1
|
Chen Y, Guan S, Liu M, Lang L, Peng H, Lu J. 1,3-Dichloro-2-propanol Induced Renal Cell Ferroptosis via the Circadian Clock Protein BMAL1 Targeting GPX4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39561408 DOI: 10.1021/acs.jafc.4c05676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP), a representative chloropropyl alcohol contaminant in food, has shown toxic effects on the kidney. Ferroptosis is a newly identified cell death driven by iron-dependent lipid peroxidation that is associated with renal injury. However, the role of 1,3-DCP in ferroptosis in renal cells remains unclear. In this study, we found that ferroptosis was involved in a 1,3-DCP-induced renal injury. Mechanistically, we revealed that 1,3-DCP triggered ferroptosis by inhibiting GPX4 activity and disturbing iron homeostasis in NRK-52E cells. The circadian clock is crucial in modulating physiological cellular functions through the regulation of various downstream proteins. Furthermore, our findings also showed that 1,3-DCP triggered ferroptosis through interference with the circadian clock. The data showed that the expression of GPX4 was regulated by clock core protein BMAL1. 1,3-DCP interfered with GPX4 rhythmic expression through disordering BMAL1 and led to lipid peroxidation, ultimately inducing ferroptosis. In conclusion, our study uncovered that BMAL1 was responsible for controlling GPX4 to mediate 1,3-DCP-induced ferroptosis. The BMAL1/GPX4 axis may be a potentially novel pathway for ferroptosis. Our work may offer a fresh perspective for toxicological research examining the interactions between food pollutants, circadian clock, and ferroptosis.
Collapse
Affiliation(s)
- Yuelin Chen
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Guan
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Meitong Liu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Lingxi Lang
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Huanhuan Peng
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
2
|
Ye J, Liu L, Lan W, Xiong J. Targeted release of soybean peptide from CMC/PVA hydrogels in simulated intestinal fluid and their pharmacokinetics. Carbohydr Polym 2023; 310:120713. [PMID: 36925260 DOI: 10.1016/j.carbpol.2023.120713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
Carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) hydrogels loaded with soybean peptide (SPE) were fabricated via a freeze-thaw method. These hydrogels conquer barriers in simulated gastric fluid (SGF), and then release SPE in simulated intestinal fluid (SIF). The results of in vitro SPE release from these hydrogels showed that in SGF only a little of the SPE released, but in SIF the SPE was completely released. The released SPE had scavenging rates for DPPH and ABTS free radicals of 41.68 and 31.43 %. The pharmacokinetic model of SPE release from the hydrogels in SIF was studied. When the hydrogels are moved from SGF to SIF, the sorption of the shrinkage hydrogel network is entirely controlled by stress-induced relaxations. There are swollen and shrunken regions during SPE release. For SPE release into the SIF, SPE has to be freed from the weak bonds in the swollen regions by changes in the conformation of CMC and PVA. The release rate of SPE was found to be governed by the diffusion and swelling rate of the shrinkage hydrogel network. The Korsmeyer-Peppas equation diffusion exponents (n) for SPE release from the hydrogels are >2.063, indicating a super case II transport. These data demonstrate CMC/PVA hydrogels have potential applications in oral peptide delivery.
