1
|
Zhang L, Li M, Zhang D, Yue W, Qian Z. Prioritizing of potential environmental exposure carcinogens beyond IARC group 1-2B based on weight of evidence (WoE) approach. Regul Toxicol Pharmacol 2024; 150:105646. [PMID: 38777300 DOI: 10.1016/j.yrtph.2024.105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Environmental exposures are the main cause of cancer, and their carcinogenicity has not been fully evaluated, identifying potential carcinogens that have not been evaluated is critical for safety. This study is the first to propose a weight of evidence (WoE) approach based on computational methods to prioritize potential carcinogens. Computational methods such as read across, structural alert, (Quantitative) structure-activity relationship and chemical-disease association were evaluated and integrated. Four different WoE approach was evaluated, compared to the best single method, the WoE-1 approach gained 0.21 and 0.39 improvement in the area under the receiver operating characteristic curve (AUC) and Matthew's correlation coefficient (MCC) value, respectively. The evaluation of 681 environmental exposures beyond IARC list 1-2B prioritized 52 chemicals of high carcinogenic concern, of which 21 compounds were known carcinogens or suspected carcinogens, and eight compounds were identified as potential carcinogens for the first time. This study illustrated that the WoE approach can effectively complement different computational methods, and can be used to prioritize chemicals of carcinogenic concern.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China; Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Min Li
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China; Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Dalong Zhang
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Wenbo Yue
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Zhiyong Qian
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| |
Collapse
|
2
|
Abstract
![]()
The
discovery that β-propiolactone (BPL), once a commercially
important chemical, causes various tumors in experimental animals
has led to a significant decrease in its use. However, owing to its
efficacy this possible human carcinogen remains to be utilized in
vaccines for inactivation of viruses. The focus of the current study
was to uncover the mechanisms of β-propiolactone reactions with
both nucleobases and glutathione (GSH) through computer simulations
based on quantum chemical methods. Our results, in accordance with
in vitro studies, show that among all nucleobases guanine most readily
forms adducts with BPL through SN2 reaction mechanism.
Acquired activation energies with incorporated solvent effects reveal
that alkylation represents an energetically more favorable reaction
than acylation for all nucleobases. Comparison of activation free
energies of glutathione and guanine reactions with BPL suggest that
glutathione may represent an efficient natural scavenger of BPL. Therefore,
glutathione present in the organism may provide protection to the
DNA and thus prevent BPL’s genotoxicity, mutagenicity, and
possibly even carcinogenicity.
Collapse
Affiliation(s)
- Eva Španinger
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| |
Collapse
|
3
|
Furlan V, Bren U. Protective Effects of [6]-Gingerol Against Chemical Carcinogens: Mechanistic Insights. Int J Mol Sci 2020; 21:E695. [PMID: 31973096 PMCID: PMC7037038 DOI: 10.3390/ijms21030695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
[6]-Gingerol from ginger has received considerable attention as a potential cancer therapeutic agent because of its chemopreventive and chemotherapeutic effects, as well as its safety. In the current study, we examined [6]-gingerol as a natural scavenger of nine ultimate chemical carcinogens to which we are frequently exposed: glycidamide, styrene oxide, aflatoxin B1 exo-8,9-epoxide, β-propiolactone, ethylene oxide, propylene oxide, 2-cyanoethylene oxide, chloroethylene oxide, and vinyl carbamate epoxide. To evaluate [6]-gingerol efficacy, we expanded our research with the examination of glutathione-the strongest natural scavenger in human cells. The corresponding activation free energies were calculated using Hartree-Fock method with three flexible basis sets and two implicit solvation models. According to our results, [6]-gingerol proves to be an extremely effective scavenger of chemical carcinogens of the epoxy type. On the other hand, with the exception of aflatoxin B1 exo-8,9-epoxide, glutathione represents a relatively poor scavenger, whose efficacy could be augmented by [6]-gingerol. Moreover, our quantum mechanical study of the alkylation reactions of chemical carcinogens with [6]-gingerol and glutathione provide valuable insights in the reaction mechanisms and the geometries of the corresponding transition states. Therefore, we strongly believe that our research forms a solid basis for further computational, experimental and clinical studies of anticarcinogenic properties of [6]-gingerol as well as for the development of novel chemoprophylactic dietary supplements. Finally, the obtained results also point to the applicability of quantum chemical methods to studies of alkylation reactions related to chemical carcinogenesis.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
4
|
Hostnik G, Gladović M, Bren U. Tannin Basic Building Blocks as Potential Scavengers of Chemical Carcinogens: A Computational Study. JOURNAL OF NATURAL PRODUCTS 2019; 82:3279-3287. [PMID: 31799841 DOI: 10.1021/acs.jnatprod.9b00435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tannins are natural compounds that have historically been used in the tanning of leather. In the scientific literature, one finds many reports of their possible beneficial health effects, although these are not always unequivocally confirmed. In order to gain a better insight into their proposed anticancer potential, we studied the scavenging capacity of the basic tannin building blocks against various chemical carcinogens of the epoxy type. The reactivity of gallic acid, ellagic acid, and epicathechin was examined using quantum mechanical calculations at the Hartree-Fock level of theory in conjunction with flexible basis sets and implicit solvation models. The monomeric tannin building blocks exhibited significant scavenging potential, with epicatechin presenting the best scavenger, thus encouraging and guiding future experimental studies of their anticarcinogenic properties.
