1
|
Saraev DD, Pratt DA. Reactions of lipid hydroperoxides and how they may contribute to ferroptosis sensitivity. Curr Opin Chem Biol 2024; 81:102478. [PMID: 38908300 DOI: 10.1016/j.cbpa.2024.102478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024]
Abstract
The accumulation of lipid hydroperoxides (LOOHs) has long been associated with numerous pathologies and has more recently been shown to drive a specific type of cell death known as ferroptosis. In competition with their detoxification by glutathione peroxidases, LOOHs can react with both one-electron reductants and one-electron oxidants to afford radicals that initiate lipid peroxidation (LPO) chain reactions leading to more LOOH. These radicals can alternatively undergo a variety of (primarily unimolecular) reactions leading to electrophilic species that destabilize the membrane and/or react with cellular nucleophiles. While some reaction mechanisms leading to lipid-derived electrophiles have been known for some time, others have only recently been elucidated. Since LOOH (and related peroxides, LOOL) undergo these various reactions at different rates to afford distinct product distributions specific to their structures, not all LOOHs (and LOOLs) should be equivalently problematic for the cell - be it in their propensity to initiate further LPO or fragment to electrophiles, drive membrane permeabilization and eventual cell death. Herein we briefly review the fates of LOOH and discuss how they may contribute to the modulation of cell sensitivity to ferroptosis by different lipids.
Collapse
Affiliation(s)
- Dmitry D Saraev
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Derek A Pratt
- Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
2
|
Faria RL, Prado FM, Junqueira HC, Fabiano KC, Diniz LR, Baptista MS, Di Mascio P, Miyamoto S. Plasmalogen oxidation induces the generation of excited molecules and electrophilic lipid species. PNAS NEXUS 2024; 3:pgae216. [PMID: 38894877 PMCID: PMC11184980 DOI: 10.1093/pnasnexus/pgae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether linkage at the sn-1 position of the glycerol backbone. Despite being suggested as antioxidants due to the high reactivity of their vinyl ether groups with reactive oxygen species, our study reveals the generation of subsequent reactive oxygen and electrophilic lipid species from oxidized plasmalogen intermediates. By conducting a comprehensive analysis of the oxidation products by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we demonstrate that singlet molecular oxygen [O2 (1Δg)] reacts with the vinyl ether bond, producing hydroperoxyacetal as a major primary product (97%) together with minor quantities of dioxetane (3%). Furthermore, we show that these primary oxidized intermediates are capable of further generating reactive species including excited triplet carbonyls and O2 (1Δg) as well as electrophilic phospholipid and fatty aldehyde species as secondary reaction products. The generation of excited triplet carbonyls from dioxetane thermal decomposition was confirmed by light emission measurements in the visible region using dibromoanthracene as a triplet enhancer. Moreover, O2 (1Δg) generation from dioxetane and hydroperoxyacetal was evidenced by detection of near-infrared light emission at 1,270 nm and chemical trapping experiments. Additionally, we have thoroughly characterized alpha-beta unsaturated phospholipid and fatty aldehydes by LC-HRMS analysis using two probes that specifically react with aldehydes and alpha-beta unsaturated carbonyls. Overall, our findings demonstrate the generation of excited molecules and electrophilic lipid species from oxidized plasmalogen species unveiling the potential prooxidant nature of plasmalogen-oxidized products.