Collapse
Affiliation(s)
- Jun Ye
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Luying Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Xiong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Ilango AK, Jiang T, Zhang W, Feldblyum JI, Efstathiadis H, Liang Y. Surface-modified biopolymers for removing mixtures of per- and polyfluoroalkyl substances from water: Screening and removal mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121865. [PMID: 37225078 DOI: 10.1016/j.envpol.2023.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Green, renewable, and sustainable materials are needed for removing per- and polyfluoroalkyl substances (PFASs) in water. Herein, we synthesized and tested alginate (ALG) and chitosan (CTN) based and polyethyleneimine (PEI) functionalized fibers/aerogels for the adsorption of mixtures of 12 PFASs (9 short- and long-chain PFAAs, GenX, and 2 precursors) from water at an initial concentration of 10 μg/L each. Out of 11 biosorbents, ALGPEI-3 and GTH CTNPEI aerogels had the best sorption performance. Through detailed characterization of the sorbents before and after PFASs sorption, it was revealed that hydrophobic interaction was the dominant mechanism controlling PFASs sorption while electrostatic interactions played a minor role. As a result, both aerogels had fast and superior sorption of relatively hydrophobic PFASs from pH 2 to 10. Even at extreme pH conditions, the aerogels retained their shape perfectly. Based upon the isotherms, the maximum adsorption capacity of ALGPEI-3 and GTH-CTNPEI aerogels towards total PFASs removal was 3045 and 12,133 mg/g, respectively. Although the sorption performance of the GTH-CTNPEI aerogel toward short chain PFAS was less than satisfactory and varied between 70 and 90% in 24 h, it may find its use in removing relatively hydrophobic PFAS at high concentrations in complex and extreme environments.
Collapse
Affiliation(s)
- Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States.
| | - Tao Jiang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States
| | - Jeremy I Feldblyum
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, United States
| | - Haralabos Efstathiadis
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, 12203, United States
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY, 12222, United States
| |
Collapse
|
4
|
Frone AN, Uşurelu CD, Oprică GM, Panaitescu DM, Gabor AR, Nicolae CA, Ciuprina F, Damian CM, Raduly FM. Contribution of the Surface Treatment of Nanofibrillated Cellulose on the Properties of Bio-Based Epoxy Nanocomposites Intended for Flexible Electronics. Int J Mol Sci 2023; 24:6544. [PMID: 37047517 PMCID: PMC10095063 DOI: 10.3390/ijms24076544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The growing interest in materials derived from biomass has generated a multitude of solutions for the development of new sustainable materials with low environmental impact. We report here, for the first time, a strategy to obtain bio-based nanocomposites from epoxidized linseed oil (ELO), itaconic acid (IA), and surface-treated nanofibrillated cellulose (NC). The effect of nanofibrillated cellulose functionalized with silane (NC/S) and then grafted with methacrylic acid (NC/SM) on the properties of the resulted bio-based epoxy systems was thoroughly investigated. The differential scanning calorimetry (DSC) results showed that the addition of NCs did not influence the curing process and had a slight impact on the maximum peak temperature. Moreover, the NCs improved the onset degradation temperature of the epoxy-based nanocomposites by more than 30 °C, regardless of their treatment. The most important effect on the mechanical properties of bio-based epoxy nanocomposites, i.e., an increase in the storage modulus by more than 60% at room temperature was observed in the case of NC/SM addition. Therefore, NC's treatment with silane and methacrylic acid improved the epoxy-nanofiber interface and led to a very good dispersion of the NC/SM in the epoxy network, as observed by the SEM investigation. The dielectric results proved the suitability of the obtained bio-based epoxy/NCs materials as substitutes for petroleum-based thermosets in the fabrication of flexible electronic devices.
Collapse
Affiliation(s)
- Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Cătălina Diana Uşurelu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Gabriela Mădălina Oprică
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Augusta Raluca Gabor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Cristian-Andi Nicolae
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Florin Ciuprina
- ELMAT Laboratory, Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Celina Maria Damian
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Florentina Monica Raduly
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| |
Collapse
|
5
|
Lei P, Wang L, Yan Y, Deng W, Gao J, Zhu J, Liang M, Wen J, Lv J, Zhou J. Improved solid-phase microextraction extraction procedure to detect trace-level epichlorohydrin in municipal water systems by HS-SPME-GC/MS. Front Chem 2022; 10:1004269. [PMID: 36238102 PMCID: PMC9553001 DOI: 10.3389/fchem.2022.1004269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Epichlorohydrin (ECH) is toxic to humans via multiple routes and is a potential carcinogen. The accurate measurement of ECH at trace level (<0.1 μg/L) is still an obstacle hindering the monitoring and regulation of municipal water systems. In this study, an improved headspace solid-phase microextraction (HS-SPME) procedure is developed and optimized to extract and enrich ECH with high sensitivity, accuracy, and precision. A total 17.4-time enhancement in extraction efficiency is achieved compared with the default condition. Specifically, the AC/PDMS/DVB fiber offered a 4.4-time enhancement comparing with the PDMS/DVB fiber. The effects of different mineral salts in SPME were studied and it was found that an addition of 3 g Na₂SO₄ in the SPME head achieved an additional 3.3-time increase. The pattern how sodium sulfate enhanced ECH extraction by salting out is discussed. The optimization of extraction conditions (pH = 7, 35°C, and 20 min extraction duration) brought another 1.2 times further. Combined with gas chromatography with mass spectrometry, the optimized method exhibits curve linearity in the range of 0.02–1.00 μg/L with an R2 of 0.998. The limit of detection, precision, and accuracy of the method are 0.006 μg/L, 2.6%–5.3%, and −3.5% to −2.0%, respectively. The recovery of ECH spiking in tap water and surface water was investigated, with recovery rates of 88.0%–116% and 72.5%–108%, respectively. Adhering to the requirements of existing water quality regulations, our method shows a high potential to be applied in drinking water quality monitoring and water treatment process assessment.
