1
|
Jeong YER, Kung RW, Bykowski J, Deak TK, Wetmore SD. Effect of Guanine Adduct Size, Shape, and Linker Type on the Conformation of Adducted DNA: A DFT and Molecular Dynamics Study. J Phys Chem B 2023; 127:9035-9049. [PMID: 37831812 DOI: 10.1021/acs.jpcb.3c04864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
DNA is damaged through various exogenous sources (e.g., automobile exhaust, tobacco smoke, and processed foods), which can yield diverse C8-dG bulky aryl adducts. Adducts are known to induce structural changes to DNA that can lead to various biological outcomes, ranging from cell death to diseases such as cancer. Unfortunately, the relationship between the chemical composition of the damaged product, the adducted DNA structure, and the biological consequences is not well understood, which limits the development of disease detection and prevention strategies. The present study uses density functional theory (DFT) calculations and quintuplicate 1 μs molecular dynamics (MD) simulations to characterize the structure of DNA containing 21 model C8-dG adducts that systematically differ in size (phenyl to pyrenyl), shape (α (2,3), β (3,4) fusion, or ring substitution), and nucleobase-aryl group linkage (N, O, and C-linked). DFT calculations reveal that the inherent structural features of the G nucleobase adducts are impacted by linker type and bulky moiety shape, but not size, with the conformational flexibility reducing with α-ring fusion and linker composition as N > O > C. These structural properties are maintained in nucleoside models, which also reveal an increased propensity for anti-to-syn rotation about the glycosidic bond with N < O < C linker type. Although these diverse chemical features do not influence the global structure of adducted DNA, the adducts differentially impact the conformation local to the adducted site, including the relative populations of structures with the bulky moiety in the major groove (B conformer) and intercalated (stacked) into the helix (S conformer). Specifically, while the smallest phenyl adducts favor the B conformation and the largest pyrenyl-derived adducts stabilize the S conformation, the B/S ratio decreases with an increase in ring size and N > O > C linker composition. The shape and size (length) of the adduct can further finetune the B/S ratio, with β-fused naphthyl or α-fused phenanthryl N-linked adducts and O or C-linked adducts containing ring substitution increasing the prevalence of the S adducted DNA conformation. Overall, this work uncovers the significant effect of bulky moiety size and linker type, as well as the lesser impact of aryl group shape, on adducted DNA structure, which suggests differential replication and repair outcomes, and thereby represents an important step toward rationalizing connections between the structure and biological consequences of diverse DNA adducts.
Collapse
Affiliation(s)
- Ye Eun Rebecca Jeong
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Ryan W Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Janelle Bykowski
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Trinity K Deak
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Abstract
DNA damage by chemicals, radiation, or oxidative stress leads to a mutational spectrum, which is complex because it is determined in part by lesion structure, the DNA sequence context of the lesion, lesion repair kinetics, and the type of cells in which the lesion is replicated. Accumulation of mutations may give rise to genetic diseases such as cancer and therefore understanding the process underlying mutagenesis is of immense importance to preserve human health. Chemical or physical agents that cause cancer often leave their mutational fingerprints, which can be used to back-calculate the molecular events that led to disease. To make a clear link between DNA lesion structure and the mutations a given lesion induces, the field of single-lesion mutagenesis was developed. In the last three decades this area of research has seen much growth in several directions, which we attempt to describe in this Perspective.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, The University of Connecticut Storrs, Storrs, Connecticut 06269, United States
| | - John M Essigmann
- Departments of Chemistry, Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Kung RW, Takyi NA, Wetmore SD. Effects of a Second Local DNA Damage Event on the Toxicity of the Human Carcinogen 4-Aminobiphenyl: A Molecular Dynamics Study of a Damaged DNA Structure. Chem Res Toxicol 2022; 35:499-511. [PMID: 35147430 DOI: 10.1021/acs.chemrestox.1c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exposure of humans to carcinogenic aromatic amines (AAs) occurs daily. AAs are bioactivated in cells into products that attack DNA, primarily leading to N-linked C8-dG adducts. Previous work on DNA containing a single AA-derived adduct (monoadducted DNA) has shown a structure-function relationship between the damaged DNA conformation and cellular outcomes. However, relatively little is known about the conformation and biological outcomes of DNA containing two bulky adducts (diadducted DNA) in close proximity. To fill this current void in the literature, the present work uses quintuplet 0.5 μs MD simulations to understand the structural impact of DNA exposure to the potent bladder carcinogen 4-aminobiphenyl (ABP), which is found in cigarette smoke and select dyes, and results in the widely studied N-linked ABPdG adduct. Specifically, 18 unique DNA duplexes were investigated that contain one or two ABPdG adducts in the anti and/or syn glycosidic orientation(s) in all combinations of three G positions in the NarI mutation hotspot for AAs (5'-G1G2CG3CC). Monoadducted DNA displays sequence-dependent conformational heterogeneity, with the G1 site having the greatest anti preference, and highlights the range of helical structures associated with the syn lesion orientation [i.e., stacked (S), intercalated (I), and wedge (W) conformations]. Diadducted DNA results in interesting lesion separation effects on the conformational heterogeneity, including a greater anti preference for neighboring adducts (G1G2) and a greater syn preference for next-nearest neighbor damaged sites (G2G3) compared to monoadducted DNA. As a result, an increase in the number of ABPdG adducts changes the conformational heterogeneity of ABP-exposed DNA depending on the relative positions of the lesions and thereby could result in increased or decreased toxicity upon human exposure to elevated levels of ABP.
