1
|
Wang Y, Charkoftaki G, Davidson E, Orlicky DJ, Tanguay RL, Thompson DC, Vasiliou V, Chen Y. Oxidative stress, glutathione, and CYP2E1 in 1,4-dioxane liver cytotoxicity and genotoxicity: insights from animal models. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 29:100389. [PMID: 37483863 PMCID: PMC10361651 DOI: 10.1016/j.coesh.2022.100389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
1,4-Dioxane (DX) is an emerging drinking water contaminant worldwide, which poses a threat to public health due to its demonstrated liver carcinogenicity and potential for human exposure. The lack of drinking water standards for DX is attributed to undetermined mechanisms of DX carcinogenicity. This mini-review provides a brief discussion of a series of mechanistic studies, wherein unique mouse models were exposed to DX in drinking water to elucidate redox changes associated with DX cytotoxicity and genotoxicity. The overall conclusions from these studies support a direct genotoxic effect by high dose DX and imply that oxidative stress involving CYP2E1 activation may play a causal role in DX liver genotoxicity and potentially carcinogenicity. The mechanistic data derived from these studies can serve as important references to refine the assessment of carcinogenic pathways that may be triggered at environmentally relevant low doses of DX in future animal and human studies.
Collapse
Affiliation(s)
- Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Emily Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - David J. Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, University of Colorado, Aurora, CO 80045, USA
| | - Robyn L. Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - David C. Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
2
|
Wang Z, Yao J, Guo H, Sheng N, Guo Y, Dai J. Comparative Hepatotoxicity of a Novel Perfluoroalkyl Ether Sulfonic Acid, Nafion Byproduct 2 (H-PFMO2OSA), and Legacy Perfluorooctane Sulfonate (PFOS) in Adult Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10183-10192. [PMID: 35786879 DOI: 10.1021/acs.est.2c00957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nafion byproduct 2 (H-PFMO2OSA) has been detected in the environment, but little is known about its toxicities. To compare the hepatotoxicity of H-PFMO2OSA with legacy perfluorooctane sulfonate (PFOS), male adult mice were exposed to 0.2, 1, or 5 mg/kg/d of each chemical for 28 days. Results showed that, although H-PFMO2OSA liver and serum concentrations were lower than those of PFOS, the relative liver weight in the H-PFMO2OSA groups was significantly higher than that in the corresponding PFOS groups. In addition, the increase in alanine transaminase and aspartate aminotransferase activity was greater in the H-PFMO2OSA groups than in the PFOS groups. Reduced glutathione (GSH) content and glutathione reductase activity in the liver increased in the 1 and 5 mg/kg/d H-PFMO2OSA groups and in the 5 mg/kg/d PFOS group. Liver quantitative proteome analysis demonstrated that, similar to PFOS, H-PFMO2OSA caused lipid metabolism disorder, and most lipid metabolism-related differentially expressed proteins (DEPs) were controlled by peroxisome proliferator-activated receptor alpha (PPARα). Additionally, KEGG enrichment analysis highlighted changes in the GSH metabolism pathway after PFOS and H-PFMO2OSA exposure. Then, there were eight DEPs involved in the GSH metabolism pathway that mostly were upregulated after exposure to H-PFMO2OSA but not after exposure to PFOS. In conclusion, H-PFMO2OSA induced higher levels of liver damage and more serious GSH metabolism dysregulation compared to PFOS.