Collapse
Affiliation(s)
- Ping Lei
- Shenzhen Hydrology and Water Quality Center, Shenzhen, Guangdong, China
| | - Lu Wang
- Shenzhen Hydrology and Water Quality Center, Shenzhen, Guangdong, China
| | - Yun Yan
- Shenzhen Hydrology and Water Quality Center, Shenzhen, Guangdong, China
| | - Wubin Deng
- Shenzhen Hydrology and Water Quality Center, Shenzhen, Guangdong, China
| | - Jingsi Gao
- Shenzhen Polytechnic, Shenzhen, Guangdong, China
- *Correspondence: Jingsi Gao, ; Jianfeng Zhou,
| | - Jia Zhu
- Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | | | - Jiaheng Wen
- Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Jianfeng Lv
- Shenzhen Polytechnic, Shenzhen, Guangdong, China
| | - Jianfeng Zhou
- Georgia Tech Shenzhen Institute, Tianjin University (GTSI), Shenzhen, Guangdong, China
- *Correspondence: Jingsi Gao, ; Jianfeng Zhou,
| |
Collapse
|
6
|
Waidyanatha S, Black SR, Witt KL, Fennell TR, Swartz C, Recio L, Watson SL, Patel P, Fernando RA, Rider CV. The common indoor air pollutant α-pinene is metabolized to a genotoxic metabolite α-pinene oxide. Xenobiotica 2022; 52:301-311. [PMID: 35473450 DOI: 10.1080/00498254.2022.2070047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. α-Pinene caused a concentration-responsive increase in bladder hyperplasia and decrease in sperm counts in rodents following inhalation exposure. Additionally, it formed a prospective reactive metabolite, α-pinene oxide.2. To provide human relevant context for data generated in animal models and explore potential mechanism, we undertook studies to investigate the metabolism of α-pinene to α-pinene oxide and mutagenicity of α-pinene and α-pinene oxide.3. α-Pinene oxide was formed in rat and human microsomes and hepatocytes with some species differences. Based on area under the concentration versus time curves, the formation of α-pinene oxide was up to 4-fold higher in rats than in humans.4. While rat microsomes cleared α-pinene oxide faster than human microsomes, the clearance of α-pinene oxide in hepatocytes was similar between species.5. α-Pinene was not mutagenic with or without induced rat liver S9 in Salmonella typhimurium or Escherichia coli when tested up to 10,000 μg/plate while α-pinene oxide was mutagenic at ≥25 μg/plate.6. α-Pinene was metabolized to α-pinene oxide under the conditions of the bacterial mutation assay although the concentration was approximately 3-fold lower than the lowest α-pinene oxide concentration that was positive in the assay, potentially explaining the lack of mutagenicity observed with α-pinene.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Carol Swartz
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | | | - Purvi Patel
- RTI International, Research Triangle Park, NC, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
In vivo mutagenicity and tumor-promoting activity of 1,3-dichloro-2-propanol in the liver and kidneys of gpt delta rats. Arch Toxicol 2021; 95:3117-3131. [PMID: 34269859 DOI: 10.1007/s00204-021-03120-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP), a food contaminant, exerts carcinogenic effects in multiple organs, including the liver and kidneys, in rats. However, the underlying mechanisms of 1,3-DCP-induced carcinogenesis remain unclear. Here, the in vivo mutagenicity and tumor-promoting activity of 1,3-DCP in the liver and kidneys were evaluated using medium-term gpt delta rat models previously established in our laboratory (GPG and GNP models). Six-week-old male F344 gpt delta rats were treated with 0 or 50 mg/kg body weight/day 1,3-DCP by gavage for 4 weeks. After 2 weeks of cessation, partial hepatectomy or unilateral nephrectomy was performed to collect samples for in vivo mutation assays, followed by single administration of diethylnitrosamine (DEN) for tumor initiation. One week after DEN injection, 1,3-DCP treatment was resumed, and tumor-promoting activity was evaluated in the residual liver or kidneys by histopathological analysis of preneoplastic lesions. gpt mutant frequencies increased in excised liver and kidney tissues following 1,3-DCP treatment. 