2022; 35:1747-1765. [PMID: 36044734 PMCID: PMC9703362 DOI: 10.1021/acs.chemrestox.2c00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitro group containing xenobiotics include drugs, cancer chemotherapeutic agents, carcinogens (e.g., nitroarenes and aristolochic acid) and explosives. The nitro group undergoes a six-electron reduction to form sequentially the nitroso-, N-hydroxylamino- and amino-functional groups. These reactions are catalyzed by nitroreductases which, rather than being enzymes with this sole function, are enzymes hijacked for their propensity to donate electrons to the nitro group either one at a time via a radical mechanism or two at time via the equivalent of a hydride transfer. These enzymes include: NADPH-dependent flavoenzymes (NADPH: P450 oxidoreductase, NAD(P)H-quinone oxidoreductase), P450 enzymes, oxidases (aldehyde oxidase, xanthine oxidase) and aldo-keto reductases. The hydroxylamino group once formed can undergo conjugation reactions with acetate or sulfate catalyzed by N-acetyltransferases or sulfotransferases, respectively, leading to the formation of intermediates containing a good leaving group which in turn can generate a nitrenium or carbenium ion for covalent DNA adduct formation. The intermediates in the reduction sequence are also prone to oxidation and produce reactive oxygen species. As a consequence, many nitro-containing xenobiotics can be genotoxic either by forming stable covalent adducts or by oxidatively damaging DNA. This review will focus on the general chemistry of nitroreduction, the enzymes responsible, the reduction of xenobiotic substrates, the regulation of nitroreductases, the ability of nitrocompounds to form DNA adducts and act as mutagens as well as some future directions.
Collapse
Affiliation(s)
| | | | - Karam El-Bayoumy
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033-2360, United States
| |
Collapse
|
4
|
Pan Y, Chang J, Xu P, Xie Y, Yang L, Hao W, Li J, Wan B. Twenty-four hours of Thiamethoxam: In vivo and molecular dynamics simulation study on the toxicokinetic and underlying mechanisms in quails (Coturnix japonica). JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128159. [PMID: 34979383 DOI: 10.1016/j.jhazmat.2021.128159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Neonicotinoids is the most widely used insecticide, its contamination has led to sustained bird population declines. However, the toxicokinetic and underlying mechanisms of neonicotinoid toxicity in birds are largely unknown. Thiamethoxam (TMX), as a representative neonicotinoid insecticide, is now widely detected in most environmental medium and animal bodies. In this study, 5 mg/kg body weight TMX (potential environmental intake level) were orally administrated to male Japanese quails (Coturnix japonica). We found a rapid absorption, distribution, metabolism and elimination of TMX in quails in a period of 24 h, with the main metabolite, clothianidin (CLO), being extensively distributed and rapidly eliminated from tissues as well. The maximum plasm concentration of CLO was consistent with wild birds. Metabolomics analysis and followed determination of liver enzymes mRNA expression indicated the rapid metabolism was mediated mainly by CYPs and GSTs that involved riboflavin metabolism and glutathione metabolism pathways upon TMX exposure. Molecular dynamic simulation showed the strongest binding interaction in quail CYP2H1-TMX and CYP3A12-CLO complexes among a set of CYPs-substrate. The present study elucidated toxicokinetic and underlying metabolic mechanisms of TMX in quails at environmentally-relevant concentration, the findings would facilitate the understanding of potential risks of TMX and its metabolites to birds.
Collapse
Affiliation(s)
- Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
| | - Lu Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China; Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China.
| |
Collapse
|
5
|
Cheng X, Chen KX, Jiang ND, Wang L, Jiang HY, Zhao YX, Dai ZL, Dai YJ. Nitroreduction of imidacloprid by the actinomycete Gordonia alkanivorans and the stability and acute toxicity of the nitroso metabolite. CHEMOSPHERE 2022; 291:132885. [PMID: 34774905 DOI: 10.1016/j.chemosphere.2021.132885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The insecticide imidacloprid (IMI), which is used worldwide, pollutes environments and has significant ecotoxicological effects. Microbial metabolism and photolysis are the major pathways of IMI degradation in natural environments. Several studies have reported that the metabolites of IMI nitroreduction are more toxic to some insects and mammals than IMI itself. Thus, environmental degradation of IMI may enhance the ecotoxicity of IMI and have adverse effects on non-target organisms. Here, we report that an actinomycete-Gordonia alkanivorans CGMCC 21704-transforms IMI to a nitroreduction metabolite, nitroso IMI. Resting cells of G. alkanivorans at OD600 nm = 10 transformed 95.7% of 200 mg L-1 IMI to nitroso IMI in 4 d. Nitroso IMI was stable at pH 4-9. However, it rapidly degraded under sunlight via multiple oxidation, dehalogenation, and oxidative cleavage reactions to form 10 derivatives; the half-life of nitroso IMI in photolysis was 0.41 h, compared with 6.19 h for IMI. Acute toxicity studies showed that the half maximal effective concentration (EC50) values of IMI, nitroso IMI, and its photolytic metabolites toward the planktonic crustacean Daphnia magna for immobilization (exposed to the test compounds for 48 h) were 17.70, 9.38, 8.44 mg L-1, respectively. The half-life of nitroso IMI in various soils was also examined. The present study reveals that microbial nitroreduction accelerates IMI degradation and the nitroso IMI is easily decomposed by sunlight and in soil. However, nitroso IMI and its photolytic products have higher toxicity toward D. magna than the parent compound IMI, and therefore increase the ecotoxicity of IMI.
Collapse
Affiliation(s)
- Xi Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Neng-Dang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Huo-Yong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhi-Ling Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
6
|
Loser D, Grillberger K, Hinojosa MG, Blum J, Haufe Y, Danker T, Johansson Y, Möller C, Nicke A, Bennekou SH, Gardner I, Bauch C, Walker P, Forsby A, Ecker GF, Kraushaar U, Leist M. Acute effects of the imidacloprid metabolite desnitro-imidacloprid on human nACh receptors relevant for neuronal signaling. Arch Toxicol 2021; 95:3695-3716. [PMID: 34628512 PMCID: PMC8536575 DOI: 10.1007/s00204-021-03168-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Several neonicotinoids have recently been shown to activate the nicotinic acetylcholine receptor (nAChR) on human neurons. Moreover, imidacloprid (IMI) and other members of this pesticide family form a set of diverse metabolites within crops. Among these, desnitro-imidacloprid (DN-IMI) is of special toxicological interest, as there is evidence (i) for human dietary exposure to this metabolite, (ii) and that DN-IMI is a strong trigger of mammalian nicotinic responses. We set out here to quantify responses of human nAChRs to DN-IMI and an alternative metabolite, IMI-olefin. To evaluate toxicological hazards, these data were then compared to those of IMI and nicotine. Ca2+-imaging experiments on human neurons showed that DN-IMI exhibits an agonistic effect on nAChRs at sub-micromolar concentrations (equipotent with nicotine) while IMI-olefin activated the receptors less potently (in a similar range as IMI). Direct experimental data on the interaction with defined receptor subtypes were obtained by heterologous expression of various human nAChR subtypes in Xenopus laevis oocytes and measurement of the transmembrane currents evoked by exposure to putative ligands. DN-IMI acted on the physiologically important human nAChR subtypes α7, α3β4, and α4β2 (high-sensitivity variant) with similar potency as nicotine. IMI and IMI-olefin were confirmed as nAChR agonists, although with 2-3 orders of magnitude lower potency. Molecular docking studies, using receptor models for the α7 and α4β2 nAChR subtypes supported an activity of DN-IMI similar to that of nicotine. In summary, these data suggest that DN-IMI functionally affects human neurons similar to the well-established neurotoxicant nicotine by triggering α7 and several non-α7 nAChRs.
