1
|
Jangra S, Gulia H, Singh J, Dang AS, Giri SK, Singh G, Priya K, Kumar A. Chemical leukoderma: An insight of pathophysiology and contributing factors. Toxicol Ind Health 2024; 40:479-495. [PMID: 38814634 DOI: 10.1177/07482337241257273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Chemical leukoderma, or chemical-based vitiligo, is a dermal disease triggered by exposure to chemicals and characterized by the emergence of depigmentation or hypopigmentation of the skin. The etiology of this condition is associated with exposure to various chemical substances present in both occupational and non-occupational settings. The precise mechanism that underlies chemical leukoderma remains elusive and is believed to result from the demise of melanocytes, which are responsible for producing skin pigments. This condition has gained particular prominence in developing countries like India. An interesting connection between chemical leukoderma and vitiligo has been identified; studies suggest that exposure to many household chemicals, which are derivatives of phenols and catechol, may serve as a primary etiological factor for the condition. Similar to autoimmune diseases, its pathogenesis involves contributions from both genetic and environmental factors. Furthermore, over the last few decades, various studies have demonstrated that exposure to chemicals plays a crucial role in initiating and progressing chemical leukoderma, including cases stemming from occupational exposure.
Collapse
Affiliation(s)
- Soniya Jangra
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Heena Gulia
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Jagphool Singh
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Amita S Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Shiv K Giri
- Department of Biotechnology, Maharaja Agrasen University, Solan, India
| | - Gulab Singh
- Department of Bioscience, School of Liberal Arts and Sciences, Mody University, Lakshmangarh, India
| | - Kanu Priya
- Department of Life Sciences, Sharda University, Greater Noida, India
| | - Anil Kumar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
2
|
Dong J, Lai Y, Zhang X, Yue Y, Zhong H, Shang J. Optimization of Monobenzone-Induced Vitiligo Mouse Model by the Addition of Chronic Stress. Int J Mol Sci 2023; 24:ijms24086990. [PMID: 37108153 PMCID: PMC10138324 DOI: 10.3390/ijms24086990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Vitiligo is a common primary, limited or generalized skin depigmentation disorder. Its pathogenesis is complex, multifactorial and unclear. For this reason, few animal models can simulate the onset of vitiligo, and studies of drug interventions are limited. Studies have found that there may be a pathophysiological connection between mental factors and the development of vitiligo. At present, the construction methods of the vitiligo model mainly include chemical induction and autoimmune induction against melanocytes. Mental factors are not taken into account in existing models. Therefore, in this study, mental inducement was added to the monobenzone (MBEH)-induced vitiligo model. We determined that chronic unpredictable mild stress (CUMS) inhibited the melanogenesis of skin. MBEH inhibited melanin production without affecting the behavioral state of mice, but mice in the MBEH combined with CUMS (MC) group were depressed and demonstrated increased depigmentation of the skin. Further analysis of metabolic differences showed that all three models altered the metabolic profile of the skin. In summary, we successfully constructed a vitiligo mouse model induced by MBEH combined with CUMS, which may be better used in the evaluation and study of vitiligo drugs.
Collapse
Affiliation(s)
- Jing Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Lai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
3
|
Calixbenoquin: Calixarene-Based Cluster of Monobenzone as a New Anti-Tyrosinase Agent. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Nishimaki-Mogami T, Ito S, Cui H, Akiyama T, Tamehiro N, Adachi R, Wakamatsu K, Ikarashi Y, Kondo K. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds. J Dermatol Sci 2022; 108:77-86. [PMID: 36567223 DOI: 10.1016/j.jdermsci.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/04/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chemical leukoderma is a skin depigmentation disorder induced through contact with certain chemicals, most of which have a p-substituted phenol structure similar to the melanin precursor tyrosine. The tyrosinase-catalyzed oxidation of phenols to highly reactive o-quinone metabolites is a critical step in inducing leukoderma through the production of melanocyte-specific damage and immunological responses. OBJECTIVE Our aim was to find an effective method to evaluate the formation of o-quinone by human tyrosinase and subsequent cellular reactions. METHODS Human tyrosinase-expressing 293T cells were exposed to various phenolic compounds, after which the reactive o-quinones generated were identified as adducts of cellular thiols. We further examined whether the o-quinone formation induces reductions in cellular GSH or viability. RESULTS Among the chemicals tested, all 7 leukoderma-inducing phenols/catechol (rhododendrol, raspberry ketone, monobenzone, 4-tert-butylphenol, 4-tert-butylcatechol, 4-S-cysteaminylphenol and p-cresol) were oxidized to o-quinone metabolites and were detected as adducts of cellular glutathione and cysteine, leading to cellular glutathione reduction, whereas 2-S-cysteaminylphenol and 4-n-butylresorcinol were not. In vitro analysis using a soluble variant of human tyrosinase revealed a similar substrate-specificity. Some leukoderma-inducing phenols exhibited tyrosinase-dependent cytotoxicity in this cell model and in B16BL6 melanoma cells where tyrosinase expression was effectively modulated by siRNA knockdown. CONCLUSION We developed a cell-based metabolite analytical method to detect human tyrosinase-catalyzed formation of o-quinone from phenolic compounds by analyzing their thiol-adducts. The detailed analysis of each metabolite was superior in sensitivity and specificity compared to cytotoxicity assays for detecting known leukoderma-inducing phenols, providing an effective strategy for safety evaluation of chemicals.