Collapse
Affiliation(s)
- Zhiru Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingzhi Yao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Chen Y, Wang Y, Charkoftaki G, Orlicky DJ, Davidson E, Wan F, Ginsberg G, Thompson DC, Vasiliou V. Oxidative stress and genotoxicity in 1,4-dioxane liver toxicity as evidenced in a mouse model of glutathione deficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150703. [PMID: 34600989 PMCID: PMC8633123 DOI: 10.1016/j.scitotenv.2021.150703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/19/2023]
Abstract
1,4-Dioxane (DX) is a synthetic chemical used as a stabilizer for industrial solvents. Recent occurrence data show widespread and significant contamination of drinking water with DX in the US. DX is classified by the International Agency for Research on Cancer as a group 2B carcinogen with the primary target organ being the liver in animal studies. Despite the exposure and cancer risk, US EPA has not established a drinking water Maximum Contaminant Level (MCL) for DX and a wide range of drinking water targets have been established across the US and by Health Canada. The DX carcinogenic mechanism remains unknown; this information gap contributes to the varied approaches to its regulation. Our recent mice study indicated alterations in oxidative stress response accompanying DNA damage as an early change by high dose DX (5000 ppm) in drinking water. Herein, we report a follow-up study, in which we used glutathione (GSH)-deficient glutamate-cysteine ligase modifier subunit (Gclm)-null mice to investigate the role of redox homeostasis in DX-induced liver cytotoxicity and genotoxicity. Gclm-null and wild-type mice were exposed to DX for one week (1000 mg/kg/day by oral gavage) or three months (5000 ppm in drinking water). Subchronic exposure of high dose DX caused mild liver cytotoxicity. DX induced assorted molecular changes in the liver including: (i) a compensatory nuclear factor erythroid 2-related factor 2 (NRF2) anti-oxidative response at the early stage (one week), (ii) progressive CYP2E1 induction, (iii) development of oxidative stress, as evidenced by persistent NRF2 induction, oxidation of GSH pool, and accumulation of the lipid peroxidation by-product 4-hydroxynonenal, and (iv) elevations in oxidative DNA damage and DNA repair response. These DX-elicited changes were exaggerated in GSH-deficient mice. Collectively, the current study provides additional evidence linking redox dysregulation to DX liver genotoxicity, implying oxidative stress as a candidate mechanism of DX liver carcinogenicity.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA.
| | - Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, University of Colorado, Aurora, CO 80045, USA
| | - Emily Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Fengjie Wan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - Gary Ginsberg
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
4
|
Schaupp CM, Botta D, White CC, Scoville DK, Srinouanprachanh S, Bammler TK, MacDonald J, Kavanagh TJ. Persistence of improved glucose homeostasis in Gclm null mice with age and cadmium treatment. Redox Biol 2022; 49:102213. [PMID: 34953454 PMCID: PMC8715110 DOI: 10.1016/j.redox.2021.102213] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Antioxidant signaling/communication is among the most important cellular defense and survival pathways, and the importance of redox signaling and homeostasis in aging has been well-documented. Intracellular levels of glutathione (GSH), a very important endogenous antioxidant, both govern and are governed by the Nrf2 pathway through expression of genes involved in its biosynthesis, including the subunits of the rate-limiting enzyme (glutamate cysteine ligase, GCL) in GSH production, GCLC and GCLM. Mice homozygous null for the Gclm gene are severely deficient in GSH compared to wild-type controls, expressing approximately 10% of normal GSH levels. To compensate for GSH deficiency, Gclm null mice have upregulated redox-regulated genes, and, surprisingly, are less susceptible to certain types of oxidative damage. Furthermore, young Gclm null mice display an interesting lean phenotype, resistance to high fat diet-induced diabetes and obesity, improved insulin and glucose tolerance, and decreased expression of genes involved in lipogenesis. However, the persistence of this phenotype has not been investigated into old age, which is important in light of studies which suggest aging attenuates antioxidant signaling, particularly in response to exogenous stimuli. In this work, we addressed whether aging compromises the favorable phenotype of increased antioxidant activity and improved glucose homeostasis observed in younger Gclm null mice. We present data showing that under basal conditions and in response to cadmium exposure (2 mg/kg, dosed once via intraperitoneal injection), the phenotype previously described in young (<6 months) Gclm null mice persists into old age (24+ months). We also provide evidence that transcriptional activation of the Nrf2, AMPK, and PPARγ pathways underlie the favorable metabolic phenotype observed previously in young Gclm null mice.