Collapse
Affiliation(s)
- Dominik Loser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Karin Grillberger
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Maria G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Blum
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Yves Haufe
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
| | - Timm Danker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Clemens Möller
- Life Sciences Faculty, Albstadt-Sigmaringen University, 72488, Sigmaringen, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336, Munich, Germany
| | | | - Iain Gardner
- CERTARA UK Limited, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Caroline Bauch
- Cyprotex Discovery Ltd, No. 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - Paul Walker
- Cyprotex Discovery Ltd, No. 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770, Reutlingen, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
7
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
8
|
Houchat JN, Cartereau A, Le Mauff A, Taillebois E, Thany SH. An Overview on the Effect of Neonicotinoid Insecticides on Mammalian Cholinergic Functions through the Activation of Neuronal Nicotinic Acetylcholine Receptors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093222. [PMID: 32384754 PMCID: PMC7246883 DOI: 10.3390/ijerph17093222] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Neonicotinoid insecticides are used worldwide and have been demonstrated as toxic to beneficial insects such as honeybees. Their effectiveness is predominantly attributed to their high affinity for insect neuronal nicotinic acetylcholine receptors (nAChRs). Mammalian neuronal nAChRs are of major importance because cholinergic synaptic transmission plays a key role in rapid neurotransmission, learning and memory processes, and neurodegenerative diseases. Because of the low agonist effects of neonicotinoid insecticides on mammalian neuronal nAChRs, it has been suggested that they are relatively safe for mammals, including humans. However, several lines of evidence have demonstrated that neonicotinoid insecticides can modulate cholinergic functions through neuronal nAChRs. Major studies on the influence of neonicotinoid insecticides on cholinergic functions have been conducted using nicotine low-affinity homomeric α7 and high-affinity heteromeric α4β2 receptors, as they are the most abundant in the nervous system. It has been found that the neonicotinoids thiamethoxam and clothianidin can activate the release of dopamine in rat striatum. In some contexts, such as neurodegenerative diseases, they can disturb the neuronal distribution or induce oxidative stress, leading to neurotoxicity. This review highlights recent studies on the mode of action of neonicotinoid insecticides on mammalian neuronal nAChRs and cholinergic functions.
Collapse
|
9
|
Manevski N, King L, Pitt WR, Lecomte F, Toselli F. Metabolism by Aldehyde Oxidase: Drug Design and Complementary Approaches to Challenges in Drug Discovery. J Med Chem 2019; 62:10955-10994. [PMID: 31385704 DOI: 10.1021/acs.jmedchem.9b00875] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aldehyde oxidase (AO) catalyzes oxidations of azaheterocycles and aldehydes, amide hydrolysis, and diverse reductions. AO substrates are rare among marketed drugs, and many candidates failed due to poor pharmacokinetics, interspecies differences, and adverse effects. As most issues arise from complex and poorly understood AO biology, an effective solution is to stop or decrease AO metabolism. This perspective focuses on rational drug design approaches to modulate AO-mediated metabolism in drug discovery. AO biological aspects are also covered, as they are complementary to chemical design and important when selecting the experimental system for risk assessment. The authors' recommendation is an early consideration of AO-mediated metabolism supported by computational and in vitro experimental methods but not an automatic avoidance of AO structural flags, many of which are versatile and valuable building blocks. Preferably, consideration of AO-mediated metabolism should be part of the multiparametric drug optimization process, with the goal to improve overall drug-like properties.
Collapse
Affiliation(s)
- Nenad Manevski
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Lloyd King
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - William R Pitt
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Fabien Lecomte
- UCB Celltech , 208 Bath Road , Slough SL13WE , United Kingdom
| | - Francesca Toselli
- UCB BioPharma , Chemin du Foriest 1 , 1420 Braine-l'Alleud , Belgium
| |
Collapse
|
10
|
Affiliation(s)
- Yashpal Singh Malik
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| |
Collapse
|
11
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
12
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
13
|
Humann-Guilleminot S, Clément S, Desprat J, Binkowski ŁJ, Glauser G, Helfenstein F. A large-scale survey of house sparrows feathers reveals ubiquitous presence of neonicotinoids in farmlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1091-1097. [PMID: 30743906 DOI: 10.1016/j.scitotenv.2019.01.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The massive use of neonicotinoid insecticides has been repeatedly incriminated for their impacts to avian populations. Some studies have reported contamination of granivorous birds by neonicotinoids but very little is known about exposure to neonicotinoids in other bird species. To fill this lack of knowledge, we trapped house sparrows Passer domesticus, an omnivorous bird whose diet is composed of both grains and insects, and we collected 617 feathers from individuals living on 47 conventional, integrated-production (IP-Suisse) and organic farms distributed all over the Swiss plateau, the country's main agricultural area. We then assessed the concentration of five neonicotinoids in 146 pools of feathers. We found that all feather samples were contaminated by at least one neonicotinoid at measurable concentration (>LOQ), with thiacloprid accounting for most of the prevalence (99%), while clothianidin was found at highest concentrations (with averages ranging from 1.68 to 9.2 ppb). Additionally, house sparrows living on conventional farms showed higher concentrations of neonicotinoids (15.26 ± 3.58 ppb) than individuals living on IP-Suisse (3.38 ± 0.86 ppb), and organic farms (2.59 ± 0.56 ppb). Our large-scale survey highlights how ubiquitous neonicotinoid insecticides have become in agricultural habitats, and reveals generalized exposure of house sparrows, and potentially other species inhabiting farmlands, to neonicotinoids.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| | - Sarah Clément
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Julia Desprat
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Łukasz J Binkowski
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland; Institute of Biology, Pedagogical University of Cracow, Krakow, Poland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, Faculty of Sciences, University of Neuchâtel, Neuchâtel, Switzerland
| | - Fabrice Helfenstein
- Laboratory of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
14
|
Wang Y, Han Y, Xu P, Guo B, Li W, Wang X. The metabolism distribution and effect of imidacloprid in chinese lizards (Eremias argus) following oral exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:476-483. [PMID: 30218971 DOI: 10.1016/j.ecoenv.2018.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 05/20/2023]
Abstract
Systematically evaluation of the metabolism, distribution and effect of imidacloprid in Chinese lizards (Eremias argus) were carried out following oral exposure. Imidacloprid-olefin-guanidine was prone to accumulate in the brain and caused potential neurotoxicity. Percutaneous and excretory excretions were the primary ways for the elimination of imidacloprid and its metabolites. Liver was the main site for hydroxy reduction and nitro-reduction metabolism of imidacloprid. The metabolism of imidacloprid was a complex process in which many metabolic enzymes participated. Aldehyde oxidase and CYP2C9 were the key enzymes in nitro-reduction process. CYP3A4 dominated the process of hydroxylation and desaturation. The increase in Glutathione S-transferase expression may be related to the removal of imidacloprid, but also related to the oxidative stress reaction that imidacloprid may cause in tissues, especially in the kidney. The findings enrich and supplement the knowledge of the environmental fate of imidacloprid in reptiles.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China.