Collapse
Affiliation(s)
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Aichi, Japan.
| | - Hongyan Cui
- National Institute of Health Sciences, Kanagawa, Japan
| | | | | | - Reiko Adachi
- National Institute of Health Sciences, Kanagawa, Japan
| | | | | | | |
Collapse
|
5
|
Kim M, Lim KM. Melanocytotoxic chemicals and their toxic mechanisms. Toxicol Res 2022; 38:417-435. [PMID: 36277364 PMCID: PMC9532501 DOI: 10.1007/s43188-022-00144-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 10/15/2022] Open
Abstract
Melanocyte cell death can lead to various melanocyte-related skin diseases including vitiligo and leukoderma. Melanocytotoxic chemicals are one of the most well-known causes of nongenetic melanocyte-related diseases, which induce melanocyte cell death through apoptosis. Various chemicals used in cosmetics, medicine, industry and food additives are known to induce melanocyte cell death, which poses a significant risk to the health of consumers and industrial workers. This review summarizes recently reported melanocytotoxic chemicals and their mechanisms of toxicity in an effort to provide insight into the development of safer chemicals.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea
| |
Collapse
|
6
|
Immunomodulation of Melanoma by Chemo-Thermo-Immunotherapy Using Conjugates of Melanogenesis Substrate NPrCAP and Magnetite Nanoparticles: A Review. Int J Mol Sci 2022; 23:ijms23126457. [PMID: 35742905 PMCID: PMC9223671 DOI: 10.3390/ijms23126457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022] Open
Abstract
A major advance in drug discovery and targeted therapy directed at cancer cells may be achieved by the exploitation and immunomodulation of their unique biological properties. This review summarizes our efforts to develop novel chemo-thermo-immunotherapy (CTI therapy) by conjugating a melanogenesis substrate, N-propionyl cysteaminylphenol (NPrCAP: amine analog of tyrosine), with magnetite nanoparticles (MNP). In our approach, NPrCAP provides a unique drug delivery system (DDS) because of its selective incorporation into melanoma cells. It also functions as a melanoma-targeted therapeutic drug because of its production of highly reactive free radicals (melanoma-targeted chemotherapy). Moreover, the utilization of MNP is a platform to develop thermo-immunotherapy because of heat shock protein (HSP) expression upon heat generation in MNP by exposure to an alternating magnetic field (AMF). This comprehensive review covers experimental in vivo and in vitro mouse melanoma models and preliminary clinical trials with a limited number of advanced melanoma patients. We also discuss the future directions of CTI therapy.
Collapse
|
7
|
The Oxidation of Equol by Tyrosinase Produces a Unique Di- ortho-Quinone: Possible Implications for Melanocyte Toxicity. Int J Mol Sci 2021; 22:ijms22179145. [PMID: 34502054 PMCID: PMC8431114 DOI: 10.3390/ijms22179145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022] Open
Abstract
Equol (7-hydroxy-3-(4′-hydroxyphenyl)-chroman, EQ), one of the major intestinally derived metabolites of daidzein, the principal isoflavane found in soybeans and most soy foods, has recently attracted increased interest as a health-beneficial compound for estrogen-dependent diseases. However, based on its structure with two p-substituted phenols, this study aimed to examine whether EQ is a substrate for tyrosinase and whether it produces o-quinone metabolites that are highly cytotoxic to melanocyte. First, the tyrosinase-catalyzed oxidation of EQ was performed, which yielded three EQ-quinones. They were identified after being reduced to their corresponding catechols with NaBH4 or L-ascorbic acid. The binding of the EQ-quinones to N-acetyl-L-cysteine (NAC), glutathione (GSH), and bovine serum albumin via their cysteine residues was then examined. NAC and GSH afforded two mono-adducts and one di-adduct, which were identified by NMR and MS analysis. It was also found that EQ was oxidized to EQ-di-quinone in cells expressing human tyrosinase. Finally, it was confirmed that the EQ-oligomer, the EQ oxidation product, exerted potent pro-oxidant activity by oxidizing GSH to the oxidized GSSG and concomitantly producing H2O2. These results suggest that EQ-quinones could be cytotoxic to melanocytes due to their binding to cellular proteins.
Collapse
|
8
|
Anti-tyrosinase properties of different species of turmeric and isolation of active compounds from Curcuma amada. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02764-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Li J, Wang SP, Zong G, Kim E, Tsao CY, VanArsdale E, Wang LX, Bentley WE, Payne GF. Interactive Materials for Bidirectional Redox-Based Communication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007758. [PMID: 33788338 DOI: 10.1002/adma.202007758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Emerging research indicates that biology routinely uses diffusible redox-active molecules to mediate communication that can span biological systems (e.g., nervous and immune) and even kingdoms (e.g., a microbiome and its plant/animal host). This redox modality also provides new opportunities to create interactive materials that can communicate with living systems. Here, it is reported that the fabrication of a redox-active hydrogel film can autonomously synthesize a H2 O2 signaling molecule for communication with a bacterial population. Specifically, a catechol-conjugated/crosslinked 4-armed thiolated poly(ethylene glycol) hydrogel film is electrochemically fabricated in which the added catechol moieties confer redox activity: the film can accept electrons from biological reductants (e.g., ascorbate) and donate electrons to O2 to generate H2 O2 . Electron-transfer from an Escherichia coli culture poises this film to generate the H2 O2 signaling molecule that can induce bacterial gene expression from a redox-responsive operon. Overall, this work demonstrates that catecholic materials can participate in redox-based interactions that elicit specific biological responses, and also suggests the possibility that natural phenolics may be a ubiquitous biological example of interactive materials.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Sally P Wang
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
| | - Chen-Yu Tsao
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
| | - Eric VanArsdale
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
10
|
Ito S, Sugumaran M, Wakamatsu K. Chemical Reactivities of ortho-Quinones Produced in Living Organisms: Fate of Quinonoid Products Formed by Tyrosinase and Phenoloxidase Action on Phenols and Catechols. Int J Mol Sci 2020; 21:ijms21176080. [PMID: 32846902 PMCID: PMC7504153 DOI: 10.3390/ijms21176080] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