Collapse
Affiliation(s)
- Gregor Hostnik
- Faculty of Chemistry and Chemical Technology , University of Maribor , Smetanova 17 , SI-2000 Maribor , Slovenia
| | - Martin Gladović
- Faculty of Chemistry and Chemical Technology , University of Maribor , Smetanova 17 , SI-2000 Maribor , Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Technology , University of Maribor , Smetanova 17 , SI-2000 Maribor , Slovenia
- National Institute of Chemistry , Hajdrihova 19 , SI-1001 Ljubljana , Slovenia
| |
Collapse
|
5
|
Grauke R, Schepper R, Rabeah J, Schoch R, Bentrup U, Bauer M, Brückner A. Impact of Al Activators on Structure and Catalytic Performance of Cr Catalysts in Homogeneous Ethylene Oligomerization – A Multitechnique
in situ/operando
Study. ChemCatChem 2019. [DOI: 10.1002/cctc.201901441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Reni Grauke
- Leibniz-Institut für Katalyse e. V. an derUniversität Rostock (LIKAT) Albert-Einstein-Str. 29a Rostock 18059 Germany
| | - Rahel Schepper
- Department Chemie and Center for Sustainable Systems Design (CSSD)Universität Paderborn Warburger Straße 100 Paderborn D-33098 Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V. an derUniversität Rostock (LIKAT) Albert-Einstein-Str. 29a Rostock 18059 Germany
| | - Roland Schoch
- Department Chemie and Center for Sustainable Systems Design (CSSD)Universität Paderborn Warburger Straße 100 Paderborn D-33098 Germany
| | - Ursula Bentrup
- Leibniz-Institut für Katalyse e. V. an derUniversität Rostock (LIKAT) Albert-Einstein-Str. 29a Rostock 18059 Germany
| | - Matthias Bauer
- Department Chemie and Center for Sustainable Systems Design (CSSD)Universität Paderborn Warburger Straße 100 Paderborn D-33098 Germany
| | - Angelika Brückner
- Leibniz-Institut für Katalyse e. V. an derUniversität Rostock (LIKAT) Albert-Einstein-Str. 29a Rostock 18059 Germany
- Department Life, Light & Matter Faculty for Interdisciplinary ResearchUniversity of Rostock Albert-Einstein-Straße 25 Rostock 18059 Germany
| |
Collapse
|
6
|
PON1 increases cellular DNA damage by lactone substrates. Arch Toxicol 2019; 93:2035-2043. [PMID: 31209508 DOI: 10.1007/s00204-019-02475-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/08/2019] [Indexed: 11/27/2022]
Abstract
Paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-associated enzyme that by hydrolysing exogenous and endogenous substrates can provide protection against substrate induced toxicity. To investigate the extent to which PON1 provides protection against lactone induced DNA damage, DNA damage was measured in HepG2 cells using the neutral Comet assay following lactone treatment in the presence and absence of exogenous recombinant PON1 (rPON1). Low dose lactones (10 mM) caused little or no damage while high doses (100 mM) induced DNA damage in the following order of potency: α-angelica lactone > γ-butyrolactone ~ γ-hexalactone > γ-heptalactone ~ γ-octaclactone ~ γ-furanone ~ γ-valerolactone > γ-decalactone. Co-incubation of 100 mM lactone with rPON1, resulted in almost all cells showing extensive DNA damage, particularly with those lactones that decreased rPON1 activity by > 25%. In contrast, with the lactones that are poor rPON1 subtrates (γ-decalactone and γ-furanone), rPON1 did not increase DNA damage. DNA damage induced by a 1 h co-treatment with 10 mM α-angelica lactone and rPON1 was reduced when cells when incubated for a further 4 h in fresh medium suggesting break formation was due to induced DNA damage rather than apoptosis. Preincubation (1-6 h) of α-angelica lactone with rPON1 in the absence of cells, decreased cellular DNA damage by around 40% in comparison to cells treated without preincubation. These results suggest that in addition to its well-recognised detoxification effects, PON1 can increase genotoxicity potentially by hydrolysing certain lactones to reactive intermediates that increase DNA damage via the formation of DNA adducts.
Collapse
|
7
|
Khalil A, Cammas-Marion S, Coulembier O. Organocatalysis applied to the ring-opening polymerization of β-lactones: A brief overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ali Khalil
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials; University of Mons, Place du Parc 23; 7000, Mons Belgium
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes; CNRS, ISCR-UMR 6226; F-35000, Rennes
| | - Sandrine Cammas-Marion
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes; CNRS, ISCR-UMR 6226; F-35000, Rennes
- Univ. Rennes, INSERM, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241; F-35000, Rennes France
| | - Olivier Coulembier
- Center of Innovation and Research in Materials and Polymers (CIRMAP), Laboratory of Polymeric and Composite Materials; University of Mons, Place du Parc 23; 7000, Mons Belgium
| |
Collapse
|
8
|
Tang X, Chen EYX. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat Commun 2018; 9:2345. [PMID: 29891896 PMCID: PMC5995816 DOI: 10.1038/s41467-018-04734-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/18/2018] [Indexed: 01/16/2023] Open
Abstract
Bacterial poly(3-hydroxybutyrate) (P3HB) is a perfectly isotactic, crystalline material possessing properties suitable for substituting petroleum plastics, but high costs and low volumes of its production are impractical for commodity applications. The chemical synthesis of P3HB via ring-opening polymerization (ROP) of racemic β-butyrolactone has attracted intensive efforts since the 1960s, but not yet produced P3HB with high isotacticity and molecular weight. Here, we report a route utilizing racemic cyclic diolide (rac-DL) derived from bio-sourced succinate. With stereoselective racemic catalysts, the ROP of rac-DL under ambient conditions produces rapidly P3HB with perfect isotacticity ([mm] > 99%), high melting temperature (Tm = 171 °C), and high molecular weight (Mn = 1.54 × 105 g mol-1, Đ = 1.01). With enantiomeric catalysts, kinetic resolution polymerizations of rac-DL automatically stops at 50% conversion and yields enantiopure (R,R)-DL and (S,S)-DL with >99% e.e. and the corresponding poly[(S)-3HB] and poly[(R)-3HB] with high Tm = 175 °C.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA.