Collapse
Affiliation(s)
- Christopher M Schaupp
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Sengkeo Srinouanprachanh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
5
|
Yu X, Wang K, Xing M, Sun Y, Li M, Sun Y, Cao D, Zhao S, Liu Z. Structurally regular arrangement induced fluorescence enhancement and specific recognition for glutathione of a pyrene chalcone derivative. Anal Chim Acta 2019; 1082:146-151. [PMID: 31472703 DOI: 10.1016/j.aca.2019.07.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 11/28/2022]
Abstract
Glutathione (GSH) is an important antioxygen and free radical scavenger in the organism. Level of GSH in vivo is associated with many diseases and specific recognition for GSH is very important. Here, a pyrene chalcone derivative 1 1-(2-hydroxyphenyl)-3-(1-pyrenyl)-2-propen-1-one as specific probe for GSH was developed. The probe can give rise to rapid blue fluorescence enhancement for GSH based on Michael addition reaction in pure PBS solution with high sensitivity, fast response rate and high specificity. The compound also can be applied for GSH detection in HeLa cell. Simultaneously, the compound exhibits blue fluorescence emission enhancement in methanol-water (1:1, v/v) solution with fluorescence quantum yield being 0.45 due to the competition of water molecules for hydrogen bonds between hydroxyl and carbonyl and the formation of structurally regular rodlike crystals, which allows regulating fluorescence emission by different solvent condition.
Collapse
Affiliation(s)
- Xueying Yu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Kangnan Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Miaomiao Xing
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yanan Sun
- Shandong Vocational College of Industry, Zibo, 256414, Shandong, China
| | - Mengyuan Li
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yatong Sun
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Songfang Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
6
|
Marshall S, Chen Y, Singh S, Berrios-Carcamo P, Heit C, Apostolopoulos N, Golla JP, Thompson DC, Vasiliou V. Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1032:203-221. [PMID: 30362100 PMCID: PMC6743736 DOI: 10.1007/978-3-319-98788-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Excessive consumption of alcohol is a leading cause of lifestyle-induced morbidity and mortality worldwide. Although long-term alcohol abuse has been shown to be detrimental to the liver, brain and many other organs, our understanding of the exact molecular mechanisms by which this occurs is still limited. In tissues, ethanol is metabolized to acetaldehyde (mainly by alcohol dehydrogenase and cytochrome p450 2E1) and subsequently to acetic acid by aldehyde dehydrogenases. Intracellular generation of free radicals and depletion of the antioxidant glutathione (GSH) are believed to be key steps involved in the cellular pathogenic events caused by ethanol. With continued excessive alcohol consumption, further tissue damage can result from the production of cellular protein and DNA adducts caused by accumulating ethanol-derived aldehydes. Much of our understanding about the pathophysiological consequences of ethanol metabolism comes from genetically-engineered mouse models of ethanol-induced tissue injury. In this review, we provide an update on the current understanding of important mouse models in which ethanol-metabolizing and GSH-synthesizing enzymes have been manipulated to investigate alcohol-induced disease.
Collapse
Affiliation(s)
- Stephanie Marshall
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Surendra Singh
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Pablo Berrios-Carcamo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claire Heit
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Hepatic metabolic adaptation in a murine model of glutathione deficiency. Chem Biol Interact 2019; 303:1-6. [PMID: 30794799 DOI: 10.1016/j.cbi.2019.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/03/2019] [Accepted: 02/16/2019] [Indexed: 11/23/2022]
Abstract
Glutathione (GSH), the most abundant cellular non-protein thiol, plays a pivotal role in hepatic defense mechanisms against oxidative damage. Despite a strong association between disrupted GSH homeostasis and liver diseases of various etiologies, it was shown that GSH-deficient glutamate-cysteine ligase modifier subunit (Gclm)-null mice are protected against fatty liver development induced by a variety of dietary and environmental insults. The biochemical mechanisms underpinning this protective phenotype have not been clearly defined. The purpose of the current study was to characterize the intrinsic metabolic signature in the livers from GSH deficient Gclm-null mice. Global profiling of hepatic polar metabolites revealed a spectrum of changes in amino acids and metabolites derived from fatty acids, glucose and nucleic acids due to the loss of GCLM. Overall, the observed low GSH-driven metabolic changes represent metabolic adaptations, including elevations in glutamate, aspartate, acetyl-CoA and gluconate, which are beneficial for the maintenance of cellular redox and metabolic homeostasis.