Collapse
Affiliation(s)
- Rodrigo L Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Helena C Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Karen C Fabiano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Larissa R Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
3
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
4
|
Zong Y, Chen L, Zeng Y, Xu J, Zhang H, Zhang X, Liu W, Wu D. Do We Appropriately Detect and Understand Singlet Oxygen Possibly Generated in Advanced Oxidation Processes by Electron Paramagnetic Resonance Spectroscopy? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37311080 DOI: 10.1021/acs.est.3c01553] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy using sterically hindered amine is extensively applied to detect singlet oxygen (1O2) possibly generated in advanced oxidation processes. However, EPR-detectable 1O2 signals were observed in not only the 1O2-dominated hydrogen peroxide (H2O2)/hypochlorite (NaClO) reaction but surprisingly also the 1O2-absent Fe(II)/H2O2, UV/H2O2, and ferrate [Fe(VI)] process with even stronger intensities. By taking advantage of the characteristic reaction between 1O2 and 9,10-diphenyl-anthracene and near-infrared phosphorescent emission of 1O2, 1O2 was excluded in the Fe(II)/H2O2, UV/H2O2, and Fe(VI) process. The false detection of 1O2 was ascribed to the direct oxidation of hindered amine to piperidyl radical by reactive species [e.g., •OH and Fe(VI)/Fe(V)/Fe(IV)] via hydrogen transfer, followed by molecular oxygen addition (forming a piperidylperoxyl radical) and back reaction with piperidyl radical to generate a nitroxide radical, as evidenced by the successful identification of a piperidyl radical intermediate at 100 K and theoretical calculations. Moreover, compared to the highly oxidative species (e.g., •OH and high-valence Fe), the much lower reactivity of 1O2 and the profound nonradiative relaxation of 1O2 in H2O resulted it too selective and inefficient in organic contaminant destruction. This study demonstrated that EPR-based 1O2 detection could be remarkably misled by common oxidative species and thereby jeopardize the understandings on 1O2.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunqiao Zeng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
5
|
Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:80-108. [PMID: 36336139 DOI: 10.1016/j.pbiomolbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Biological oxidation processes are in the core of life energetics, play an important role in cellular biophysics, physiological cell signaling or cellular pathophysiology. Understanding of biooxidation processes is also crucial for biotechnological applications. Therefore, a plethora of methods has been developed for monitoring oxidation so far, each with distinct advantages and disadvantages. We review here the available methods for monitoring oxidation and their basic characteristics and capabilities. Then we focus on a unique method - the only one that does not require input of additional external energy or chemicals - which employs detection of biological autoluminescence (BAL). We highlight the pros and cons of this method and provide an overview of how BAL can be used to report on various aspects of cellular oxidation processes starting from oxygen consumption to the generation of oxidation products such as carbonyls. This review highlights the application potential of this completely non-invasive and label-free biophotonic diagnostic method.
Collapse
Affiliation(s)
- Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czech Republic.
| |
Collapse
|
6
|
Zhang X, Wu L, Zhen W, Li S, Jiang X. Generation of singlet oxygen via iron-dependent lipid peroxidation and its role in Ferroptosis. FUNDAMENTAL RESEARCH 2022; 2:66-73. [PMID: 38933913 PMCID: PMC11197759 DOI: 10.1016/j.fmre.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis is a cell death pathway mediated by iron-dependent accumulation of lipid peroxide. However, the specific downstream molecular events of iron-dependent lipid peroxidation are yet to be elucidated. In this study, based on various spectral analyses, we have found evidence that singlet oxygen is produced through the Russell mechanism during the self-reaction of lipid peroxyl radicals generated via iron-dependent lipid peroxidation regardless of the presence of cholesterol. Significantly reduced generation of singlet oxygen was observed in the absence of iron. The generated singlet oxygen accelerated the oxidative damage of lipid membranes by propagating lipid peroxidation and facilitated ferroptotic cancer cell death initiated by erastin. In this work, singlet oxygen has been revealed to be a new reactive species that participates in ferroptosis, thus improving the understanding on iron-dependent lipid peroxidation and the mechanism of ferroptosis.
Collapse
Affiliation(s)
- Xiaofei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
- Changchun University, Changchun, Jilin 130022, China
| | - Lie Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
| | - Shanshan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- Graduate School of University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
7
|
Shen HJ, Hu ZN, Zhang C. Singlet Oxygen Generation from a Water-Soluble Hypervalent Iodine(V) Reagent AIBX and H 2O 2: An Access to Artemisinin. J Org Chem 2021; 87:3885-3894. [PMID: 34028276 DOI: 10.1021/acs.joc.1c00596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report an efficient method for the chemical generation of 1O2 by treatment of H2O2 with AIBX, a highly water-soluble, bench-stable, recyclable hypervalent iodine(V) reagent developed by our group. The generation of 1O2 was confirmed by the following results: (1) capture of 1O2 with the sodium salt of anthracene-9,10-bis(ethanesulfonate) produced the corresponding endoperoxide and (2) TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) produced by the oxidation of 2,2,6,6-tetramethylpiperidine with 1O2 generated using the AIBX/H2O2 system was detected by electron spin resonance spectroscopy. To illustrate the potential utility of this method for organic synthesis, we used the AIBX/H2O2 system to perform typical reactions of 1O2: [2 + 2]/[4 + 2] cycloadditions, Schenck ene reactions, and heteroatom oxidation reactions, which afforded the corresponding products in high yields. Moreover, we used the method to synthesize the antimalarial drug artemisinin. Finally, we demonstrated that AIBX could be regenerated after the reaction by means of a workup involving extraction and removal of water to obtain a precursor of AIBX, which could then be re-oxidized.