| |
Collapse
|
9
|
Kling S, Hafezi F. An Algorithm to Predict the Biomechanical Stiffening Effect in Corneal Cross-linking. J Refract Surg 2017; 33:128-136. [DOI: 10.3928/1081597x-20161206-01] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 11/10/2016] [Indexed: 11/20/2022]
|
10
|
Lo WKC, Castillo CE, Gueret R, Fortage J, Rebarz M, Sliwa M, Thomas F, McAdam CJ, Jameson GB, McMorran DA, Crowley JD, Collomb MN, Blackman AG. Synthesis, Characterization, and Photocatalytic H2-Evolving Activity of a Family of [Co(N4Py)(X)](n+) Complexes in Aqueous Solution. Inorg Chem 2016; 55:4564-81. [PMID: 27064169 DOI: 10.1021/acs.inorgchem.6b00391] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of [Co(III)(N4Py)(X)](ClO4)n (X = Cl(-), Br(-), OH(-), N3(-), NCS(-)-κN, n = 2: X = OH2, NCMe, DMSO-κO, n = 3) complexes containing the tetrapyridyl N5 ligand N4Py (N4Py = 1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine) has been prepared and fully characterized by infrared (IR), UV-visible, and NMR spectroscopies, high-resolution electrospray ionization mass spectrometry (HRESI-MS), elemental analysis, X-ray crystallography, and electrochemistry. The reduced Co(II) and Co(I) species of these complexes have been also generated by bulk electrolyses in MeCN and characterized by UV-visible and EPR spectroscopies. All tested complexes are catalysts for the photocatalytic production of H2 from water at pH 4.0 in the presence of ascorbic acid/ascorbate, using [Ru(bpy)3](2+) as a photosensitizer, and all display similar H2-evolving activities. Detailed mechanistic studies show that while the complexes retain the monodentate X ligand upon electrochemical reduction to Co(II) species in MeCN solution, in aqueous solution, upon reduction by ascorbate (photocatalytic conditions), [Co(II)(N4Py)(HA)](+) is formed in all cases and is the precursor to the Co(I) species which presumably reacts with a proton. These results are in accordance with the fact that the H2-evolving activity does not depend on the chemical nature of the monodentate ligand and differ from those previously reported for similar complexes. The catalytic activity of this series of complexes in terms of turnover number versus catalyst (TONCat) was also found to be dependent on the catalyst concentration, with the highest value of 230 TONCat at 5 × 10(-6) M. As revealed by nanosecond transient absorption spectroscopy measurements, the first electron-transfer steps of the photocatalytic mechanism involve a reductive quenching of the excited state of [Ru(bpy)3](2+) by ascorbate followed by an electron transfer from [Ru(II)(bpy)2(bpy(•-))](+) to the [Co(II)(N4Py)(HA)](+) catalyst. The reduced catalyst then enters into the H2-evolution cycle.
Collapse
Affiliation(s)
- Warrick K C Lo
- Department of Chemistry, University of Otago , P. O. Box 56, Dunedin 9054, New Zealand
| | - Carmen E Castillo
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Robin Gueret
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Jérôme Fortage
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Mateusz Rebarz
- Laboratoire de Spectrochimie Infrarouge et Raman, UMR 8516 CNRS-Université Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Michel Sliwa
- Laboratoire de Spectrochimie Infrarouge et Raman, UMR 8516 CNRS-Université Lille 1 Sciences et Technologies , 59655 Villeneuve d'Ascq Cedex, France
| | - Fabrice Thomas
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - C John McAdam
- Department of Chemistry, University of Otago , P. O. Box 56, Dunedin 9054, New Zealand
| | - Geoffrey B Jameson
- Institute of Fundamental Sciences, Massey University , P. O. Box 11-222, Palmerston North 4442, New Zealand
| | - David A McMorran
- Department of Chemistry, University of Otago , P. O. Box 56, Dunedin 9054, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago , P. O. Box 56, Dunedin 9054, New Zealand
| | - Marie-Noëlle Collomb
- Département de Chimie Moléculaire, CNRS, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Allan G Blackman
- School of Applied Sciences, Auckland University of Technology , Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
11
|
Wiedemann EN, Mandl FA, Blank ID, Ochsenfeld C, Ofial AR, Sieber SA. Kinetic and Theoretical Studies of Beta-Lactone Reactivity-A Quantitative Scale for Biological Application. Chempluschem 2015; 80:1673-1679. [PMID: 31973367 DOI: 10.1002/cplu.201500246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/08/2022]
Abstract
Natural products comprise a rich source for bioactive molecules with medicinal relevance. Many of these contain electrophilic scaffolds that bind conserved enzyme active sites covalently. Prominent examples include beta-lactams and beta-lactones, which specifically acylate serine residues in diverse peptidases. Although these scaffolds appear similar, their bioactivities and corresponding protein targets vary. To quantify and dissect these differences in bioactivities, the kinetics of the reactions of beta-butyrolactone with a set of reference amines in buffered aqueous solution at 37 °C have been analyzed. Different product ratios of C1 versus C3 attack on the beta-butyrolactone have been observed, depending on the aliphatic or aromatic nature of the standard amine used. Quantum mechanics/molecular mechanics (QM/MM) calculations reveal that a H3 O+ molecule has a crucial role in stabilizing C3 attack by aniline, through coordination of the lactone ring oxygen. In agreement with their weak proteome reactivity, monocyclic beta-lactams did not react with the set of standard nucleophiles studied herein. Bicyclic beta-lactams, however, exhibited a lower activation barrier, and thus, reacted with standard nucleophiles. This study represents a starting point for semiquantitative reactivity scales for natural products, which, in analogy to chemical reactivity scales, will provide predictions for electrophilic modifications in biological systems.