| | - Yongtao Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China
| | - Xiangyun Wang
- Zhejiang Academy of Agricultural Sciences Institute of Agricultural Products Quality Standard, 198 Shiqiao Road, Hangzhou, Zhejiang 310021, PR China
| |
Collapse
|
15
|
Wang Y, Han Y, Xie Y, Xu P, Li W. The metabolism distribution and effect of dinotefuran in Chinese lizards (Eremias argus). CHEMOSPHERE 2018; 211:591-599. [PMID: 30096572 DOI: 10.1016/j.chemosphere.2018.07.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
The Chinese lizards (Eremias argus) were used to evaluate the metabolism, distribution and effect of dinotefuran following oral exposed. The HPLC equipped with Q Exactive focus was used for metabolite identification and concentration analysis. After single oral administration, the time-concentration curves of dinotefuran and its metabolites were tissue-dependent. The liver and kidney were the major metabolic organs. Percutaneous and urinary excretions were the main ways for lizards to eliminate dinotefuran, and the urine output was the limiting factor. Nitro-reduction was an important process of the metabolism of dinotefuran that was dominated by aldehyde oxidase, and P450 enzymes were involved. The CYP3A4 and CYP2C19 played a crucial role in the other metabolic pathways of dinotefuran. The mRNA expressions of GST family were severely inhibited in liver, which showed dinotefuran might pose a risk of damaging the oxidative stress system in liver. Prolonged residuals of dinotefuran and its demethylation metabolite might enhance the risk of dinotefuran to brain. The results enrich and supplement the knowledge of the environmental fate of dinotefuran in reptiles.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China.
| | - Yongtao Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Yun Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China
| |
Collapse
|
16
|
Byholm P, Mäkeläinen S, Santangeli A, Goulson D. First evidence of neonicotinoid residues in a long-distance migratory raptor, the European honey buzzard (Pernis apivorus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:929-933. [PMID: 29929331 DOI: 10.1016/j.scitotenv.2018.05.185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 05/15/2023]
Abstract
The evidence of negative impacts of agricultural pesticides on non-target organisms is constantly growing. One of the most widely used group of pesticides are neonicotinoids, used in treatments of various plants, e.g. oilseed crops, corn and apples, to prevent crop damage by agricultural insect pests. Treatment effects have been found to spill over to non-target insects, such as bees, and more recently also to other animal groups, among them passerine birds. Very little is known, however, on the presence of neonicotinoids in other wild species at higher trophic levels. We present results on the presence of neonicotinoid residues in blood samples of a long-distant migratory food-specialist raptor, the European honey buzzard. Further, we investigate the spatial relationship between neonicotinoid residue prevalence in honey buzzards with that of crop fields where neonicotinoids are typically used. A majority of all blood samples contained neonicotinoids, thiacloprid accounting for most of the prevalence. While neonicotinoid residues were detected in both adults and nestlings, the methodological limit of quantification was exceeded only in nestlings. Neonicotinoids were present in all sampled nests. Neonicotinoid presence in honey buzzard nestlings' blood matched spatially with the presence of oilseed plant fields. These are the first observations of neonicotinoids in a diurnal raptor. For better understanding the potential negative sub-lethal of neonicotinoids in wild vertebrates, new (experimental) studies are needed.
Collapse
Affiliation(s)
- Patrik Byholm
- Novia University of Applied Sciences, Raseborgsvägen 9, FI-10600 Ekenäs, Finland.
| | - Sanna Mäkeläinen
- Finnish Museum of Natural History Luomus, P.O. Box 17 (P. Rautatiekatu 13), University of Helsinki, FI-00014, Finland
| | - Andrea Santangeli
- Finnish Museum of Natural History Luomus, P.O. Box 17 (P. Rautatiekatu 13), University of Helsinki, FI-00014, Finland
| | - Dave Goulson
- School of Life Sciences, University of Sussex, BN1 9RH Brighton, United Kingdom
| |
Collapse
|
17
|
Wang Y, Zhang Y, Xu P, Guo B, Li W. Metabolism Distribution and Effect of Thiamethoxam after Oral Exposure in Mongolian Racerunner ( Eremias argus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7376-7383. [PMID: 29923398 DOI: 10.1021/acs.jafc.8b02102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Systematic evaluation of the metabolism, distribution, and effect of thiamethoxam in Mongolian racerunner ( Eremias argus) was carried out after oral exposure. HPLC equipped with Q Exactive focus was used for identification and concentration analysis of thiamethoxam and its metabolites. Percutaneous and urine excretions were the primary ways for the elimination of thiamethoxam and its metabolites, and the limiting factor was urine output. Demethylated thiamethoxam and clothianidin were the main metabolites of thiamethoxam in lizards. CYP3A4, CYP3A7, and CYP2C9 played a crucial role in the metabolism process. Aldehyde oxidase only dominated the nitro-reduction process of demethylated thiamethoxam and clothianidin. Glutathione S-transferase might be related to the clearance process of thiamethoxam and its metabolites. The findings indicated that thiamethoxam might pose potential carcinogenic and hepatic injury risk to lizards. The results enrich and supplement the knowledge of the environmental fate of thiamethoxam in reptiles.