1,3-DCP did not affect the development of glutathione S-transferase placental form-positive foci in residual liver tissues, but enhanced atypical tubule hyperplasia in residual kidney tissues. Detailed histopathological analyses revealed glomerular injury and increased cell proliferation of renal tubular cells in residual kidney tissues of rats treated with 1,3-DCP. These results suggested possible involvement of genotoxic mechanisms in 1,3-DCP-induced carcinogenesis in the liver and kidneys. In addition, we found that 1,3-DCP exhibited limited tumor-promoting activity in the liver, but enhanced clonal expansion in renal carcinogenesis via proliferation of renal tubular cells following glomerular injury.
Collapse
|
8
|
Pollap A, Baran K, Kuszewska N, Kochana J. Electrochemical sensing of ciprofloxacin and paracetamol in environmental water using titanium sol based sensor. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114574] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Yalçın E, Uzun A, Çavuşoğlu K. In vivo epiclorohidrine toxicity: cytogenetic, biochemical, physiological, and anatomical evidences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22400-22406. [PMID: 31154645 DOI: 10.1007/s11356-019-05518-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, the toxic effects of epiclorohidrine (ECh) were investigated in vivo by Allium test. The toxic effects have been investigated in terms of physiological, cytogenetic, anatomical, and biochemical aspects. The changes in germination percentage, weight gain, and root length were investigated as physiological parameter; micronucleus (MN), mitotic index (MI), and chromosomal abnormality (CA) frequencies were as cytogenetic parameter. Oxidative stress indicators such as superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were analyzed for biochemical changes and also damages in root tip cells were evaluated as anatomical parameter. It was determined that germination percentage, weight gain, root length, and MI decreased; MN and CA frequencies were increased with the increase of ECh treatment dose. ECh treatment caused significant increase in SOD and CAT enzyme activities and MDA levels and these results indicated a stress formation. A variety of anatomical changes and damages were observed in the root tip cells induced by ECh. In conclusion, the toxic effects of ECh on A. cepa which is a model of eucaryotic cell were investigated in a multi-directional way and serious toxic effects of ECh treatment were determined.
Collapse
Affiliation(s)
- Emine Yalçın
- Science and Art Faculty, Departmant of Biology, Giresun University, Giresun, Turkey.
| | - Aytül Uzun
- Science and Technology Application and Research Center, Yozgat Bozok University, Yozgat, Turkey
| | - Kültiğin Çavuşoğlu
- Science and Art Faculty, Departmant of Biology, Giresun University, Giresun, Turkey
| |
Collapse
|
10
|
Zhang XY, Elfarra AA. Potential roles of myeloperoxidase and hypochlorous acid in metabolism and toxicity of alkene hydrocarbons and drug molecules containing olefinic moieties. Expert Opin Drug Metab Toxicol 2016; 13:513-524. [DOI: 10.1080/17425255.2017.1271413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xin-Yu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Adnan A. Elfarra
- Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|