Collapse
Affiliation(s)
- Elija N Wiedemann
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Franziska A Mandl
- Center for Integrated Protein Science CIPSM, Institute of Advanced Studies IAS, Department Chemie, Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Iris D Blank
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Christian Ochsenfeld
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Armin R Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377, München, Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science CIPSM, Institute of Advanced Studies IAS, Department Chemie, Lehrstuhl für Organische Chemie II, Technische Universität München, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
12
|
Gómez-Bombarelli R, Calle E, Casado J. Mechanisms of lactone hydrolysis in neutral and alkaline conditions. J Org Chem 2013; 78:6868-79. [PMID: 23758295 DOI: 10.1021/jo400258w] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The neutral and base-catalyzed hydrolysis of nine carboxylic acid esters was studied using a hybrid supermolecule-PCM approach including six explicit water molecules. The molecules studied included two linear esters, four β-lactones, two γ-lactones, and one δ-lactone: ethyl acetate and methyl formate, β-propiolactone, β-butyrolactone, β-isovalerolactone, diketene (4-methyleneoxetan-2-one), γ-butyrolactone, 2(5H)-furanone, and δ-valerolactone. DFT and ab initio methods were used to analyze the features of the various possible hydrolysis mechanisms. For all compounds, reasonable to very good qualitative and quantitative agreement with experimental work was found, and evidence is provided to support long-standing hypotheses regarding the role of solvent molecule as a base catalyst. In addition, novel evidence is presented for the existence of an elimination-addition mechanism in the basic hydrolysis of diketene. A parallel work addresses the acid-catalyzed hydrolysis of lactones.
Collapse
Affiliation(s)
- Rafael Gómez-Bombarelli
- Department of Physics, School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, United Kingdom
| | | | | |
Collapse
|
13
|
Sun Q, Carrasco YP, Hu Y, Guo X, Mirzaei H, MacMillan J, Chook YM. Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1. Proc Natl Acad Sci U S A 2013; 110:1303-8. [PMID: 23297231 PMCID: PMC3557022 DOI: 10.1073/pnas.1217203110] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polyketide natural product Leptomycin B inhibits nuclear export mediated by the karyopherin protein chromosomal region maintenance 1 (CRM1). Here, we present 1.8- to 2.0-Å-resolution crystal structures of CRM1 bound to Leptomycin B and related inhibitors Anguinomycin A and Ratjadone A. Structural and complementary chemical analyses reveal an unexpected mechanism of inhibition involving covalent conjugation and CRM1-mediated hydrolysis of the natural products' lactone rings. Furthermore, mutagenesis reveals the mechanism of hydrolysis by CRM1. The nuclear export signal (NES)-binding groove of CRM1 is able to drive a chemical reaction in addition to binding protein cargoes for transport through the nuclear pore complex.
Collapse
MESH Headings
- Acrylates/chemistry
- Acrylates/pharmacology
- Active Transport, Cell Nucleus/drug effects
- Amino Acid Substitution
- Crystallography, X-Ray
- Fatty Acids, Unsaturated/chemistry
- Fatty Acids, Unsaturated/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Humans
- Hydrolysis
- Karyopherins/antagonists & inhibitors
- Karyopherins/chemistry
- Karyopherins/genetics
- Karyopherins/metabolism
- Models, Anatomic
- Mutagenesis, Site-Directed
- Nuclear Export Signals/genetics
- Protein Conformation
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Static Electricity
- Triazoles/chemistry
- Triazoles/pharmacology
- Exportin 1 Protein
Collapse
Affiliation(s)
| | - Yazmin P. Carrasco
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | - Youcai Hu
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | - Xiaofeng Guo
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | - Hamid Mirzaei
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | - John MacMillan
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | | |
Collapse
|
14
|
Mamur S, Yüzbaşıoğlu D, Ünal F, Aksoy H. Genotoxicity of food preservative sodium sorbate in human lymphocytes in vitro. Cytotechnology 2012; 64:553-62. [PMID: 22373823 PMCID: PMC3432536 DOI: 10.1007/s10616-012-9434-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 02/01/2012] [Indexed: 10/28/2022] Open
Abstract
The genotoxic effects of antimicrobial food additive sodium sorbate (SS) was assessed by using chromosome aberrations (CAs), sister-chromatid exchanges (SCEs), and micronucleus (MN) in cultured human lymphocytes and comet assay in isolated human lymphocytes. Lymphocytes were treated with four concentrations (100, 200, 400 and 800 μg/ml) of SS as well as a negative (sterile distilled water) and a positive control (Mitomycin-C: MMC for cultured lymphocytes and H(2)O(2) for isolated lymphocytes). The result of this study indicated that SS increased the frequency of CAs at both 24 and 48 h period compared to control. When gaps were included, this increase was significant at 200, 400 and 800 μg/ml concentrations at 24 h and, at all concentrations at 48 h treatment time. When gaps were excluded, this increase was significant at only 800 μg/ml concentration at both 24 and 48 h treatments. In addition, SS increased SCEs/cell and MN frequency at 400 and 800 μg/ml concentrations at both 24 and 48 h compared to negative control. Furthermore, this additive caused DNA damage at all concentrations in isolated human lymphocytes after 1 h in vitro exposure. The present results show that SS is genotoxic to the human peripheral blood lymphocytes in vitro at the highest concentrations.