Collapse
Affiliation(s)
- Hui-Jie Shen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ze-Nan Hu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Miyamoto S, Lima RS, Inague A, Viviani LG. Electrophilic oxysterols: generation, measurement and protein modification. Free Radic Res 2021; 55:416-440. [PMID: 33494620 DOI: 10.1080/10715762.2021.1879387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas G Viviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Prado FM, Scalfo AC, Miyamoto S, Medeiros MHG, Di Mascio P. Generation of Singlet Molecular Oxygen by Lipid Hydroperoxides and Nitronium Ion †. Photochem Photobiol 2020; 96:560-569. [PMID: 32108956 DOI: 10.1111/php.13236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Singlet molecular oxygen is a reactive species involved in biological oxidative processes. The major cellular targets of singlet molecular oxygen are unsaturated fatty acids in the membrane, as well as nucleic acids and proteins. The aim of this study was to investigate whether lipids and commercial hydroperoxides generate singlet molecular oxygen, in presence of nitronium and activated nitronium ion. For this purpose, monomol light emitted in the near-infrared region (λ = 1270 nm) was used to monitor singlet molecular oxygen decay in different solvents, with different hydroperoxides and in the presence of azide. Direct measurements of the singlet molecular oxygen spectrum at 1270 nm recorded during the reaction between lipids and commercial hydroperoxides and nitronium ions unequivocally demonstrated the formation of this excited species.
Collapse
Affiliation(s)
- Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alexsandra C Scalfo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Oliveira MS, Chorociejus G, Angeli JPF, Vila Verde G, Aquino GLB, Ronsein GE, Oliveira MCBD, Barbosa LF, Medeiros MHG, Greer A, Di Mascio P. Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems. Photochem Photobiol Sci 2020; 19:1590-1602. [DOI: 10.1039/d0pp00153h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our study shows that new anthracene and naphthalene derivatives function as compounds for trapping and chemically generating singlet molecular oxygen [O2(1Δg)], respectively. The syntheses of these derivatives are described, as well as some localization testing in cells.
Collapse
Affiliation(s)
| | - Gabriel Chorociejus
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - José Pedro F. Angeli
- Rudolf Virchow Center for Translational Bioimaging
- University of Würzburg
- 97080 Würzburg
- Germany
| | - Giuliana Vila Verde
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Gilberto L. B. Aquino
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | | - Livea F. Barbosa
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Alexander Greer
- Department of Chemistry
- Brooklyn College
- City University of New York
- Brooklyn
- USA
| | - Paolo Di Mascio
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
11
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
12
|
Girotti AW, Korytowski W. Cholesterol Peroxidation as a Special Type of Lipid Oxidation in Photodynamic Systems. Photochem Photobiol 2018; 95:73-82. [PMID: 29962109 DOI: 10.1111/php.12969] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
Like other unsaturated lipids in cell membranes and lipoproteins, cholesterol (Ch) is susceptible to oxidative modification, including photodynamic oxidation. There is a sustained interest in the pathogenic properties of Ch oxides such as those generated by photooxidation. Singlet oxygen (1 O2 )-mediated Ch photooxidation (Type II mechanism) gives rise to three hydroperoxide (ChOOH) isomers: 5α-OOH, 6α-OOH and 6β-OOH, the 5α-OOH yield far exceeding that of the others. 5α-OOH detection is relatively straightforward and serves as a definitive indicator of 1 O2 involvement in a reaction, photochemical or otherwise. Like all lipid hydroperoxides (LOOHs), ChOOHs can disrupt membrane or lipoprotein structure/function on their own, but subsequent light-independent reactions may either intensify or attenuate such effects. Such reactions include (1) one-electron reduction to redox-active free radical intermediates, (2) two-electron reduction to redox-silent alcohols and (3) translocation to other lipid compartments, where (1) or (2) may take place. In addition to these effects, ChOOHs may act as signaling molecules in reactions that affect cell fates. Although processes a-c have been well studied for ChOOHs, signaling activity is still poorly understood compared with that of hydrogen peroxide. This review focuses on these various aspects Ch photoperoxidation and its biological consequences.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
13
|
Sun B, Wang L, Li Q, He P, Liu H, Wang H, Yang Y, Li J. Bis(pyrene)-Doped Cationic Dipeptide Nanoparticles for Two-Photon-Activated Photodynamic Therapy. Biomacromolecules 2017; 18:3506-3513. [DOI: 10.1021/acs.biomac.7b00780] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bingbing Sun