Collapse
Affiliation(s)
- Yinghuan Wang
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Haidian District, Beijing , 100085 , P.R. China
| | - Yang Zhang
- Benxi institute for Drug Control , No. 31 Shengli Road , Mingshan District, Benxi 117000 , P.R. China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Haidian District, Beijing , 100085 , P.R. China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Haidian District, Beijing , 100085 , P.R. China
| | - Wei Li
- Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Haidian District, Beijing , 100085 , P.R. China
| |
Collapse
|
18
|
Dick RA. Refinement of In Vitro Methods for Identification of Aldehyde Oxidase Substrates Reveals Metabolites of Kinase Inhibitors. Drug Metab Dispos 2018; 46:846-859. [DOI: 10.1124/dmd.118.080960] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/30/2018] [Indexed: 01/08/2023] Open
|
19
|
Vardavas AI, Ozcagli E, Fragkiadaki P, Stivaktakis PD, Tzatzarakis MN, Alegakis AK, Vasilaki F, Kaloudis K, Tsiaoussis J, Kouretas D, Tsitsimpikou C, Carvalho F, Tsatsakis AM. The metabolism of imidacloprid by aldehyde oxidase contributes to its clastogenic effect in New Zealand rabbits. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:26-32. [PMID: 29704990 DOI: 10.1016/j.mrgentox.2018.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 11/20/2022]
Abstract
Imidacloprid (IMI) is a systemic, chloro-nicotinyl insecticide classified in Regulation N° 1272/2008 of the European Commision as "harmful if swallowed and very toxic to aquatic life, with long-lasting effects". IMI is metabolized in vitro both by aldehyde oxidase (AOX) (reduction) and by cytochrome P450s enzymes (CYPs). In the present study, the AOX inhibitor sodium tungstate dihydrate (ST) was used to elucidate the relative contribution of CYP 450 and AOX metabolic pathways on IMI metabolism, in male rabbits exposed to IMI for two months. To evaluate the inhibition effectiveness, various metabolite concentrations in the IMI and IMI + ST exposed groups were monitored. DNA damage was also evaluated in micronucleus (MN) and single cell electrophoresis (SCGC) assays in both groups, along with oxidative stress (OS) with the inflammatory status of the exposed animals, in order to clarify which metabolic pathway is more detrimental in this experimental setting. A significant increase in the frequency of binucleated cells with MN (BNMN, 105%) and micronuclei (MN, 142%) was observed after exposure to IMI (p < 0.001). The increase in the ST co-exposed animals was less pronounced (BNMN 75%, MN 95%). The Cytokinesis Block Proliferation Index (CBPI) showed no significant difference between controls and exposed animals at any time of exposure (p > 0.05), which indicates no cytotoxic effect. Similarly, comet results show that the IMI group exhibited the highest achieved tail intensity, which reached 70.7% over the control groups, whereas in the IMI + ST groups the increase remained at 48.5%. No differences were observed between all groups for oxidative-stress biomarkers. The results indicate that the AOX metabolic pathway plays a more important role in the systemic toxicity of IMI.
Collapse
Affiliation(s)
- Alexander I Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Eren Ozcagli
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey
| | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Polychronis D Stivaktakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Manolis N Tzatzarakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Athanasios K Alegakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Fotini Vasilaki
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Kostas Kaloudis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - John Tsiaoussis
- Laboratory of Anatomy, Medical School, University of Crete, Voutes, 71110 Heraklion, Crete, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Aiolou, 41221 Larissa, Greece
| | - Christina Tsitsimpikou
- General Chemical State Laboratory of Greece, Department of Hazardous Substances, Mixtures and Articles, 16 An. Tsocha, 1152 Athens, Greece
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece.
| |
Collapse
|
20
|
Frew JA, Brown JT, Fitzsimmons PN, Hoffman AD, Sadilek M, Grue CE, Nichols JW. Toxicokinetics of the neonicotinoid insecticide imidacloprid in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 2018; 205:34-42. [PMID: 29378254 PMCID: PMC5847319 DOI: 10.1016/j.cbpc.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/28/2022]
Abstract
Studies were conducted to determine the distribution and elimination of imidacloprid (IMI) in rainbow trout. Animals were injected with a low (47.6 μg/kg), medium (117.5 μg/kg) or high (232.7 μg/kg) dose directly into the bloodstream and allowed to depurate. The fish were then sampled to characterize the loss of IMI from plasma and its appearance in expired water (all dose groups) and urine (medium dose only). In vitro biotransformation of IMI was evaluated using trout liver S9 fractions. Mean total clearance (CLT) values determined by non-compartmental analysis of plasma time-course data were 21.8, 27.0 and 19.5 mL/h/kg for the low, medium and high dose groups, respectively. Estimated half-lives for the same groups were 67.0, 68.4 and 68.1 h, while fitted values for the steady-state volume of distribution (VSS) were 1.72, 2.23 and 1.81 L/kg. Branchial elimination rates were much lower than expected, suggesting that IMI is highly bound in blood. Renal clearance rates were greater than measured rates of branchial clearance (60% of CLT in the medium dose group), possibly indicating a role for renal membrane transporters. There was no evidence for hepatic biotransformation of IMI. Collectively, these findings suggest that IMI would accumulate in trout in continuous waterborne exposures.
Collapse
Affiliation(s)
- John A Frew
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 19195-5020, United States.
| | - Jacob T Brown
- College of Pharmacy, University of Minnesota, Life Science 232, 1110 Kirby Drive, Duluth, MN 55812-3003, United States
| | - Patrick N Fitzsimmons
- Mid-Continent Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, United States
| | - Alex D Hoffman
- Mid-Continent Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, United States
| | - Christian E Grue
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 19195-5020, United States
| | - John W Nichols
- Mid-Continent Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, United States
| |
Collapse
|
21
|
Casida JE. Neonicotinoids and Other Insect Nicotinic Receptor Competitive Modulators: Progress and Prospects. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:125-144. [PMID: 29324040 DOI: 10.1146/annurev-ento-020117-043042] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Neonicotinoids (neonics) are remarkably effective as plant systemics to control sucking insects and for flea control on dogs and cats. The nitroimines imidacloprid, clothianidin, thiamethoxam, and dinotefuran are the leaders among the seven commercial neonics that also include the nitromethylene nitenpyram, the nitromethylene-derived cycloxaprid, and the cyanoimines acetamiprid and thiacloprid. Honey bees are highly sensitive to the nitroimines and nitromethylenes, but the cyanoimines are less toxic. All neonics are nicotinic acetylcholine receptor (nAChR) agonists with a common mode of action, target-site cross-resistance, and much higher potency on insect than mammalian nAChRs at defined binding sites. The structurally related sulfoximine sulfoxaflor and butenolide flupyradifurone are also nAChR agonists, and the mesoionic triflumezopyrim is a nAChR competitive modulator with little or no target-site cross-resistance. Some neonics induce stress tolerance in plants via salicylate-associated systems. The neonics in general are readily metabolized and, except for pollinators, have favorable toxicological profiles.