Collapse
Affiliation(s)
- Sevcan Mamur
- Genetic Toxicology Laboratory, Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Deniz Yüzbaşıoğlu
- Genetic Toxicology Laboratory, Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Fatma Ünal
- Genetic Toxicology Laboratory, Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Hüseyin Aksoy
- Department of Biology, Faculty of Art and Science, Sakarya University, Sakarya, Turkey
| |
Collapse
|
15
|
Thaens D, Heinzelmann D, Böhme A, Paschke A, Schüürmann G. Chemoassay screening of DNA-reactive mutagenicity with 4-(4-nitrobenzyl)pyridine - application to epoxides, oxetanes, and sulfur heterocycles. Chem Res Toxicol 2012; 25:2092-102. [PMID: 22889134 DOI: 10.1021/tx3001412] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organic electrophiles have the potential to covalently attack DNA bases, and thus initiate mutagenic and carcinogenic processes. In this context, aromatic nitrogen sites of the DNA bases are often particularly nucleophilic, with guanine N7 being one of the most favored sites of adduct formation with electrophilic xenobiotics. Employing 4-(4-nitrobenzyl)pyridine (NBP) as model nucleophile with a respective aromatic ═N- unit, a new kinetic variant of a photometric chemoassay for sensing the DNA reactivity of organic compounds is introduced and applied to 21 three- and four-membered oxygen and sulfur heterocycles (15 epoxides, two thiiranes, three oxetanes, and one thietane). Besides six unreactive compounds (oxetanes, thietane, and aliphatic epoxides with six or more side-chain carbons), second-order rate constants of the electrophile-NBP reaction, k(NBP), were obtained for 15 compounds, ranging from (1.16 ± 0.05)·10⁻³ to (36.5 ± 0.6)·10⁻³ L mol⁻¹ min⁻¹ in a methanol/tris-HCl buffer (16/84 v/v) reaction medium. Solvolysis as confounding factor was addressed by determining respective first-order rate constants k(solv). Analysis of the k(NBP) values resulted in structure-reactivity relationships, and comparison with literature data from the Ames test bacterial strains TA100, TA1535, and TA97 (Salmonella typhimurium) as well as from WP2 uvrA (Escherichia coli) revealed significant log-log relationships between the mutagenic potency of the heterocycles and their reactivity toward NBP. The latter demonstrates the potential of the NBP chemoassay as a nonanimal component of integrated testing strategies for REACH, enabling an efficient screening of organic electrophiles with respect to their DNA reactivity and associated mutagenicity and carcinogenicity.
Collapse
Affiliation(s)
- Diana Thaens
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | | | | | | | | |
Collapse
|
16
|
Arenas-Valgañón J, Gómez-Bombarelli R, González-Pérez M, González-Jiménez M, Calle E, Casado J. Taurine–nitrite interaction as a precursor of alkylation mechanisms. Food Chem 2012; 134:986-91. [DOI: 10.1016/j.foodchem.2012.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/24/2012] [Accepted: 03/01/2012] [Indexed: 11/25/2022]
|
17
|
Gómez-Bombarelli R, González-Pérez M, Calle E, Casado J. Potential of the NBP Method for the Study of Alkylation Mechanisms: NBP as a DNA-Model. Chem Res Toxicol 2012; 25:1176-91. [DOI: 10.1021/tx300065v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rafael Gómez-Bombarelli
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| | - Marina González-Pérez
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| | - Emilio Calle
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| | - Julio Casado
- Departamento de Química Física, Facultad de
Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, 1-5, E-37008 Salamanca, Spain
| |
Collapse
|
18
|
|
19
|
Gómez-Bombarelli R, González-Pérez M, Arenas-Valgañón J, Céspedes-Camacho IF, Calle E, Casado J. DNA-damaging disinfection byproducts: alkylation mechanism of mutagenic mucohalic acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9009-9016. [PMID: 21910489 DOI: 10.1021/es202251b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Hydroxyhalofuranones form a group of genotoxic disinfection byproduct (DBP) of increasing interest. Among them, mucohalic acids (3,4-dihalo-5-hydroxyfuran-2(5H)-one, MXA) are known mutagens that react with nucleotides, affording etheno, oxaloetheno, and halopropenal derivatives. Mucohalic acids have also found use in organic synthesis due to their high functionalization. In this work, the alkylation kinetics of mucochloric and mucobromic acids with model nucleophiles aniline and NBP has been studied experimentally. Also, the alkylation mechanism of nucleosides by MXA has been studied in silico. The results described allow us to reach the following conclusions: (i) based on the kinetic and computational evidence obtained, a reaction mechanism was proposed, in which MXA react directly with amino groups in nucleotides, preferentially attacking the exocyclic amino groups over the endocyclic aromatic nitrogen atoms; (ii) the suggested mechanism is in agreement with both the product distribution observed experimentally and the mutational pattern of MXA; (iii) the limiting step in the alkylation reaction is addition to the carbonyl group, subsequent steps occurring rapidly; and (iv) mucoxyhalic acids, the hydrolysis products of MXA, play no role in the alkylation reaction by MXA.