Abstract
Tyrosinase catalyzes the oxidation of phenols and catechols (o-diphenols) to o-quinones. The reactivities of o-quinones thus generated are responsible for oxidative browning of plant products, sclerotization of insect cuticle, defense reaction in arthropods, tunichrome biochemistry in tunicates, production of mussel glue, and most importantly melanin biosynthesis in all organisms. These reactions also form a set of major reactions that are of nonenzymatic origin in nature. In this review, we summarized the chemical fates of o-quinones. Many of the reactions of o-quinones proceed extremely fast with a half-life of less than a second. As a result, the corresponding quinone production can only be detected through rapid scanning spectrophotometry. Michael-1,6-addition with thiols, intramolecular cyclization reaction with side chain amino groups, and the redox regeneration to original catechol represent some of the fast reactions exhibited by o-quinones, while, nucleophilic addition of carboxyl group, alcoholic group, and water are mostly slow reactions. A variety of catecholamines also exhibit side chain desaturation through tautomeric quinone methide formation. Therefore, quinone methide tautomers also play a pivotal role in the fate of numerous o-quinones. Armed with such wide and dangerous reactivity, o-quinones are capable of modifying the structure of important cellular components especially proteins and DNA and causing severe cytotoxicity and carcinogenic effects. The reactivities of different o-quinones involved in these processes along with special emphasis on mechanism of melanogenesis are discussed.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA;
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| |
Collapse
|
11
|
Safflospermidines from the bee pollen of Helianthus annuus L. exhibit a higher in vitro antityrosinase activity than kojic acid. Heliyon 2020; 6:e03638. [PMID: 32215336 PMCID: PMC7090343 DOI: 10.1016/j.heliyon.2020.e03638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Ozone deterioration in the atmosphere has become a severe problem causing overexposure of ultraviolet light, which results in humans in melanin overproduction and can lead to many diseases, such as skin cancer and melasma, as well as undesirable esthetic appearances, such as freckles and hyperpigmentation. Although many compounds inhibit melanin overproduction, some of them are cytotoxic, unstable, and can cause skin irritation. Thus, searching for new natural compounds with antityrosinase activity and less/no side effects is still required. Here, bee pollen derived from sunflower (Helianthus annuus L.) was evaluated. Materials and methods Sunflower bee pollen (SBP) was collected from Apis mellifera bees in Lopburi province, Thailand in 2017, extracted by methanol and sequentially partitioned with hexane and dichloromethane (DCM). The in vitro antityrosinase activity was evaluated using mushroom tyrosinase and the half maximal inhibitory concentration (IC50) is reported. The antioxidation activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and reported as the half maximal effective concentration. Two pure compounds with antityrosinase activity were isolated by silica gel 60 column chromatography (SG60CC) and high performance liquid chromatography (HPLC), and their chemical structure deduced by Nuclear Magnetic Resonance (NMR) analysis. Results The DCM partitioned extract of SBP (DCMSBP) had an antityrosinase activity (IC50, 159.4 μg/mL) and was fractionated by SG60CC, providing five fractions (DCMSBP1-5). The DCMSBP5 fraction was the most active (IC50 = 18.8 μg/mL) and further fractionation by HPLC gave two active fractions, revealed by NMR analysis to be safflospermidine A and B. Interestingly, both safflospermidine A and B had a higher antityrosinase activity (IC50 of 13.8 and 31.8 μM, respectively) than kojic acid (IC50 of 44.0 μM). However, fraction DCMSBP5 had no significant antioxidation activity, while fractions DCMSBP1-4 showed a lower antioxidation activity than ascorbic acid. Conclusion Safflospermidine A and B are potential natural tyrosinase inhibitors.
Collapse
|
12
|
Ito S, Fujiki Y, Matsui N, Ojika M, Wakamatsu K. Tyrosinase‐catalyzed oxidation of resveratrol produces a highly reactive
ortho
‐quinone: Implications for melanocyte toxicity. Pigment Cell Melanoma Res 2019; 32:766-776. [DOI: 10.1111/pcmr.12808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/28/2019] [Accepted: 06/26/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Shosuke Ito
- Department of Chemistry Fujita Health University School of Medical Sciences Toyoake Aichi Japan
| | - Yui Fujiki
- Department of Chemistry Fujita Health University School of Medical Sciences Toyoake Aichi Japan
| | - Nina Matsui
- Department of Chemistry Fujita Health University School of Medical Sciences Toyoake Aichi Japan
| | - Makoto Ojika
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences Nagoya University Nagoya Aichi Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry Fujita Health University School of Medical Sciences Toyoake Aichi Japan
| |
Collapse
|
13
|
Kammeyer A, Willemsen KJ, Ouwerkerk W, Bakker WJ, Ratsma D, Pronk SD, Smit NPM, Luiten RM. Mechanism of action of 4-substituted phenols to induce vitiligo and antimelanoma immunity. Pigment Cell Melanoma Res 2019; 32:540-552. [PMID: 30767390 PMCID: PMC6850206 DOI: 10.1111/pcmr.12774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Monobenzone is a 4-substituted phenol that can induce vitiligo and antimelanoma immunity. We investigated the influence of the chemical structure on the biological activity of a series of structurally related 4-substituted phenols. All phenols inhibited cellular melanin synthesis, and eight of ten phenols inhibited tyrosinase activity, using the MBTH assay. These phenols also induced glutathione (GSH) depletion, indicative of quinone formation and protein thiol binding, which can increase the immunogenicity of melanosomal proteins. Specific T-cell activation was found upon stimulation with phenol-exposed pigmented cells, which also reacted with unexposed cells. In contrast, 4-tertbutylphenol induced immune activation was not restricted to pigment cells, analogous to contact sensitization. We conclude that 4-substituted phenols can induce specific T-cell responses against melanocytes and melanoma cells, also acting at distant, unexposed body sites, and may confer a risk of chemical vitiligo. Conversely, these phenols may be applicable to induce specific antimelanoma immunity.