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qi Li
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pingping He
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Huiling Liu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hao Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yang Yang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Junbai Li
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
A meta-analysis and review examining a possible role for oxidative stress and singlet oxygen in diverse diseases. Biochem J 2017; 474:2713-2731. [PMID: 28768713 DOI: 10.1042/bcj20161058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/29/2023]
Abstract
From kinetic data (k, T) we calculated the thermodynamic parameters for various processes (nucleation, elongation, fibrillization, etc.) of proteinaceous diseases that are related to the β-amyloid protein (Alzheimer's), to tau protein (Alzheimer's, Pick's), to α-synuclein (Parkinson's), prion, amylin (type II diabetes), and to α-crystallin (cataract). Our calculations led to ΔG≠ values that vary in the range 92.8-127 kJ mol-1 at 310 K. A value of ∼10-30 kJ mol-1 is the activation energy for the diffusion of reactants, depending on the reaction and the medium. The energy needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen) is equal to 92 kJ mol-1 So, the ΔG≠ is equal to the energy needed for the excitation of ground state oxygen to the singlet oxygen (1Δg first excited) state. The similarity of the ΔG≠ values is an indication that a common mechanism in the above disorders may be taking place. We attribute this common mechanism to the (same) role of the oxidative stress and specifically of singlet oxygen, (1Δg), to the above-mentioned processes: excitation of ground state oxygen to the singlet oxygen, 1Δg, state (92 kJ mol-1), and reaction of the empty π* orbital with high electron density regions of biomolecules (∼10-30 kJ mol-1 for their diffusion). The ΔG≠ for cases of heat-induced cell killing (cancer) lie also in the above range at 310 K. The present paper is a review and meta-analysis of literature data referring to neurodegenerative and other disorders.
Collapse
|
15
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MH, Cadet J. Singlet molecular oxygen: Düsseldorf – São Paulo, the Brazilian connection. Arch Biochem Biophys 2016; 595:161-75. [DOI: 10.1016/j.abb.2015.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/28/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
|
16
|
Endogenous Generation of Singlet Oxygen and Ozone in Human and Animal Tissues: Mechanisms, Biological Significance, and Influence of Dietary Components. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2398573. [PMID: 27042259 PMCID: PMC4799824 DOI: 10.1155/2016/2398573] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/08/2016] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that exposing antibodies or amino acids to singlet oxygen results in the formation of ozone (or an ozone-like oxidant) and hydrogen peroxide and that human neutrophils produce both singlet oxygen and ozone during bacterial killing. There is also mounting evidence that endogenous singlet oxygen production may be a common occurrence in cells through various mechanisms. Thus, the ozone-producing combination of singlet oxygen and amino acids might be a common cellular occurrence. This paper reviews the potential pathways of formation of singlet oxygen and ozone in vivo and also proposes some new pathways for singlet oxygen formation. Physiological consequences of the endogenous formation of these oxidants in human tissues are discussed, as well as examples of how dietary factors may promote or inhibit their generation and activity.
Collapse
|
17
|
Miyamoto S, Martinez GR, Medeiros MHG, Di Mascio P. Singlet molecular oxygen generated by biological hydroperoxides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:24-33. [PMID: 24954800 DOI: 10.1016/j.jphotobiol.2014.03.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022]
Abstract
The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970 São Paulo, SP, Brazil.
| | - Glaucia R Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970 São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Abstract
This review article presents advances in cholesterol chemistry since 2000. Various transformations (chemical, enzymatic, electrochemical, etc.) of cholesterol are presented. A special emphasis is given to cholesterol oxidation reactions, but also substitution of the 3β-hydroxyl group, addition to the C5-C6 double bond, C-H functionalization, and C-C bond forming reactions are discussed.
Collapse
Affiliation(s)
- Jacek W Morzycki
- Institute of Chemistry, University of Białystok, Hurtowa 1, 15-399 Białystok, Poland.