Collapse
Affiliation(s)
- Rafael Gómez-Bombarelli
- Departamento de Química física, Facultad de Ciencias Químicas Universidad de Salamanca, Plaza de los Caídos, 1-5 E-37008 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Uittenbogaard JP, Zomer B, Hoogerhout P, Metz B. Reactions of beta-propiolactone with nucleobase analogues, nucleosides, and peptides: implications for the inactivation of viruses. J Biol Chem 2011; 286:36198-214. [PMID: 21868382 DOI: 10.1074/jbc.m111.279232] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Propiolactone is often applied for inactivation of viruses and preparation of viral vaccines. However, the exact nature of the reactions of β-propiolactone with viral components is largely unknown. The purpose of the current study was to elucidate the chemical modifications occurring on nucleotides and amino acid residues caused by β-propiolactone. Therefore, a set of nucleobase analogues was treated with β-propiolactone, and reaction products were identified and quantified. NMR revealed at least one modification in either deoxyguanosine, deoxyadenosine, or cytidine after treatment with β-propiolactone. However, no reaction products were found from thymidine and uracil. The most reactive sides of the nucleobase analogues and nucleosides were identified by NMR. Furthermore, a series of synthetic peptides was used to determine the conversion of reactive amino acid residues by liquid chromatography-mass spectrometry. β-Propiolactone was shown to react with nine different amino acid residues. The most reactive residues are cysteine, methionine, and histidine and, to a lesser degree, aspartic acid, glutamic acid, tyrosine, lysine, serine, and threonine. Remarkably, cystine residues (disulfide groups) do not react with β-propiolactone. In addition, no reaction was observed for β-propiolactone with asparagine, glutamine, and tryptophan residues. β-Propiolactone modifies proteins to a larger extent than expected from current literature. In conclusion, the study determined the reactivity of β-propiolactone with nucleobase analogues, nucleosides, and amino acid residues and elucidated the chemical structures of the reaction products. The study provides detailed knowledge on the chemistry of β-propiolactone inactivation of viruses.
Collapse
Affiliation(s)
- Joost P Uittenbogaard
- Unit Vaccinology, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | | | | | | |
Collapse
|
21
|
Manso JA, Camacho IFC, Calle E, Casado J. Alkylating potential of α,β-unsaturated compounds. Org Biomol Chem 2011; 9:6226-33. [PMID: 21773622 DOI: 10.1039/c1ob05298e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkylation reactions of the nucleoside guanosine (Guo) by the α,β-unsaturated compounds (α,β-UC) acrylonitrile (AN), acrylamide (AM), acrylic acid (AA) and acrolein (AC), which can act as alkylating agents of DNA, were investigated kinetically. The following conclusions were drawn: i) The Guo alkylation mechanism by AC is different from those brought about the other α,β-UC; ii) for the first three, the following sequence of alkylating potential was found: AN > AM > AA; iii) A correlation between the chemical reactivity (alkylation rate constants) of AN, AM, and AA and their capacity to form adducts with biomarkers was found. iv) Guo alkylation reactions for AN and AM occur through Michael addition mechanisms, reversible in the first case, and irreversible in the second. The equilibrium constant for the formation of the Guo-AN adduct is K(eq) (37 °C) = 5 × 10(-4); v) The low energy barrier (≈10 kJ mol(-1)) to reverse the Guo alkylation by AN reflects the easy reversibility of this reaction and its possible correction by repair mechanisms; vi) No reaction was observed for AN, AM, and AA at pH < 8.0. In contrast, Guo alkylation by AC was observed under cellular pH conditions. The reaction rate constants for the formation of the α-OH-Guo adduct (the most genotoxic isomer), is 1.5-fold faster than that of γ-OH-Guo. vii) a correlation between the chemical reactivity of α,β-UC (alkylation rate constants) and mutagenicity was found.