Collapse
Affiliation(s)
- Arthur Kammeyer
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Amsterdam Infection & Immunity Institute, Cancer Center AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
| | - Karin J. Willemsen
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Amsterdam Infection & Immunity Institute, Cancer Center AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
| | - Wouter Ouwerkerk
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Amsterdam Infection & Immunity Institute, Cancer Center AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical CentersUniversity of AmsterdamAmsterdamThe Netherlands
| | - Walbert J. Bakker
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Amsterdam Infection & Immunity Institute, Cancer Center AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
| | - Danielle Ratsma
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Amsterdam Infection & Immunity Institute, Cancer Center AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sebas D. Pronk
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Amsterdam Infection & Immunity Institute, Cancer Center AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
| | - Nico P. M. Smit
- Department of Clinical Chemistry and Laboratory MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Rosalie M. Luiten
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Amsterdam Infection & Immunity Institute, Cancer Center AmsterdamUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
14
|
Kim JY, Lee EJ, Ahn Y, Park S, Kim SH, Oh SH. A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:57-64. [PMID: 30668323 DOI: 10.1016/j.phymed.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 10/25/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Trials for regulation of abnormal hyperpigmentation from the use of natural products have been going on for years. Leaf and root extracts from Juglans mandshurica are reported to function as antioxidants and to suppress allergic dermatitis. However, studies evaluating its fruit extract and the chemical compounds from the fruit extract are lacking in dermatology fields, including melanogenesis. PURPOSE The aim of this study is to understand the effect of the fruit extract from J. mandshurica on pigmentation and to search for specific chemical compounds that affect melanogenesis. METHODS After screening out any anti-melanotic effects of the fruit extract from J. mandshurica in B16F10 melanoma cells, three major phenolic compounds isolated from the fruit extract were tested by western blot analysis for expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. Their effect on B16F10 melanoma cells with regard to melanogenesis was also confirmed in primary human epidermal melanocytes (PHEMs). PD98059 was tested to observe the compounds' signaling role in the extracellular signal-regulated protein kinase (ERK)-pathway. RESULTS Fruit extract from J. mandshurica showed anti-melanotic effects in B16F10 melanoma cells. After chemical compounds were isolated from the fruit extracts, three phenolic compounds were evaluated for anti-melanotic effects. 2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]-1,3-propanediol (compound 1) showed the highest suppression effect among the three compounds. In B16F10 melanoma cells and PHEMs, reduced melanin contents were observed after treatment with the compound (1). Experiments using a blocker of ERK showed that the inhibitory effect of the compound (1) on melanogenesis was dependent on ERK-associated MITF degradation. CONCLUSION A chemical constituent of Juglans mandshurica Maxim. induces an inhibitory mechanism to melanogenesis. It has the potential to become a whitening agent in the medical field, though this requires further clinical investigation.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuri Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - SeonJu Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Ito S, Wakamatsu K. Biochemical Mechanism of Rhododendrol-Induced Leukoderma. Int J Mol Sci 2018; 19:E552. [PMID: 29439519 PMCID: PMC5855774 DOI: 10.3390/ijms19020552] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/12/2023] Open
Abstract
RS-4-(4-hydroxyphenyl)-2-butanol (rhododendrol (RD))-a skin-whitening ingredient-was reported to induce leukoderma in some consumers. We have examined the biochemical basis of the RD-induced leukoderma by elucidating the metabolic fate of RD in the course of tyrosinase-catalyzed oxidation. We found that the oxidation of racemic RD by mushroom tyrosinase rapidly produces RD-quinone, which gives rise to secondary quinone products. Subsequently, we confirmed that human tyrosinase is able to oxidize both enantiomers of RD. We then showed that B16 cells exposed to RD produce high levels of RD-pheomelanin and protein-SH adducts of RD-quinone. Our recent studies showed that RD-eumelanin-an oxidation product of RD-exhibits a potent pro-oxidant activity that is enhanced by ultraviolet-A radiation. In this review, we summarize our biochemical findings on the tyrosinase-dependent metabolism of RD and related studies by other research groups. The results suggest two major mechanisms of cytotoxicity to melanocytes. One is the cytotoxicity of RD-quinone through binding with sulfhydryl proteins that leads to the inactivation of sulfhydryl enzymes and protein denaturation that leads to endoplasmic reticulum stress. The other mechanism is the pro-oxidant activity of RD-derived melanins that leads to oxidative stress resulting from the depletion of antioxidants and the generation of reactive oxygen radicals.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
16
|
Ito S, Hinoshita M, Suzuki E, Ojika M, Wakamatsu K. Tyrosinase-Catalyzed Oxidation of the Leukoderma-Inducing Agent Raspberry Ketone Produces (E)-4-(3-Oxo-1-butenyl)-1,2-benzoquinone: Implications for Melanocyte Toxicity. Chem Res Toxicol 2017; 30:859-868. [PMID: 28219012 DOI: 10.1021/acs.chemrestox.7b00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The exposure of human skin to 4-(4-hydroxyphenyl)-2-butanone (raspberry ketone, RK) is known to cause chemical/occupational leukoderma. RK has a structure closely related to 4-(4-hydroxyphenyl)-2-butanol (rhododendrol), a skin whitening agent that was found to cause leukoderma in the skin of consumers in 2013. Rhododendrol is a good substrate for tyrosinase and causes a tyrosinase-dependent cytotoxicity to melanocytes, cells that are responsible for skin pigmentation. Therefore, it is expected that RK exerts its cytotoxicity to melanocytes through the tyrosinase-catalyzed oxidation to cytotoxic o-quinones. The results of this study demonstrate that the oxidation of RK by mushroom tyrosinase rapidly produces 4-(3-oxobutyl)-1,2-benzoquinone (RK-quinone), which is converted within 10-20 min to (E)-4-(3-oxo-1-butenyl)-1,2-benzoquinone (DBL-quinone). These quinones were identified as their corresponding catechols after reduction by ascorbic acid. RK-quinone and DBL-quinone quantitatively bind to the small thiol N-acetyl-l-cysteine to form thiol adducts and can also bind to the thiol protein bovine serum albumin through its cysteinyl residue. DBL-quinone is more reactive than RK-quinone, as judged by their half-lives (6.2 min vs 10.5 min, respectively), and decays rapidly to form an oligomeric pigment (RK-oligomer). The RK-oligomer can oxidize GSH to GSSG with a concomitant production of hydrogen peroxide, indicating its pro-oxidant activity, similar to that of the RD-oligomer. These results suggest that RK is cytotoxic to melanocytes through the binding of RK-derived quinones to thiol proteins and the pro-oxidant activity of the RK-oligomer.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences , Toyoake, Aichi 470-1192, Japan
| | - Maki Hinoshita
- Department of Chemistry, Fujita Health University School of Health Sciences , Toyoake, Aichi 470-1192, Japan
| | - Erina Suzuki
- Department of Chemistry, Fujita Health University School of Health Sciences , Toyoake, Aichi 470-1192, Japan
| | - Makoto Ojika
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University , Nagoya 464-8601, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences , Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
17
|
Kovacic M, Juretic Perisic D, Biosic M, Kusic H, Babic S, Loncaric Bozic A. UV photolysis of diclofenac in water; kinetics, degradation pathway and environmental aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14908-14917. [PMID: 27072038 DOI: 10.1007/s11356-016-6580-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
In this study, the photolysis behavior of commonly used anti-inflammatory drug diclofenac (DCF) was investigated using UV-C and UV-A irradiation. In that purpose, DCF conversion kinetics, mineralization of organic content, biodegradability, and toxicity were monitored and compared. The results showed different kinetics of DCF conversion regarding the type of UV source applied. However, in both cases, the mineralization extent reached upon complete DCF conversion is rather low (≤10 %), suggesting that the majority of DCF was transformed into by-products. Formation/degradation of main degradation by-products was monitored using high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS), whereas different profiles were obtained by UV-C and UV-A photolysis. The results of bioassays revealed that biodegradability of DCF solutions remained low through the applied treatments. The toxicity of irradiated DCF solutions was evaluated using Vibrio fischeri. A significant reduction of toxicity, especially in the case of UV-A radiation, was observed upon complete degradation of DCF. In addition to toxicity reduction, calculated Log K OW values of DCF degradation by-products indicate their low potential for bioaccumulation (Log K OW ≤ 3) in comparison to the parent substance.