Collapse
|
8
|
Ratna A, Mandrekar P. Alcohol and Cancer: Mechanisms and Therapies. Biomolecules 2017; 7:E61. [PMID: 28805741 PMCID: PMC5618242 DOI: 10.3390/biom7030061] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/14/2022] Open
Abstract
Several scientific and clinical studies have shown an association between chronic alcohol consumption and the occurrence of cancer in humans. The mechanism for alcohol-induced carcinogenesis has not been fully understood, although plausible events include genotoxic effects of acetaldehyde, cytochrome P450 2E1 (CYP2E1)-mediated generation of reactive oxygen species, aberrant metabolism of folate and retinoids, increased estrogen, and genetic polymorphisms. Here, we summarize the impact of alcohol drinking on the risk of cancer development and potential underlying molecular mechanisms. The interactions between alcohol abuse, anti-tumor immune response, tumor growth, and metastasis are complex. However, multiple studies have linked the immunosuppressive effects of alcohol with tumor progression and metastasis. The influence of alcohol on the host immune system and the development of possible effective immunotherapy for cancer in alcoholics are also discussed here. The conclusive biological effects of alcohol on tumor progression and malignancy have not been investigated extensively using an animal model that mimics the human disease. This review provides insights into cancer pathogenesis in alcoholics, alcohol and immune interactions in different cancers, and scope and future of targeted immunotherapeutic modalities in patients with alcohol abuse.
Collapse
Affiliation(s)
- Anuradha Ratna
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
9
|
Chronic Glutathione Depletion Confers Protection against Alcohol-induced Steatosis: Implication for Redox Activation of AMP-activated Protein Kinase Pathway. Sci Rep 2016; 6:29743. [PMID: 27403993 PMCID: PMC4940737 DOI: 10.1038/srep29743] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/22/2016] [Indexed: 12/19/2022] Open
Abstract
The pathogenesis of alcoholic liver disease (ALD) is not well established. However, oxidative stress and associated decreases in levels of glutathione (GSH) are known to play a central role in ALD. The present study examines the effect of GSH deficiency on alcohol-induced liver steatosis in Gclm knockout (KO) mice that constitutively have ≈15% normal hepatic levels of GSH. Following chronic (6 week) feeding with an ethanol-containing liquid diet, the Gclm KO mice were unexpectedly found to be protected against steatosis despite showing increased oxidative stress (as reflected in elevated levels of CYP2E1 and protein carbonyls). Gclm KO mice also exhibit constitutive activation of liver AMP-activated protein kinase (AMPK) pathway and nuclear factor-erythroid 2–related factor 2 target genes, and show enhanced ethanol clearance, altered hepatic lipid profiles in favor of increased levels of polyunsaturated fatty acids and concordant changes in expression of genes associated with lipogenesis and fatty acid oxidation. In summary, our data implicate a novel mechanism protecting against liver steatosis via an oxidative stress adaptive response that activates the AMPK pathway. We propose redox activation of the AMPK may represent a new therapeutic strategy for preventing ALD.