Collapse
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720;
| |
Collapse
|
22
|
Wang X, Anadón A, Wu Q, Qiao F, Ares I, Martínez-Larrañaga MR, Yuan Z, Martínez MA. Mechanism of Neonicotinoid Toxicity: Impact on Oxidative Stress and Metabolism. Annu Rev Pharmacol Toxicol 2017; 58:471-507. [PMID: 28968193 DOI: 10.1146/annurev-pharmtox-010617-052429] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thousands of tons of neonicotinoids are widely used around the world as broad-spectrum systemic insecticides and veterinary drugs. Researchers originally thought that neonicotinoids exhibited low mammalian toxicity. However, following their widespread use, it became increasingly evident that neonicotinoids could have various toxic effects on vertebrates and invertebrates. The primary focus of this review is to summarize the research progress associated with oxidative stress as a plausible mechanism for neonicotinoid-induced toxicity as well as neonicotinoid metabolism. This review summarizes the research conducted over the past decade into the production of reactive oxygen species, reactive nitrogen species, and oxidative stress as aresult of neonicotinoid treatments, along with their correlation with the toxicity and metabolism of neonicotinoids. The metabolism of neonicotinoids and protection of various compounds against neonicotinoid-induced toxicity based on their antioxidative effects is also discussed. This review sheds new light on the critical roles of oxidative stress in neonicotinoid-induced toxicity to nontarget species.
Collapse
Affiliation(s)
- Xu Wang
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; .,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Arturo Anadón
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové 50003, Czech Republic
| | - Fang Qiao
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María-Rosa Martínez-Larrañaga
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; .,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei 430070, China
| | - María-Aránzazu Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
23
|
Sebbag L, Thomasy SM, Woodward AP, Knych HK, Maggs DJ. Pharmacokinetic modeling of penciclovir and BRL42359 in the plasma and tears of healthy cats to optimize dosage recommendations for oral administration of famciclovir. Am J Vet Res 2016; 77:833-45. [DOI: 10.2460/ajvr.77.8.833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Lu TQ, Mao SY, Sun SL, Yang WL, Ge F, Dai YJ. Regulation of Hydroxylation and Nitroreduction Pathways during Metabolism of the Neonicotinoid Insecticide Imidacloprid by Pseudomonas putida. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4866-4875. [PMID: 27230024 DOI: 10.1021/acs.jafc.6b01376] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Imidacloprid (IMI) is mainly metabolized via nitroreduction and hydroxylation pathways, which produce different metabolites that are toxic to mammals and insects. However, regulation of IMI metabolic flux between nitroreduction and hydroxylation pathways is still unclear. In this study, Pseudomonas putida was found to metabolize IMI to 5-hydroxy and nitroso IMI and was therefore used for investigating the regulation of IMI metabolic flux. The cell growth time, cosubstrate, dissolved oxygen concentration, and pH showed significant effect on IMI degradation and nitroso and 5-hydroxy IMI formation. Gene cloning and overexpression in Escherichia coli proved that P. putida KT2440 aldehyde oxidase mediated IMI nitroreduction to nitroso IMI, while cytochrome P450 monooxygenase (CYP) failed to improve IMI hydroxylation. Moreover, E. coli cells without CYP could hydroxylate IMI, demonstrating the role of a non-CYP enzyme in IMI hydroxylation. Thus, the present study helps to further understand the environmental fate of IMI and its underlying mechanism.
Collapse
Affiliation(s)
- Tian-Qi Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Shi-Yun Mao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Shi-Lei Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Wen-Long Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences , Ministry of Environmental Protection, Nanjing 210042, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University , Nanjing 210023, People's Republic of China
| |
Collapse
|
25
|
Thomasy SM, Maggs DJ. A review of antiviral drugs and other compounds with activity against feline herpesvirus type 1. Vet Ophthalmol 2016; 19 Suppl 1:119-30. [PMID: 27091747 DOI: 10.1111/vop.12375] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Feline herpesvirus type 1 (FHV-1) is a common and important cause of ocular surface disease, dermatitis, respiratory disease, and potentially intraocular disease in cats. Many antiviral drugs developed for the treatment of humans infected with herpesviruses have been used to treat cats infected with FHV-1. Translational use of drugs in this manner ideally requires methodical investigation of their in vitro efficacy against FHV-1 followed by pharmacokinetic and safety trials in normal cats. Subsequently, placebo-controlled efficacy studies in experimentally inoculated animals should be performed followed, finally, by carefully designed and monitored clinical trials in client-owned animals. This review is intended to provide a concise overview of the available literature regarding the efficacy of antiviral drugs and other compounds with proven or putative activity against FHV-1, as well as a discussion of their safety in cats.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - David J Maggs
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
26
|
Bianchi J, Fernandes TCC, Marin-Morales MA. Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. CHEMOSPHERE 2016; 144:475-483. [PMID: 26386773 DOI: 10.1016/j.chemosphere.2015.09.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/18/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
To evaluate the cytotoxic and genotoxic effects of low concentrations of pesticides in non-target organisms, seeds of Allium cepa were exposed for 24 h to the imidacloprid insecticide, sulfentrazone herbicide and to the mixture of them, followed by recovery periods of 48 and 72 h. Imidacloprid results indicated an indirect genotoxic effect by inducing different types of chromosome aberration (CA), mainly bridges and chromosomal adherences. Cells with micronucleus (MN) were not significant in the analyzed meristems. Moreover, the 72-h recovery tests indicated that the two lower concentrations of the insecticide (0.036 and 0.36 g L(-1)) had their genotoxic effects minimized after discontinuation of treatment, differently to the observed for the field concentration (3.6 g L(-1)). Sulfentrazone herbicide at field concentration (6 g L(-1)) caused cytotoxic effects by inducing nuclear fragmentation and inhibition of cell division. The other concentrations (0.06, 0.6 and 1.2 g L(-1)) indicated genotoxic effects for this herbicide. The concentration of 0.06 g L(-1) induced persistent effects that could be visualized both by the induction of CA in the recovery times as by the presence of MN in meristematic and F1 cells. The induction of MN by this lowest concentration was associated with the great amount of breakage, losses and chromosomal bridges. The mixture of pesticides induced genotoxic and cytotoxic effects, by reducing the MI of the cells. The chromosomal damage induced by the mixture of pesticides was not persistent to the cells, since such damage was minimized 72 h after the interruption of the exposure.