Collapse
Affiliation(s)
- Marin Kovacic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, Zagreb, 10000, Croatia
| | - Daria Juretic Perisic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, Zagreb, 10000, Croatia
| | - Martina Biosic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, Zagreb, 10000, Croatia
| | - Hrvoje Kusic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, Zagreb, 10000, Croatia
| | - Sandra Babic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, Zagreb, 10000, Croatia.
| | - Ana Loncaric Bozic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev trg 19, Zagreb, 10000, Croatia.
| |
Collapse
|
18
|
Okura M, Yamashita T, Ishii-Osai Y, Yoshikawa M, Sumikawa Y, Wakamatsu K, Ito S. Effects of rhododendrol and its metabolic products on melanocytic cell growth. J Dermatol Sci 2015; 80:142-9. [DOI: 10.1016/j.jdermsci.2015.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/10/2015] [Accepted: 07/21/2015] [Indexed: 11/26/2022]
|
19
|
A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. J Dermatol Sci 2015; 80:18-24. [PMID: 26228294 DOI: 10.1016/j.jdermsci.2015.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/01/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Tyrosinase is able to oxidize a great number of phenols and catechols to form ortho-quinones. Ortho-quinones are highly reactive compounds that exert cytotoxicity through binding with thiol enzymes and the production of reactive oxygen species. Certain phenolic (and catecholic) compounds are known to induce contact/occupational leukoderma through activation to ortho-quinones. OBJECTIVE We report a convenient screening method to follow the oxidation of those leukoderma-inducing phenols by mushroom tyrosinase. METHODS Oxidation of phenolic compounds by mushroom tyrosinase was followed periodically by UV-vis spectrophotometry. The production of ortho-quinones were confirmed by their absorptions around 400-420 nm. HPLC analysis after reduction with NaBH4 detected the corresponding catechols. RESULTS Leukoderma-inducing phenols, rhododendrol, raspberry ketone, 4-methoxyphenol, 4-benzyloxyphenol, 4-tert-butylphenol, and 4-tert-butylcatechol, were readily oxidized by mushroom tyrosinase to form ortho-quinones. On the other hand, phenolic skin whitening tyrosinase inhibitors, ellagic acid, 4-n-butylresorcinol, potassium 4-methoxysalicylate, and 2,2'-dihydroxy-5,5'-di-n-propylbiphenyl, were not oxidized by mushroom tyrosinase, while arbutin was only slowly oxidized. CONCLUSION This study has provided a convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. A common chemical feature of the latter group of compounds is that they are readily oxidized by tyrosinase to form reactive ortho-quinone species. The present results point out the necessity that tyrosinase inhibitors should also be examined as substrates if they are phenolic compounds.