| |
Collapse
|
19
|
Abstract
Lipid hydroperoxides (LOOH) are formed in biological system by enzymatic and non-enzymatic pathways. These hydroperoxides exerts multiple damaging effects on cellular macromolecules and are also important regulators of cellular processes. Several classes of hydroperoxides including fatty acid, phospholipid, cholesterol and cholesteryl ester hydroperoxides have been detected and characterized both in vitro and in vivo. Although cells are normally endowed with enzymatic defenses capable to reduce LOOH to less reactive hydroxides, LOOH may accumulate in several pathological conditions and attention has been focused on elucidating their pathophysiological role. In the last years we have demonstrated the generation of singlet molecular oxygen (O2 (1)Δg or (1)O2) in several reactions involving LOOH. The generation of (1)O2 was directly evidenced by spectroscopic detection and characterization of its light emission at 1,270 nm. Moreover, using 18-oxygen labeled hydroperoxides (L(18)O(18)OH) we could detect the formation of (18)O-labeled (1)O2 by chemical trapping with anthracene derivatives followed by detection of the corresponding labeled endoperoxides by HPLC coupled to tandem mass spectrometry. The experimental evidences indicate that (1)O2 is generated at a yield close to 10 % by the Russell mechanism from LOOH, either free or in membranes, in the presence of biologically relevant oxidants, such as metal ions, peroxynitrite, HOCl and cytochrome c.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil,
| | | |
Collapse
|
20
|
Abstract
Cholesterol is one of the oxidizable lipids constituting biomembranes and plasma lipoproteins. Cholesterol hydroperoxides (Chol-OOH) are the primary products if cholesterol is subjected to attack by reactive oxygen species. In particular, singlet molecular oxygen reacts with cholesterol to yield cholesterol 5α-hydroperoxide as the major hydroperoxide species. Chol-OOH may accumulate in biological systems because of its resistance to glutathione-dependent enzymatic detoxification reactions. Their degradation products (including hydroxycholesterol and 7-ketocholesterol) participate in the pathophysiological functions of oxysterols. Highly reactive cholesterol 5,6-secosterol present in atherosclerotic lesions can be derived from the degradation of cholesterol 5α-hydroperoxide. Chol-OOH themselves may affect the lipid rafts of biomembranes, thereby leading to the modification of signal transduction pathways.
Collapse
Affiliation(s)
- Junji Terao
- Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, 770-8503, Japan,
| |
Collapse
|
21
|
Derogis PBMC, Freitas FP, Marques ASF, Cunha D, Appolinário PP, de Paula F, Lourenço TC, Murgu M, Di Mascio P, Medeiros MHG, Miyamoto S. The development of a specific and sensitive LC-MS-based method for the detection and quantification of hydroperoxy- and hydroxydocosahexaenoic acids as a tool for lipidomic analysis. PLoS One 2013; 8:e77561. [PMID: 24204871 PMCID: PMC3812029 DOI: 10.1371/journal.pone.0077561] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an n-3 polyunsaturated fatty acid that is highly enriched in the brain, and the oxidation products of DHA are present or increased during neurodegenerative disease progression. The characterization of the oxidation products of DHA is critical to understanding the roles that these products play in the development of such diseases. In this study, we developed a sensitive and specific analytical tool for the detection and quantification of twelve major DHA hydroperoxide (HpDoHE) and hydroxide (HDoHE) isomers (isomers at positions 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19 and 20) in biological systems. In this study, HpDoHE were synthesized by photooxidation, and the corresponding hydroxides were obtained by reduction with NaBH4. The isolated isomers were characterized by LC-MS/MS, and unique and specific fragment ions were chosen to construct a selected reaction monitoring (SRM) method for the targeted quantitative analysis of each HpDoHE and HDoHE isomer. The detection limits for the LC-MS/MS-SRM assay were 1-670 pg for HpDoHE and 0.5-8.5 pg for HDoHE injected onto a column. Using this method, it was possible to detect the basal levels of HDoHE isomers in both rat plasma and brain samples. Therefore, the developed LC-MS/MS-SRM can be used as an important tool to identify and quantify the hydro(pero)xy derivatives of DHA in biological system and may be helpful for the oxidative lipidomic studies.
Collapse
Affiliation(s)
| | - Florêncio P. Freitas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Anna S. F. Marques
- Luiz Barssotti Application Laboratory, Waters Technologies from Brazil, São Paulo, SP, Brazil
| | - Daniela Cunha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patricia P. Appolinário
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernando de Paula
- Luiz Barssotti Application Laboratory, Waters Technologies from Brazil, São Paulo, SP, Brazil
| | - Tiago C. Lourenço
- Luiz Barssotti Application Laboratory, Waters Technologies from Brazil, São Paulo, SP, Brazil
| | - Michael Murgu
- Luiz Barssotti Application Laboratory, Waters Technologies from Brazil, São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
22
|
Oliveira MS, Severino D, Prado FM, Angeli JPF, Motta FD, Baptista MS, Medeiros MHG, Di Mascio P. Singlet molecular oxygen trapping by the fluorescent probe diethyl-3,3′-(9,10-anthracenediyl)bisacrylate synthesized by the Heck reaction. Photochem Photobiol Sci 2011; 10:1546-55. [DOI: 10.1039/c1pp05120b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|