Collapse
Affiliation(s)
- Jaqueline Bianchi
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, Brazil.
| | | | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, Brazil.
| |
Collapse
|
27
|
Gookin JL, Correa MT, Peters A, Malueg A, Mathews KG, Cullen J, Seiler G. Association of Gallbladder Mucocele Histologic Diagnosis with Selected Drug Use in Dogs: A Matched Case-Control Study. J Vet Intern Med 2015; 29:1464-72. [PMID: 26478445 PMCID: PMC4895658 DOI: 10.1111/jvim.13649] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 09/03/2015] [Accepted: 09/17/2015] [Indexed: 02/04/2023] Open
Abstract
Background The cause of gallbladder mucocele (GBM) formation in dogs currently is unknown. Many available drugs represent a newer generation of xenobiotics that may predispose dogs to GBM formation. Objective To determine if there is an association between the histologic diagnosis of GBM in dogs and administration of selected drugs. Animals Eighty‐one dogs with a histologic diagnosis of GBM and 162 breed, age, and admission date‐matched control dogs from a single referral institution. Methods Medical records of dogs with GBM and control dogs from 2001 to 2011 were reviewed. Owner verification of drug history was sought by a standard questionnaire. Reported use of heartworm, flea, and tick preventatives as well as nonsteroidal anti‐inflammatory drugs, analgesics, corticosteroids, or medications for treatment of osteoarthritis was recorded. Results Dogs with GBM were 2.2 times as likely to have had reported use of thyroxine (as a proxy for the diagnosis of hypothyroidism) as control dogs (95% confidence interval [CI], 0.949–5.051), 3.6 times as likely to have had reported treatment for Cushing's disease (95% CI, 1.228–10.612), and 2.3 times as likely to have had reported use of products containing imidacloprid (95% CI, 1.094–4.723). Analysis of a data subset containing only Shetland sheepdogs (23 GBM and 46 control) indicated that Shetland sheepdogs with GBM formation were 9.3 times as likely to have had reported use of imidacloprid as were control Shetland sheepdogs (95% CI, 1.103–78.239). Conclusions and Clinical Importance This study provides evidence for an association between selected drug use and GBM formation in dogs. A larger epidemiologic study of Shetland sheepdogs with GBM formation and exposure to imidacloprid is warranted.
Collapse
Affiliation(s)
- J L Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - M T Correa
- Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - A Peters
- The Veterinary Hospital, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - A Malueg
- The Veterinary Hospital, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - K G Mathews
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - J Cullen
- Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | - G Seiler
- Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| |
Collapse
|
28
|
Bianchi J, Cabral-de-Mello DC, Marin-Morales MA. Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:174-183. [PMID: 26074310 DOI: 10.1016/j.ecoenv.2015.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The insecticide imidacloprid and the herbicide sulfentrazone are two different classes of pesticides that are used for pest control in sugarcane agriculture. To evaluate the genotoxic potential of low concentrations of these two pesticides alone and in mixture, the comet assay and the micronucleus (MN) test employing fluorescence in situ hybridization (FISH) with a centromeric probe were applied in human hepatoma cell lines (HepG2), in a 24-h assay. Mutagenicity was assessed by Salmonella/microsome assay with TA98 and TA100 strains in the absence and presence of an exogenous metabolizing system (S9). The results showed significant inductions of MN in HepG2 cells by both pesticides, for all the tested concentrations. As evidenced in the comet assay, only the imidacloprid presented significant responses. When the two pesticides were associated, a significant induction of damage was observed in the HepG2 cells by the comet assay, but not by the MN test. Moreover, the MN induced by the mixtures of the pesticides appeared at lower levels than those induced by sulfentrazone and imidacloprid when tested alone. According to the FISH results, the damage induced by imidacloprid in the HepG2 cells resulted from a clastogenic action of this insecticide (76.6% of the MN did not present a centromeric signal). For the herbicide sulfentrazone and for the mixture of the pesticides, a similar frequency of MN with and without the presence of the centromeric signal (herbicide: 52.45% of the MN without centromeric signal and 47.54% of the MN with centromeric signal; mixture: 48.71% of the MN without centromeric signal and 51.42% of the MN with centromeric signal) was verified. Based on these results, it was concluded that each one of the pesticides evaluated interacts with the DNA of HepG2 cells and causes irreparable alterations in the cells. However, the combination of the pesticides showed an antagonistic effect on the cells and the damage induced was milder and not persistent in HepG2 cells. The results obtained by the Ames test did not point out significant results.
Collapse
Affiliation(s)
- Jaqueline Bianchi
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo CEP 13506-900, Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo CEP 13506-900, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo CEP 13506-900, Brazil.
| |
Collapse
|
29
|
Arslan M, Sevgiler Y, Buyukleyla M, Yardimci M, Yilmaz M, Rencuzogullari E. Sex-related effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part II: genotoxic and cytotoxic potential. Drug Chem Toxicol 2015; 39:81-6. [DOI: 10.3109/01480545.2015.1029049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Ford KA, Ryslik G, Sodhi J, Halladay J, Diaz D, Dambach D, Masuda M. Computational predictions of the site of metabolism of cytochrome P450 2D6 substrates: comparative analysis, molecular docking, bioactivation and toxicological implications. Drug Metab Rev 2015; 47:291-319. [DOI: 10.3109/03602532.2015.1047026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Litster A, Lohr B, Bukowy R, Thomasy S, Maggs D. Clinical and antiviral effect of a single oral dose of famciclovir administered to cats at intake to a shelter. Vet J 2015; 203:199-204. [DOI: 10.1016/j.tvjl.2014.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/17/2014] [Accepted: 11/20/2014] [Indexed: 01/25/2023]
|
32
|
Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 2015; 30:52-63. [DOI: 10.1016/j.dmpk.2014.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
|
33
|
Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, Van der Sluijs JP, Whitehorn PR, Wiemers M. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5-34. [PMID: 25233913 PMCID: PMC4284386 DOI: 10.1007/s11356-014-3470-y] [Citation(s) in RCA: 965] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/15/2014] [Indexed: 04/15/2023]
Abstract
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Collapse
Affiliation(s)
- N Simon-Delso