Collapse
|
20
|
Ito S, Okura M, Nakanishi Y, Ojika M, Wakamatsu K, Yamashita T. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RD-pheomelanin and covalent binding with thiol proteins. Pigment Cell Melanoma Res 2015; 28:295-306. [PMID: 25713930 DOI: 10.1111/pcmr.12363] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/18/2015] [Indexed: 11/29/2022]
Abstract
RS-4-(4-Hydroxyphenyl)-2-butanol (rhododendrol, RD) was reported to induce leukoderma of the skin. To explore the mechanism underlying that effect, we previously showed that oxidation of RD with mushroom tyrosinase produces RD-quinone, which is converted to secondary quinone products, and we suggested that those quinones are cytotoxic because they bind to cellular proteins and produce reactive oxygen species. We then confirmed that human tyrosinase can oxidize both enantiomers of RD. In this study, we examined the metabolism of RD in B16F1 melanoma cells in vitro. Using 4-amino-3-hydroxy-n-butylbenzene as a specific indicator, we detected moderate levels of RD-pheomelanin in B16F1 cells exposed to 0.3 to 0.5 mM RD for 72 h. We also confirmed the covalent binding of RD-quinone to non-protein thiols and proteins through cysteinyl residues. The covalent binding of RD-quinone to proteins was 20- to 30-fold greater than dopaquinone. These results suggest that the tyrosinase-induced metabolism of RD causes melanocyte toxicity.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Ito S, Gerwat W, Kolbe L, Yamashita T, Ojika M, Wakamatsu K. Human tyrosinase is able to oxidize both enantiomers of rhododendrol. Pigment Cell Melanoma Res 2014; 27:1149-53. [PMID: 25130058 DOI: 10.1111/pcmr.12300] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
Abstract
Racemic RS-4-(4-hydroxyphenyl)-2-butanol (rhododendrol, RD) was used as a topical skin-whitening agent until it was recently reported to induce leukoderma. We then showed that oxidation of RD with mushroom tyrosinase rapidly produces RD-quinone, which is quickly converted to RD-cyclic quinone and RD-hydroxy-p-quinone. In this study, we examined whether either or both of the enantiomers of RD can be oxidized by human tyrosinase. Using a chiral HPLC column, racemic RD was resolved optically to R(-)-RD and S(+)-RD enantiomers. In the presence of a catalytic amount of l-dopa, human tyrosinase, which can oxidize l-tyrosine but not d-tyrosine, was found to oxidize both R(-)- and S(+)-RD to give RD-catechol and its oxidation products. S(+)-RD was more effectively oxidized than l-tyrosine, while R(-)-RD was less effective. These results support the notion that the melanocyte toxicity of RD depends on its tyrosinase-catalyzed conversion to toxic quinones and the concomitant production of reactive oxygen species.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kasamatsu S, Hachiya A, Nakamura S, Yasuda Y, Fujimori T, Takano K, Moriwaki S, Hase T, Suzuki T, Matsunaga K. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold. J Dermatol Sci 2014; 76:16-24. [PMID: 25082450 DOI: 10.1016/j.jdermsci.2014.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/03/2014] [Accepted: 07/03/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tyrosinase, the rate-limiting enzyme required for melanin production, has been targeted to develop active brightening/lightening materials for skin products. Unexpected depigmentation of the skin characterized with the diverse symptoms was reported in some subjects who used a tyrosinase-competitive inhibiting quasi-drug, rhododendrol. OBJECTIVE To investigate the mechanism underlying the depigmentation caused by rhododendrol-containing cosmetics, this study was performed. METHODS The mechanism above was examined using more than dozen of melanocytes derived from donors of different ethnic backgrounds. The RNAi technology was utilized to confirm the effect of tyrosinase to induce the cytotoxicity of rhododendrol and liquid chromatography-tandem mass spectrometry was introduced to detect rhododendrol and its metabolites in the presence of tyrosinase. RESULTS Melanocyte damage was related to tyrosinase activity at a certain threshold. Treatment with a tyrosinase-specific siRNA was shown to dramatically rescue the rhododendrol-induced melanocyte impairment. Hydroxyl-rhododendrol was detected only in melanocytes with higher tyrosinase activity. When an equivalent amount of hydroxyl-rhododendrol was administered, cell viability was almost equally suppressed even in melanocytes with lower tyrosinase activity. CONCLUSION The generation of a tyrosinase-catalyzed hydroxyl-metabolite is one of the causes for the diminishment of the melanocyte viability by rhododendrol.
Collapse
Affiliation(s)
- Shinya Kasamatsu
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Akira Hachiya
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan.
| | - Shun Nakamura
- Analytical Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Yuka Yasuda
- Analytical Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Taketoshi Fujimori
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Kei Takano
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Shigeru Moriwaki
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Tadashi Hase
- Biological Science Laboratories, Kao Corporation, Haga 321-3497, Tochigi, Japan
| | - Tamio Suzuki
- Department of Dermatology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Kayoko Matsunaga
- Department of Dermatology, Fujita Health University School of Medicine, 1-98, Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
23
|
Webb KC, Eby JM, Hariharan V, Hernandez C, Luiten RM, Le Poole IC. Enhanced bleaching treatment: opportunities for immune-assisted melanocyte suicide in vitiligo. Exp Dermatol 2014; 23:529-33. [PMID: 24840876 DOI: 10.1111/exd.12449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2014] [Indexed: 01/13/2023]
Abstract
Depigmentation in vitiligo occurs by progressive loss of melanocytes from the basal layer of the skin, and can be psychologically devastating to patients. T cell-mediated autoimmunity explains the progressive nature of this disease. Rather than being confronted with periods of rapid depigmentation and bouts of repigmentation, patients with long-standing, treatment-resistant vitiligo can undergo depigmentation treatment. The objective is to remove residual pigmentation to achieve a cosmetically acceptable result--that of skin with a uniform appearance. In the United States, only the use of mono-benzyl ether of hydroquinone (MBEH) is approved for this purpose. However, satisfactory results can take time to appear, and there is a risk of repigmentation. MBEH induces necrotic melanocyte death followed by a cytotoxic T-cell response to remaining, distant melanocytes. As cytotoxic T-cell responses are instrumental to depigmentation, we propose that combining MBEH with immune adjuvant therapies will accelerate immune-mediated melanocyte destruction to achieve faster, more definitive depigmentation than with MBEH alone. As Toll-like Receptor (TLR) agonists--imiquimod, CpG, and Heat Shock Protein 70 (HSP 70)--all support powerful Th1 responses, we propose that using MBEH in combination with these agents can achieve superior depigmentation results for vitiligo patients.