Collapse
|
10
|
Reaves DK, Ginsburg E, Bang JJ, Fleming JM. Persistent organic pollutants and obesity: are they potential mechanisms for breast cancer promotion? Endocr Relat Cancer 2015; 22:R69-86. [PMID: 25624167 PMCID: PMC4352112 DOI: 10.1530/erc-14-0411] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary ingestion of persistent organic pollutants (POPs) is correlated with the development of obesity. Obesity alters metabolism, induces an inflammatory tissue microenvironment, and is also linked to diabetes and breast cancer risk/promotion of the disease. However, no direct evidence exists with regard to the correlation among all three of these factors (POPs, obesity, and breast cancer). Herein, we present results from current correlative studies indicating a causal link between POP exposure through diet and their bioaccumulation in adipose tissue that promotes the development of obesity and ultimately influences breast cancer development and/or progression. Furthermore, as endocrine disruptors, POPs could interfere with hormonally responsive tissue functions causing dysregulation of hormone signaling and cell function. This review highlights the critical need for advanced in vitro and in vivo model systems to elucidate the complex relationship among obesity, POPs, and breast cancer, and, more importantly, to delineate their multifaceted molecular, cellular, and biochemical mechanisms. Comprehensive in vitro and in vivo studies directly testing the observed correlations as well as detailing their molecular mechanisms are vital to cancer research and, ultimately, public health.
Collapse
Affiliation(s)
- Denise K Reaves
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Erika Ginsburg
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - John J Bang
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| | - Jodie M Fleming
- Department of BiologyNorth Carolina Central University, MTSC Room 2247, 1801 Fayetteville Street, Durham, North Carolina 27707, USANational Cancer InstituteNational Institutes of Health, Center for Cancer Training, Bethesda, Maryland 20892, USADepartment of BiologyNorth Carolina Central University, Durham, North Carolina 27707, USA
| |
Collapse
|
11
|
Heit C, Dong H, Chen Y, Shah YM, Thompson DC, Vasiliou V. Transgenic mouse models for alcohol metabolism, toxicity, and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:375-87. [PMID: 25427919 PMCID: PMC4323349 DOI: 10.1007/978-3-319-09614-8_22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remain to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in alcohol consumption and dependence. Oxidative stress resulting from ethanol oxidation is one established pathogenic event in alcohol-induced toxicity. Ethanol metabolism generates free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has been associated with diminished glutathione (GSH) levels as well as changes in other antioxidant mechanisms. In addition, the formation of protein and DNA adducts associated with the accumulation of ethanol-derived aldehydes can adversely affect critical biological functions and thereby promote cellular and tissue pathology. Animal models have proven to be valuable tools for investigating mechanisms underlying pathogenesis caused by alcohol. In this review, we provide a brief discussion on several animal models with genetic defects in alcohol-metabolizing enzymes and GSH-synthesizing enzymes and their relevance to alcohol research.
Collapse
Affiliation(s)
- Claire Heit
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver Anschutz Medical Campus, 12850 East Montview Boulevard, Aurora, CO, 80045, USA
| | | | | | | | | | | |
Collapse
|
12
|
Wang X, Zhao H, Shao Y, Wang P, Wei Y, Zhang W, Jiang J, Chen Y, Zhang Z. Nephroprotective effect of astaxanthin against trivalent inorganic arsenic-induced renal injury in wistar rats. Nutr Res Pract 2014; 8:46-53. [PMID: 24611105 PMCID: PMC3944156 DOI: 10.4162/nrp.2014.8.1.46] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 07/15/2013] [Indexed: 11/25/2022] Open
Abstract
Inorganic arsenic (iAs) is a toxic metalloid found ubiquitously in the environment. In humans, exposure to iAs can result in toxicity and cause toxicological manifestations. Arsenic trioxide (As2O3) has been used in the treatment for acute promyelocytic leukemia. The kidney is the critical target organ of trivalent inorganic As (iAsIII) toxicity. We examine if oral administration of astaxanthin (AST) has protective effects on nephrotoxicity and oxidative stress induced by As2O3 exposure (via intraperitoneal injection) in rats. Markers of renal function, histopathological changes, Na+-K+ ATPase, sulfydryl, oxidative stress, and As accumulation in kidneys were evaluated as indicators of As2O3 exposure. AST showed a significant protective effect against As2O3-induced nephrotoxicity. These results suggest that the mechanisms of action, by which AST reduces nephrotoxicity, may include antioxidant protection against oxidative injury and reduction of As accumulation. These findings might be of therapeutic benefit in humans or animals suffering from exposure to iAsIII from natural sources or cancer therapy.