- Environmental Sciences, Copernicus Institute, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Barr JT, Choughule K, Jones JP. Enzyme kinetics, inhibition, and regioselectivity of aldehyde oxidase. Methods Mol Biol 2014; 1113:167-186. [PMID: 24523113 DOI: 10.1007/978-1-62703-758-7_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aldehyde oxidase (AO) enzyme family plays an increasing role in drug development. However, a number of compounds that are AO substrates have failed in the clinic because the clearance or toxicity is underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. While AOs normally make non-reactive metabolites such as lactams, the metabolic products often have much lower solubility that can lead to renal failure. While an endogenous substrate for the oxidation reaction is not known, electron acceptors for the reductive part of the reaction include oxygen and nitrites. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion, and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. To date, no clinically important drug-drug interactions (DDIs) have been observed for AOs. However, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- John T Barr
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|
35
|
Kavvalakis MP, Tzatzarakis MN, Theodoropoulou EP, Barbounis EG, Tsakalof AK, Tsatsakis AM. Development and application of LC–APCI–MS method for biomonitoring of animal and human exposure to imidacloprid. CHEMOSPHERE 2013; 93:2612-2620. [PMID: 24344394 DOI: 10.1016/j.chemosphere.2013.09.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Imidacloprid (IMI) is a relatively new neuro-active neonicotinoid insecticide and nowadays one of the largest selling insecticides worldwide. In the present study a LC–APCI–MS based method was developed and validated for the quantification of imidacloprid and its main metabolite 6-chloronicotinic acid (6- CINA) in urine and hair specimens. The method was tested in biomonitoring of intentionally exposed animals and subsequently applied for biomonitoring of Cretan urban and rural population. The developed analytical method comprises two main steps of analytes isolation from specimen (solid– liquid extraction with methanol for hair, liquid–liquid extraction with methanol for urine) and subsequent instrumental analysis by LC–APCI–MS. The developed method was applied for the monitoring of IMI and 6-ClNA in hair and urine of laboratory animals (rabbits) intentionally fed with insecticide at low or high doses (40 and 80 mg kg(-1) weight d(-1) respectively) for 24 weeks. The analytes were detected in the regularly acquired hair and urine specimens and their found levels were proportional to the feeding dose and time of exposure with the exception of slight decline of IMI levels in high dose fed rabbits after 24 weeks of feeding. This decline can be explained by the induction of IMI metabolizing enzymes by the substrate. After testing on animal models the method was applied for pilot biomonitoring of Crete urban (n = 26) and rural (n = 32) population. Rural but not urban population is exposed to IMI with 21 positive samples (65.6%) and found median concentration 0.03 ng mg(-1). Maximum concentration detected was 27 ng mg(-1)
Collapse
|
36
|
Groth AD, Contreras MT, Kado-Fong HK, Nguyen KQ, Thomasy SM, Maggs DJ. In vitrocytotoxicity and antiviral efficacy against feline herpesvirus type 1 of famciclovir and its metabolites. Vet Ophthalmol 2013; 17:268-74. [DOI: 10.1111/vop.12094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Allyson D. Groth
- Veterinary Medical Teaching Hospital; University of California, Davis; Davis CA 95616 USA
| | - Marcos T. Contreras
- Department of Clinical Pharmacy; University of California, San Francisco; San Francisco CA 94143 USA
| | - Helen K. Kado-Fong
- Department of Surgical and Radiological Sciences; University of California, Davis; Davis CA 95616 USA
| | - Kyvan Q. Nguyen
- Department of Clinical Pharmacy; University of California, San Francisco; San Francisco CA 94143 USA
| | - Sara M. Thomasy
- Veterinary Medical Teaching Hospital; University of California, Davis; Davis CA 95616 USA
| | - David J. Maggs
- Department of Surgical and Radiological Sciences; University of California, Davis; Davis CA 95616 USA
| |
Collapse
|
37
|
Swenson TL, Casida JE. Aldehyde Oxidase Importance In Vivo in Xenobiotic Metabolism: Imidacloprid Nitroreduction in Mice. Toxicol Sci 2013; 133:22-8. [DOI: 10.1093/toxsci/kft066] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Different utilizable substrates have different effects on cometabolic fate of imidacloprid in Stenotrophomonas maltophilia. Appl Microbiol Biotechnol 2012; 97:6537-47. [PMID: 23053094 DOI: 10.1007/s00253-012-4444-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
Imidacloprid, the largest selling insecticide in the world, is more stable in soil, and its environmental residue and effects are attracting people's close attention. One of imidacloprid metabolism pathways was degraded to CO2 through olefin imidacloprid pathway. Here, we report that sucrose as a utilizable substrate enhanced the cometabolism of imidacloprid by Stenotrophomonas maltophilia CGMCC 1.1788 to produce 5-hydroxy imidacloprid, whereas when succinate was used as a utilizable substrate, 5-hydroxy imidacloprid from imidacloprid was transformed to olefin imidacloprid, and the latter was further degraded. The hydroxylation of imidacloprid required NAD(P)H, whereas the dehydration of 5-hydroxy imidacloprid to form olefin imidacloprid required succinate rather than NAD(P)H. NADPH greatly favored the hydroxylation of imidacloprid more than NADH, and NADPH inhibited the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid, but NADH did not. Therefore, sucrose may be metabolized through hexose monophosphate pathway to produce mainly NADPH which participated in the hydroxylation of imidacloprid to 5-hydroxy imidacloprid and meanwhile inhibited the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid, whereas succinate may be metabolized mainly through the tricarboxylic acid cycle to produce NADH which was involved in hydroxylation of imidacloprid to 5-hydroxy imidacloprid but did not inhibit the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid. Our results have a significant meaning in further understanding the influence of different utilizable substrates on the cometabolic pathways and the fate of environmental imidacloprid.
Collapse
|
39
|
Thomasy SM, Whittem T, Bales JL, Ferrone M, Stanley SD, Maggs DJ. Pharmacokinetics of penciclovir in healthy cats following oral administration of famciclovir or intravenous infusion of penciclovir. Am J Vet Res 2012; 73:1092-9. [DOI: 10.2460/ajvr.73.7.1092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Ford KA, Gulevich AG, Swenson TL, Casida JE. Neonicotinoid insecticides: oxidative stress in planta and metallo-oxidase inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4860-7. [PMID: 21476569 DOI: 10.1021/jf200485k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neonicotinoids not only control insect pests but also sometimes independently alter plant growth and response to stress. We find that imidacloprid, thiacloprid, acetamiprid, thiamethoxam, and clothianidin but not nitenpyram and dinotefuran induce foliar lesions and peroxidative damage in soybean ( Glycine max ) seedlings assayed with the 3,3'-diaminobenzidine stain. The chloropyridinyl-carboxylic acid (COOH) but not the -carboxaldehyde (CHO) metabolites induce peroxidative damage but in a different pattern. Surprisingly, the chlorothiazolyl -CHO and -COOH metabolites induce chlorosis but no clear superimposable peroxidative damage or cell death. Four metallo-oxidases known to modulate reactive oxygen species were not sensitive in vitro to the parent neonicotinoid itself but were to several CHO and COOH metabolites and related compounds, with a sensitivity order of CHO > COOH and tyrosinase > xanthine oxidase and aldehyde oxidase > catalase. Although metallo-oxidase inhibition does not correlate overall with lesion formation, it may play an as yet unknown role in plant response to neonicotinoids.