Collapse
Affiliation(s)
- Kirsten C Webb
- Department of Dermatology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ito S, Ojika M, Yamashita T, Wakamatsu K. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity. Pigment Cell Melanoma Res 2014; 27:744-53. [DOI: 10.1111/pcmr.12275] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/30/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Shosuke Ito
- Department of Chemistry; Fujita Health University School of Health Sciences; Toyoake Aichi Japan
| | - Makoto Ojika
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya Japan
| | - Toshiharu Yamashita
- Department of Dermatology; Sapporo Medical University School of Medicine; Sapporo Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry; Fujita Health University School of Health Sciences; Toyoake Aichi Japan
| |
Collapse
|
25
|
Ko HH, Tsai YT, Yen MH, Lin CC, Liang CJ, Yang TH, Lee CW, Yen FL. Norartocarpetin from a folk medicine Artocarpus communis plays a melanogenesis inhibitor without cytotoxicity in B16F10 cell and skin irritation in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:348. [PMID: 24325567 PMCID: PMC3878891 DOI: 10.1186/1472-6882-13-348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/19/2013] [Indexed: 11/26/2022]
Abstract
Background Many natural products used in preventive medicine have also been developed as cosmeceutical ingredients in skin care products, such as Scutellaria baicalensis and Gardenia jasminoides. Norartocarpetin is one of the antioxidant and antityrosinase activity compound in Artocarpus communis; however, the cytotoxicity, skin irritation and antimelanogenesis mechanisms of norartocarpetin have not been investigated yet. Methods In the present study, cell viability in vitro and skin irritation in vivo are used to determine the safety of norartocarpetin. The melanogenesis inhibition of norartocarpetin was determined by cellular melanin content and tyrosinase in B16F10 melanoma cell. Moreover, we examined the related-melanogenesis protein by western blot analysis for elucidating the antimelanogenesis mechanism of norartocarpin. Results The result of the present study demonstrated that norartocarpetin not only present non-cytotoxic in B16F10 and human fibroblast cells but also non-skin irritation in mice. Moreover, our result also first found that norartocarpetin downregulated phospho-cAMP response element-binding (phospho-CREB) and microphthalmia-associated transcription factor (MITF) expression, which in turn decreased both synthesis of tyrosinases (TRP-1 and TRP-2) and cellular melanin content. This process is dependent on norartocarpetin phosphorylation by mitogen-activated protein kinases such as phospho-JNK and phospho-p38, and it results in decreased melanogenesis. Conclusion The present study suggests that norartocarpetin could be used as a whitening agent in medicine and/or cosmetic industry and need further clinical study.
Collapse
|
26
|
Melanoma-Targeted Chemothermotherapy and In Situ Peptide Immunotherapy through HSP Production by Using Melanogenesis Substrate, NPrCAP, and Magnetite Nanoparticles. J Skin Cancer 2013; 2013:742925. [PMID: 23533767 PMCID: PMC3595688 DOI: 10.1155/2013/742925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 01/08/2013] [Accepted: 01/22/2013] [Indexed: 12/01/2022] Open
Abstract
Exploitation of biological properties unique to cancer cells may provide a novel approach to overcome difficult challenges to the treatment of advanced melanoma. In order to develop melanoma-targeted chemothermoimmunotherapy, a melanogenesis substrate, N-propionyl-4-S-cysteaminylphenol (NPrCAP), sulfur-amine analogue of tyrosine, was conjugated with magnetite nanoparticles. NPrCAP was exploited from melanogenesis substrates, which are expected to be selectively incorporated into melanoma cells and produce highly reactive free radicals through reacting with tyrosinase, resulting in chemotherapeutic and immunotherapeutic effects by oxidative stress and apoptotic cell death. Magnetite nanoparticles were conjugated with NPrCAP to introduce thermotherapeutic and immunotherapeutic effects through nonapoptotic cell death and generation of heat shock protein (HSP) upon exposure to alternating magnetic field (AMF). During these therapeutic processes, NPrCAP was also expected to provide melanoma-targeted drug delivery system.
Collapse
|
27
|
Melanogenesis Inhibitor(s) from Phyla nodiflora Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:867494. [PMID: 23304221 PMCID: PMC3524650 DOI: 10.1155/2012/867494] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/07/2012] [Accepted: 10/14/2012] [Indexed: 11/17/2022]
Abstract
Overexpression of tyrosinase can cause excessive production of melanin and lead to hyperpigmentation disorders, including melasma and freckles. Recently, agents obtained from plants are being used as alternative medicines to downregulate tyrosinase synthesis and decrease melanin production. Phyla nodiflora Greene (Verbenaceae) is used as a folk medicine in Taiwanese for treating and preventing inflammatory diseases such as hepatitis and dermatitis. However, the antimelanogenesis activity and molecular biological mechanism underlying the activity of the methanolic extract of P. nodiflora (PNM) have not been investigated to date. Our results showed that PNM treatment was not cytotoxic and significantly reduced the cellular melanin content and tyrosinase activity in a dose-dependent manner (P < 0.05). Further, PNM exhibited a significant antimelanogenesis effect (P < 0.05) by reducing the levels of phospho-cAMP response element-binding protein and microphthalmia-associated transcription factor (MITF), inhibiting the synthesis of tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2, and decreasing the cellular melanin content. Moreover, PNM significantly activated the phosphorylation of mitogen-activated protein kinases, including phospho-extracellular signal-regulated kinase, c-Jun N-terminal kinase, and phospho-p38, and inhibited the synthesis of MITF, thus decreasing melanogenesis. These properties suggest that PNM could be used as a clinical and cosmetic skin-whitening agent to cure and/or prevent hyperpigmentation.
Collapse
|
28
|
Ito S, Nishigaki A, Ishii-Osai Y, Ojika M, Wakamatsu K, Yamashita T, Tamura Y, Ito A, Honda H, Nakayama E, Jimbow K. Mechanism of putative neo-antigen formation from N-propionyl-4-S-cysteaminylphenol, a tyrosinase substrate, in melanoma models. Biochem Pharmacol 2012; 84:646-53. [DOI: 10.1016/j.bcp.2012.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|
29
|
Topical application of bleaching phenols; in-vivo studies and mechanism of action relevant to melanoma treatment. Melanoma Res 2011; 21:115-26. [PMID: 21317816 DOI: 10.1097/cmr.0b013e328343f542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Skin depigmentation represents a well-established treatment for extensive vitiligo and may likewise be suited to prevent tumor recurrences and as a prophylactic treatment of familial melanoma, as common bleaching agents are cytotoxic to melanocytes. Effective melanoma prevention requires a bleaching agent-induced loss of exposed melanocytes supported by an immune response to distant pigment cells. Studies on human explant cultures treated with depigmenting agents such as 4-tertiary butyl phenol (4-TBP) or monobenzyl ether of hydroquinone (MBEH) showed a significant increase in the migration of Langerhans cells toward the dermis only upon treatment with MBEH, thus suggesting selective elicitation of an immune response. To assess the depigmenting potential of bleaching agents in vivo, 4-TBP and MBEH were topically applied to C57BL/6 wild type as well as k14-SCF transgenic, epidermally pigmented mice. MBEH-induced significant skin depigmentation in both strains was not observed upon treatment with 4-TBP. Cytokine expression patterns in skin treated with MBEH support activation of a Th1-mediated immune response corresponding to an influx of T cells and macrophages. Importantly, despite insensitivity of tumor cells to MBEH-induced cytotoxicity, significantly retarded tumor growth was observed in B16 challenged k14-SCF mice pretreated with MBEH, likely due to an abundance of cytotoxic T cells accompanied by an increased expression of Th1 and Th17 cytokines. These data support the use of MBEH as a prophylactic treatment for melanoma.