Collapse
Affiliation(s)
- José A Manso
- Departamento de Química Física, Universidad de Salamanca, Salamanca, Spain
| | | | | | | |
Collapse
|
22
|
Schwöbel JAH, Koleva YK, Enoch SJ, Bajot F, Hewitt M, Madden JC, Roberts DW, Schultz TW, Cronin MTD. Measurement and Estimation of Electrophilic Reactivity for Predictive Toxicology. Chem Rev 2011; 111:2562-96. [DOI: 10.1021/cr100098n] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes A. H. Schwöbel
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Yana K. Koleva
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Steven J. Enoch
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Fania Bajot
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Mark Hewitt
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Judith C. Madden
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - David W. Roberts
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Terry W. Schultz
- College of Veterinary Medicine, Department of Comparative Medicine, The University of Tennessee, 2407 River Drive, Knoxville, Tennessee 37996-4543, United States
| | - Mark T. D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| |
Collapse
|
23
|
González-Pérez M, Gómez-Bombarelli R, Pérez-Prior MT, Manso JA, Céspedes-Camacho IF, Calle E, Casado J. Reactivity of p-nitrostyrene oxide as an alkylating agent. A kinetic approach to biomimetic conditions. Org Biomol Chem 2011; 9:7016-22. [DOI: 10.1039/c1ob05909b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Abstract
Small, highly strained heterocycles are archetypical alkylating agents (oxiranes, beta-lactones, aziridinium, and thiirinium ions). Oxetanes, which are tetragonal ethers, are higher homologues of oxiranes and reduced counterparts of beta-lactones, and would therefore be expected to be active alkylating agents. Oxetanes are widely used in the manufacture of polymers, especially in organic light-emitting diodes (OLEDs), and are present, as a substructure, in compounds such as the widely used antimitotic taxol. Whereas the results of animal tests suggest that trimethylene oxide (TMO), the parent compound, and beta,beta-dimethyloxetane (DMOX) are active carcinogens at the site of injection, no studies have explored the alkylating ability and genotoxicity of oxetanes. This work addresses the issue using a mixed methodology: a kinetic study of the alkylation reaction of 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilicity similar to that of DNA bases, by three oxetanes (TMO, DMOX, and methyloxetanemethanol), and a mutagenicity, genotoxicity, and cell viability study (Salmonella microsome test, BTC E. coli test, alkaline comet assay, and MTT assay). The results suggest either that oxetanes lack genotoxic capacity or that their mode of action is very different from that of epoxides and beta-lactones.
Collapse
|
25
|
Pérez-Prior MT, Gómez-Bombarelli R, González-Pérez M, Manso JA, García-Santos MP, Calle E, Casado J. Reactivity of the Mutagen 1,4-Dinitro-2-methylpyrrole as an Alkylating Agent. J Org Chem 2010; 75:1444-9. [DOI: 10.1021/jo902329q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - José A. Manso
- Departamento de Química física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | | | - Emilio Calle
- Departamento de Química física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Julio Casado
- Departamento de Química física, Universidad de Salamanca, E-37008 Salamanca, Spain
| |
Collapse
|
26
|
Céspedes-Camacho IF, Manso JA, Pérez-Prior MT, Gómez-Bombarelli R, González-Pérez M, Calle E, Casado J. Reactivity of acrylamide as an alkylating agent: a kinetic approach. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1600] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Pérez-Prior MT, Gómez-Bombarelli R, González-Pérez M, Manso JA, García-Santos MP, Calle E, Casado J. Sorbate−Nitrite Interactions: Acetonitrile Oxide as an Alkylating Agent. Chem Res Toxicol 2009; 22:1320-4. [DOI: 10.1021/tx9001226] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - José A. Manso
- Departamento de Química Física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | | | - Emilio Calle
- Departamento de Química Física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Julio Casado
- Departamento de Química Física, Universidad de Salamanca, E-37008 Salamanca, Spain
| |
Collapse
|
28
|
Gómez-Bombarelli R, González-Pérez M, Pérez-Prior MT, Calle E, Casado J. Computational Study of the Acid Dissociation of Esters and Lactones. A Case Study of Diketene. J Org Chem 2009; 74:4943-8. [DOI: 10.1021/jo900645h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rafael Gómez-Bombarelli
- Departamento de Química física, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, s/n E-37008 Salamanca, Spain
| | - Marina González-Pérez
- Departamento de Química física, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, s/n E-37008 Salamanca, Spain
| | - María Teresa Pérez-Prior
- Departamento de Química física, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, s/n E-37008 Salamanca, Spain
| | - Emilio Calle
- Departamento de Química física, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, s/n E-37008 Salamanca, Spain
| | - Julio Casado
- Departamento de Química física, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos, s/n E-37008 Salamanca, Spain
| |
Collapse
|
29
|
Manso JA, Pérez-Prior MT, Gómez-Bombarelli R, González-Pérez M, Céspedes IF, García-Santos MP, Calle E, Casado J. Alkylating potential ofN-phenyl-N-nitrosourea. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Gómez-Bombarelli R, González-Pérez M, Pérez-Prior MT, Manso JA, Calle E, Casado J. Kinetic study of the neutral and base hydrolysis of diketene. J PHYS ORG CHEM 2009. [DOI: 10.1002/poc.1483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Pérez-Prior MT, Manso JA, Gómez-Bombarelli R, González-Pérez M, García-Santos MP, Calle E, Caballero MC, Casado J. Reactivity of some products formed by the reaction of sorbic acid with sodium nitrite: decomposition of 1,4-dinitro-2-methylpyrrole and ethylnitrolic acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11824-11829. [PMID: 19053359 DOI: 10.1021/jf802822y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sorbic acid reacts with nitrite to yield mutagenic products such as 1,4-dinitro-2-methylpyrrole (NMP) and ethylnitrolic acid (ENA). In order to know the stability of these compounds, a kinetic study of their decomposition reactions was performed in the 6.0-9.5 pH range. The conclusions drawn are as follows: (i) The decomposition of NMP occurs through a nucleophilic attack by OH- ions, with the rate equation as follows: r = k(dec)NMP[OH-][NMP] with k(dec)NMP (37.5 degrees C) = 42 +/- 1 M(-1) s(-1). (ii) The rate law for the decomposition of ENA is as follows: r = k(dec)ENA[ENA]K(a)/(K(a) + [H+]), with K(a) being the ENA dissociation constant and k(dec)ENA (37.5 degrees C) = (7.11 +/- 0.04) x 10(-5) s(-1). (iii) The activation energies for NMP and ENA decomposition reactions are, respectively, E(a) = 94 +/- 3 and 94 +/- 1 kJ mol(-1). (iv) The observed values for the decomposition rate constants of NMP and ENA in the pH range of the stomach lining cells, into which these species can diffuse, are so slow that they could be the slow determining step of the alkylation mechanisms by some of the products resulting from NMP and ENA decomposition. Thus, the current kinetic results are consistent with the low mutagenicity of these species.