Collapse
Affiliation(s)
- Kevin A Ford
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, United States
| | | | | | | |
Collapse
|
41
|
Casida JE. Neonicotinoid metabolism: compounds, substituents, pathways, enzymes, organisms, and relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2923-2931. [PMID: 20731358 DOI: 10.1021/jf102438c] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Neonicotinoids are one of the three principal insecticide chemotypes. The seven major commercial neonicotinoids are readily biodegraded by metabolic attack at their N-heterocyclylmethyl moiety, heterocyclic or acyclic spacer, and N-nitroimine, nitromethylene, or N-cyanoimine tip. Phase I metabolism is largely dependent on microsomal CYP450 isozymes with situ selectivity in hydroxylation, desaturation, dealkylation, sulfoxidation, and nitro reduction. Cytosolic aldehyde oxidase is a nitroreductase for some neonicotinoids. Phase II metabolism involves methylation, acetylation, and formation of glucuronide, glucoside, amino acid, and sulfate- and glutathione-derived conjugates. Some neonicotinoids act as proinsecticides with metabolism to more potent nicotinic agonists. Pest resistance is more commonly due to synergist-reversible CYP450 detoxification than to nAChR mutants or variants. Metabolites in some cases contribute to mammalian hepatotoxicity and carcinogenesis and in others to enhanced plant vigor and stress shields. These relationships explain much of neonicotinoid comparative toxicology and provide the basis for continued and improved safety and effectiveness of this chemotype.
Collapse
Affiliation(s)
- John E Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA.
| |
Collapse
|
42
|
|
43
|
Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran TD. Aldehyde Oxidase: An Enzyme of Emerging Importance in Drug Discovery. J Med Chem 2010; 53:8441-60. [DOI: 10.1021/jm100888d] [Citation(s) in RCA: 282] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David C. Pryde
- WorldWide Medicinal Chemistry, Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, England
| | - Deepak Dalvie
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, 10628 Science Center Drive, La Jolla, California 92121
| | - Qiyue Hu
- WorldWide Medicinal Chemistry, Pfizer Global Research and Development, 10628 Science Center Drive, La Jolla, California 92121
| | - Peter Jones
- WorldWide Medicinal Chemistry, Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, England
| | - R. Scott Obach
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340
| | - Thien-Duc Tran
- WorldWide Medicinal Chemistry, Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, England
| |
Collapse
|
44
|
Dai YJ, Ji WW, Chen T, Zhang WJ, Liu ZH, Ge F, Yuan S. Metabolism of the Neonicotinoid insecticides acetamiprid and thiacloprid by the yeast Rhodotorula mucilaginosa strain IM-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2419-25. [PMID: 20112912 DOI: 10.1021/jf903787s] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A yeast identified as Rhodotorula mucilaginosa strain IM-2 was able to degrade acetamiprid (AAP) and thiacloprid (THI) in sucrose mineral salt medium with half-lives of 3.7 and 14.8 days, respectively, while it did not degrade imidacloprid and imidaclothiz. Identification of metabolites indicated that R. mucilaginosa IM-2 selectively converted AAP and THI by hydrolysis of AAP to form an intermediate metabolite IM 1-3 and hydrolysis of THI to form an amide derivative, respectively. Metabolite IM 1-3 had no insecticidal activity, while the THI amide showed considerable insecticidal activity but was 15.6 and 38.6 times lower than the parent THI following oral ingestion and a contact test against the horsebean aphid Aphis craccivora , respectively. The inoculated R. mucilaginosa IM-2 displayed biodegradability of AAP and THI in clay soils.
Collapse
Affiliation(s)
- Yi-Jun Dai
- Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Yeh IJ, Lin TJ, Hwang DY. Acute multiple organ failure with imidacloprid and alcohol ingestion. Am J Emerg Med 2010; 28:255.e1-3. [DOI: 10.1016/j.ajem.2009.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/15/2009] [Indexed: 11/16/2022] Open
|
46
|
|
47
|
Shi X, Dick RA, Ford KA, Casida JE. Enzymes and inhibitors in neonicotinoid insecticide metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4861-6. [PMID: 19391582 PMCID: PMC2698011 DOI: 10.1021/jf900250f] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19, and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19, and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than it does that of TMX. Imidacloprid (IMI), CLO, and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI, and 4-hydroxythiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid, and CLO metabolism in vivo in mice, elevating brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites.
Collapse
Affiliation(s)
- Xueyan Shi
- Department of Environmental Science, Environmental Chemistry and Toxicology Laboratory, University of California, Berkeley, California 94720-3112, USA
| | | | | | | |
Collapse
|
48
|
Pandey G, Dorrian SJ, Russell RJ, Oakeshott JG. Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem Biophys Res Commun 2009; 380:710-4. [PMID: 19285027 DOI: 10.1016/j.bbrc.2009.01.156] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
We report the isolation of a Pseudomonas sp. which is able to transform imidacloprid and thiamethoxam under microaerophilic conditions in the presence of an alternate carbon source. This bacterium, Pseudomonas sp. 1G, was isolated from soil with a history of repeated exposure to imidacloprid. Both insecticides were transformed to nitrosoguanidine (NNO), desnitro (NH), and urea (O) metabolites and a transformation pathway is proposed. This is the first conclusive report of bacterial transformation of the 'magic nitro' group which is responsible for the insect selectivity of neonicotinoid insecticides.
Collapse
Affiliation(s)
- Gunjan Pandey
- CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
49
|
Lopes RP, de Urzedo APFM, Nascentes CC, Augusti R. Degradation of the insecticides thiamethoxam and imidacloprid by zero-valent metals exposed to ultrasonic irradiation in water medium: electrospray ionization mass spectrometry monitoring. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3472-3480. [PMID: 18853392 DOI: 10.1002/rcm.3749] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The degradation of thiamethoxam (1) and imidacloprid (2), prototype neonicotinoid insecticides bearing a characteristic N-NO2 moiety in their structures, promoted by a number of zero-valent metals (Fe, Sn, Zn) upon ultrasonic irradiation in acidic aqueous solution (pH 2) was investigated. It was verified that thiamethoxam (1) and imidacloprid (2) are quickly and almost completely consumed under these experimental conditions (degradation >90% after a reaction time of 30 min) and that ultrasonic irradiation strongly enhances the degradation rate for both insecticides, especially when zinc and tin are employed. Based on the results from electrospray ionization mass (and tandem mass) spectrometry in the positive ion mode, degradation routes for both insecticides, comprising an initial NO2 --> NH2 reduction, were proposed. In addition, products from the dehydrochlorination of imidacloprid were also found to be formed under these conditions.
Collapse
Affiliation(s)
- Renata P Lopes
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte/MG, Brazil, 31270-901!
| | | | | | | |
Collapse
|
50
|
Dick RA, Kanne DB, Casida JE. Nitroso-Imidacloprid Irreversibly Inhibits Rabbit Aldehyde Oxidase. Chem Res Toxicol 2007; 20:1942-6. [DOI: 10.1021/tx700265r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan A. Dick
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112
| | - David B. Kanne
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112
| | - John E. Casida
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112
| |
Collapse
|