Collapse
|
30
|
Stratford MRL, Riley PA, Ramsden CA. Rapid Halogen Substitution and Dibenzodioxin Formation during Tyrosinase-Catalyzed Oxidation of 4-Halocatechols. Chem Res Toxicol 2011; 24:350-6. [DOI: 10.1021/tx100315n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. L. Stratford
- Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Patrick A. Riley
- Totteridge Institute for Advanced Studies, The Grange, Grange Avenue, London N20 8AB, U.K
| | - Christopher A. Ramsden
- Lennard-Jones Laboratories, School of Physical and Geographical Sciences, Keele University, Staffordshire ST5 5BG, U.K
| |
Collapse
|
31
|
Duschek A, Kirsch SF. 2-Iodoxybenzoic Acid-A Simple Oxidant with a Dazzling Array of Potential Applications. Angew Chem Int Ed Engl 2011; 50:1524-52. [DOI: 10.1002/anie.201000873] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Indexed: 12/26/2022]
|
32
|
Duschek A, Kirsch SF. 2-Iodoxybenzoesäure - ein einfaches Oxidationsmittel mit einer Vielfalt an Anwendungsmöglichkeiten. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201000873] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Westerhof W, Manini P, Napolitano A, d’Ischia M. The haptenation theory of vitiligo and melanoma rejection: a close-up. Exp Dermatol 2011; 20:92-6. [DOI: 10.1111/j.1600-0625.2010.01200.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Abstract
The acquired depigmenting disorder of vitiligo affects an estimated 1% of the world population and constitutes one of the commonest dermatoses. Although essentially asymptomatic, the psychosocial impact of vitiligo can be severe. The cause of vitiligo remains enigmatic, hampering efforts at successful therapy. The underlying pathogenesis of the pigment loss has, however, been clarified to some extent in recent years, offering the prospect of effective treatment, accurate prognosis and rational preventative strategies. Vitiligo occurs when functioning melanocytes disappear from the epidermis. A single dominant pathway is unlikely to account for all cases of melanocyte loss in vitiligo; rather, it is the result of complex interactions of biochemical, environmental and immunological events, in a permissive genetic milieu. ROS (reactive oxygen species) and H2O2 in excess can damage biological processes, and this situation has been documented in active vitiligo skin. Tyrosinase activity is impaired by excess H2O2 through oxidation of methionine residues in this key melanogenic enzyme. Mechanisms for repairing this oxidant damage are also damaged by H2O2, compounding the effect. Numerous proteins and peptides, in addition to tyrosinase, are similarly affected. It is possible that oxidant stress is the principal cause of vitiligo. However, there is also ample evidence of immunological phenomena in vitiligo, particularly in established chronic and progressive disease. Both innate and adaptive arms of the immune system are involved, with a dominant role for T-cells. Sensitized CD8+ T-cells are targeted to melanocyte differentiation antigens and destroy melanocytes either as the primary event in vitiligo or as a secondary promotive consequence. There is speculation on the interplay, if any, between ROS and the immune system in the pathogenesis of vitiligo. The present review focuses on the scientific evidence linking alterations in ROS and/or T-cells to vitiligo.
Collapse
|
35
|
Bai M, Huang J, Zheng X, Song Z, Tang M, Mao W, Yuan L, Wu J, Weng X, Zhou X. Highly Selective Suppression of Melanoma Cells by Inducible DNA Cross-Linking Agents: Bis(catechol) Derivatives. J Am Chem Soc 2010; 132:15321-7. [DOI: 10.1021/ja106637e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Minghui Bai
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| | - Jing Huang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| | - Xiaolong Zheng
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| | - Zhibin Song
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| | - Miru Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| | - Wuxiang Mao
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| | - Libo Yuan
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| | - Jun Wu
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan 430072, P. R. China, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, P. R. China
| |
Collapse
|
36
|
Effective melanoma immunotherapy in mice by the skin-depigmenting agent monobenzone and the adjuvants imiquimod and CpG. PLoS One 2010; 5:e10626. [PMID: 20498710 PMCID: PMC2869359 DOI: 10.1371/journal.pone.0010626] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/25/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Presently melanoma still lacks adequate treatment options for metastatic disease. While melanoma is exceptionally challenging to standard regimens, it is suited for treatment with immunotherapy based on its immunogenicity. Since treatment-related skin depigmentation is considered a favourable prognostic sign during melanoma intervention, we here aimed at the reverse approach of directly inducing vitiligo as a shortcut to effective anti-melanoma immunity. METHODOLOGY AND PRINCIPAL FINDINGS We developed an effective and simple to use form of immunotherapy by combining the topical skin-bleaching agent monobenzone with immune-stimulatory imiquimod cream and cytosine-guanine oligodeoxynucleotides (CpG) injections (MIC therapy). This powerful new approach promptly induced a melanoma antigen-specific immune response, which abolished subcutaneous B16.F10 melanoma growth in up to 85% of C57BL/6 mice. Importantly, this regimen induced over 100 days of tumor-free survival in up to 60% of the mice, and forcefully suppressed tumor growth upon re-challenge either 65- or 165 days after MIC treatment cessation. CONCLUSIONS MIC therapy is effective in eradicating melanoma, by vigilantly incorporating NK-, B- and T cells in its therapeutic effect. Based on these results, the MIC regimen presents a high-yield, low-cost and simple therapy, readily applicable in the clinic.
Collapse
|