Collapse
Affiliation(s)
- M Teresa Pérez-Prior
- Departamento de Química Física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Manso JA, Pérez-Prior MT, García-Santos MP, Calle E, Casado J. Steric effect in alkylation reactions byN-alkyl-N-nitrosoureas: a kinetic approach. J PHYS ORG CHEM 2008. [DOI: 10.1002/poc.1402] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Kovacic P. Does structural commonality of metal complex formation by PAC-1 (anticancer), DHBNH (anti-HIV), AHL (autoinducer), and UCS1025A (anticancer) denote mechanistic similarity? Signal transduction and medical aspects. J Recept Signal Transduct Res 2008; 28:141-52. [PMID: 18569522 DOI: 10.1080/10799890802084077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is an urgent need of novel approaches to drugs in the cancer, HIV, and bacterial areas. Increasing resistance to conventional therapies is observed. This minireview provides novel insights for drugs in these three areas. The agents PAC-1 (anticancer), DHBNH (anti-HIV), AHL (autoinducer), and UCS1025A (anticancer) have recently attracted attention due to considerable potential based on new approaches. PAC-1 activates procaspase-3 to caspase-3, resulting in induction of apoptosis in tumor cells. DHBNH binds to a newly revealed site on HIV reverse transcriptase. The drug mainly inhibits RNase H (RNA-cleaving). AHLs comprise an important class that participates in bacterial cell communication. UCS1025A is a fungus-derived inhibitor of the enzyme telomerase, present in cancer cells, which is crucially involved in tumor cell immortality. All four agents possess chelating sites for metal binding, which has not been appreciated. In PAC-1 and DHBNH, the coordinating portion is similar to salicylaldehyde semicarbazone. For AHL and UCS1025A, the metal-binding moiety is a beta -ketoamide. Metal complexes of heavier metals are well-known electron transfer (ET) functionalities that can generate reactive oxygen species. Hence, it is reasonable to hypothesize a commonality in mechanism based on metal ET. Differences in receptor binding can result, in part, in diverse physiological responses. There is considerable literature that addresses involvement of signal transduction with the various physiologically active agents discussed herein. Thus, cell communication appears to play an important role in the biochemistry of these endogenous and exogenous substances. Details of cell signaling are presented for complexes of metals (Fe, Cu, Ni, and As), telomerase, caspase-3, and RNase. In addition, practical medical aspects are discussed.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| |
Collapse
|
34
|
Gómez-Bombarelli R, González-Pérez M, Pérez-Prior MT, Manso JA, Calle E, Casado J. Chemical Reactivity and Biological Activity of Diketene. Chem Res Toxicol 2008; 21:1964-9. [DOI: 10.1021/tx800153j] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - José A. Manso
- Departamento de Química física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Emilio Calle
- Departamento de Química física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Julio Casado
- Departamento de Química física, Universidad de Salamanca, E-37008 Salamanca, Spain
| |
Collapse
|
35
|
Manso JA, Pérez-Prior MT, del Pilar García-Santos M, Calle E, Casado J. Solvent Effects on the Enthalpy and Entropy of Activation for the Hydrolysis of β-Lactones. J SOLUTION CHEM 2008. [DOI: 10.1007/s10953-008-9250-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
|
37
|
Fernández-Rodríguez E, Manso JA, Pérez-Prior MT, García-Santos MDP, Calle E, Casado J. The unusual ability of α-angelicalactone to form adducts: A kinetic approach. INT J CHEM KINET 2007. [DOI: 10.1002/kin.20273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Pérez-Prior MT, Manso JA, García-Santos MDP, Calle E, Casado J. Alkylating potential of potassium sorbate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:10244-7. [PMID: 16366722 DOI: 10.1021/jf052152p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A kinetic study of the alkylating potential of potassium sorbate (S)-a food preservative used worldwide-in 7:3 water/dioxane medium was performed. The following conclusions were drawn: (i) Potassium sorbate shows alkylating activity on the nucleophile 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, (ii) The NBP alkylation reaction complies with the rate equation r = k(alk)[H+][S][NBP]/(K(a) + [H+]), K(a) being the sorbic acid dissociation constant and k(alk) the rate constant of NBP alkylation by the undissociated acid. In the range of pH 5-6, the alkylation time ranges between 18 days (pH 5.2) and >1 month (pH > or = 6). (iii) NBP alkylation occurs through a reaction with deltaH# = 78 kJ mol(-1), which is much higher than those of NBP alkylation by stronger alkylating agents. (iv) The absorption coefficient of the sorbate-NBP adduct was determined to be epsilon = 204 M(-1) cm(-1) (lambda = 580 nm), this value being rationalized in terms of the adduct structure. (v) The results can help to establish suitable expiration times for products preserved with potassium sorbate.
Collapse
Affiliation(s)
- M Teresa Pérez-Prior
- Departamento de Química física, Universidad de Salamanca, E-37008 Salamanca, Spain
| | | | | | | | | |
Collapse
|