Collapse
Affiliation(s)
- Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haiyuan Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanru Wei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Weiqian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jing Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Glutathione defense mechanism in liver injury: insights from animal models. Food Chem Toxicol 2013; 60:38-44. [PMID: 23856494 DOI: 10.1016/j.fct.2013.07.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/11/2022]
Abstract
Glutathione (GSH) is the most abundant cellular thiol antioxidant and it exhibits numerous and versatile functions. Disturbances in GSH homeostasis have been associated with liver diseases induced by drugs, alcohol, diet and environmental pollutants. Until recently, our laboratories and others have developed mouse models with genetic deficiencies in glutamate-cysteine ligase (GCL), the rate-limiting enzyme in the GSH biosynthetic pathway. This review focuses on regulation of GSH homeostasis and, specifically, recent studies that have utilized such GSH-deficient mouse models to investigate the role of GSH in liver disease processes. These studies have revealed a differential hepatic response to distinct profiles of hepatic cellular GSH concentration. In particular, mice engineered to not express the catalytic subunit of GCL in hepatocytes [Gclc(h/h) mice] experience almostcomplete loss of hepatic GSH (to 5% of normal) and develop spontaneous liver pathologies characteristic of various clinical stages of liver injury. In contrast, mice globally engineered to not express the modifier subunit of GCL [Gclm⁻/⁻ mice] show a less severe hepatic GSH deficit (to ≈15% of normal) and exhibit overall protection against liver injuries induced by a variety of hepatic insults. Collectively, these transgenic mouse models provide interesting new insights regarding pathophysiological functions of GSH in the liver.
Collapse
|
14
|
Findeisen HM, Bruemmer D. Response to "Lack of evidence to support a beneficial role for glutathione depletion on body weight or glucose intolerance". Obesity (Silver Spring) 2013; 21:3-4. [PMID: 23404907 DOI: 10.1002/oby.20024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/08/2012] [Accepted: 06/27/2012] [Indexed: 11/11/2022]
|
15
|
Chen Y, Curran CP, Nebert DW, Patel KV, Williams MT, Vorhees CV. Effect of chronic glutathione deficiency on the behavioral phenotype of Gclm-/- knockout mice. Neurotoxicol Teratol 2012; 34:450-7. [PMID: 22580179 DOI: 10.1016/j.ntt.2012.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 12/12/2022]
Abstract
Enhanced oxidative stress or deficient oxidative stress response in the brain is associated with neurodegenerative disorders and behavioral abnormalities. Previously we generated a knockout mouse line lacking the gene encoding glutamate-cysteine ligase modifier subunit (GCLM). Gclm(-/-) knockout (KO) mice are viable and fertile, yet exhibit only 9-35% of wild-type levels of reduced glutathione (GSH) in tissues, making them a useful model for chronic GSH depletion. Having the global absence of this gene, KO mice--from the time of conception and throughout postnatal life--experience chronic oxidative stress in all tissues, including brain. Between postnatal day (P) 60 and P100, we carried out behavioral phenotyping tests in adults, comparing male and female Gclm(-/-) with Gclm(-/-) wild-type (WT) littermates. Compared with WT, KO mice exhibited: subnormal anxiety in the elevated zero maze; normal overall exploratory open-field activity, but slightly more activity in the peripheral zones; normal acoustic startle and prepulse inhibition reactions; normal novel object recognition with increased time attending to the stimulus objects; slightly reduced latencies to reach a random marked platform in the Morris water maze; normal spatial learning and memory in multiple phases of the Morris water maze; and significantly greater hyperactivity in response to methamphetamine in the open field. These findings are generally in agreement with two prior studies on these mice and suggest that the brain is remarkably resilient to lowered GSH levels, implying significant reserve capacity to regulate reactive oxygen species-but with regional differences such that anxiety and stimulated locomotor control brain regions might be more vulnerable.
Collapse
Affiliation(s)
- Ying Chen
- Department of Environmental Health, and Center for Environmental Genetics-CEG, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | |
Collapse
|