Collapse
Affiliation(s)
- Ryan W Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
4
|
Dayanidhi PD, Vaidyanathan VG. Understanding the ancillary ligand effect on luminescent cyclometalated Ir(III) complex as a reporter for 2-acetylaminofluorene DNA(AAF-dG) adduct. J Biol Inorg Chem 2021; 27:189-199. [PMID: 34843001 DOI: 10.1007/s00775-021-01920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Mutagenic agents such as aromatic amines undergo metabolic activation and produce DNA adducts at C8 position of guanine bases. N-2-acetylaminofluorene (AAF) generates different mutational outcomes when placed at G1, G2, and G3 of a NarI sequence (-G1G2CG3CC/T-). These outcomes are dictated by the conformations adopted by these adducts. Detection of such lesions is of considerable interest owing to their hazardous effects. Here, we report the synthesis of three cyclometalated [Ir(L)2dppz]+ complexes (L = 2-phenylpyridine (ppy) 1; benzo[h]quinoline (bhq) 2; 2-phenylquinoline (pq) 3; dppz = dipyrido[3,2-a:2',3'-c]phenazine) and their interaction with AAF adducted NarI DNA. Remarkably, complexes 1 and 2 displayed dominant 3LC transition characteristic of polar environment despite binding to the adducted sites. On the other hand, complex 3 binds to NarI sequences and behaves as a luminescent reporter for AAF-modified DNA. The results reported here emphasize that molecular light switching phenomenon can be stimulated by switching ancillary ligands and might act as potential probes for covalent-DNA defects.
Collapse
Affiliation(s)
- P David Dayanidhi
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - V G Vaidyanathan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Bellamri M, Walmsley SJ, Turesky RJ. Metabolism and biomarkers of heterocyclic aromatic amines in humans. Genes Environ 2021; 43:29. [PMID: 34271992 PMCID: PMC8284014 DOI: 10.1186/s41021-021-00200-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
Heterocyclic aromatic amines (HAAs) form during the high-temperature cooking of meats, poultry, and fish. Some HAAs also arise during the combustion of tobacco. HAAs are multisite carcinogens in rodents, inducing cancer of the liver, gastrointestinal tract, pancreas, mammary, and prostate glands. HAAs undergo metabolic activation by N-hydroxylation of the exocyclic amine groups to produce the proposed reactive intermediate, the heteroaryl nitrenium ion, which is the critical metabolite implicated in DNA damage and genotoxicity. Humans efficiently convert HAAs to these reactive intermediates, resulting in HAA protein and DNA adduct formation. Some epidemiologic studies have reported an association between frequent consumption of well-done cooked meats and elevated cancer risk of the colorectum, pancreas, and prostate. However, other studies have reported no associations between cooked meat and these cancer sites. A significant limitation in epidemiology studies assessing the role of HAAs and cooked meat in cancer risk is their reliance on food frequency questionnaires (FFQ) to gauge HAA exposure. FFQs are problematic because of limitations in self-reported dietary history accuracy, and estimating HAA intake formed in cooked meats at the parts-per-billion level is challenging. There is a critical need to establish long-lived biomarkers of HAAs for implementation in molecular epidemiology studies designed to assess the role of HAAs in health risk. This review article highlights the mechanisms of HAA formation, mutagenesis and carcinogenesis, the metabolism of several prominent HAAs, and the impact of critical xenobiotic-metabolizing enzymes on biological effects. The analytical approaches that have successfully biomonitored HAAs and their biomarkers for molecular epidemiology studies are presented.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Scott J Walmsley
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Institute of Health Informatics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA. .,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Kung RW, Deak TK, Griffith-Salik CA, Takyi NA, Wetmore SD. Impact of DNA Adduct Size, Number, and Relative Position on the Toxicity of Aromatic Amines: A Molecular Dynamics Case Study of ANdG- and APdG-Containing DNA Duplexes. J Chem Inf Model 2021; 61:2313-2327. [PMID: 33977716 DOI: 10.1021/acs.jcim.1c00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human exposure to aromatic amines (AAs) can result in carcinogenic DNA adducts. To complement previous work geared toward understanding the mutagenicity of AA-derived adducts, which has almost exclusively studied (monoadducted) DNA containing a single lesion, the present work provides the first in-depth comparison of the structure of monoadducted and diadducted DNA duplexes. Specifically, molecular dynamics (MD) simulations were initially performed on DNA containing the nonmutagenic single-ringed N-(deoxyguanosin-8-yl)-aniline (ANdG) or the mutagenic four-ringed N-(deoxyguanosin-8-yl)-1-aminopyrene (APdG) lesion at G1, G2, or G3 in the AA deletion hotspot (5'-G1G2CG3CC) in the anti or syn glycosidic orientation (B/S duplex conformation). Subsequently, diadducted strands were assessed that span each combination of damaged sites (G1G2 (nearest neighbors), G2G3 (next-nearest neighbors), and G1G3 (two intervening nucleotides)) and anti/syn lesion glycosidic orientations. Despite other N-linked C8-dG adducts exhibiting sequence dependence conformational heterogeneity, a single ANdG or APdG lesion induces helical conformational homogeneity that is exclusively controlled by aryl moiety size. However, the preferred damaged DNA conformation can change upon the addition of a second adduct depending on lesion separation, with neighboring lesions stabilizing a nonmutagenic conformation and next-nearest damaged sites stabilizing a promutagenic conformation regardless of adduct size. As a result, diadducted DNA is found to adopt conformations that are unfavored for the corresponding monoadducted system, pointing to differential replication and repair outcomes for diadducted DNA compared to those for monoadducted DNA. Thus, although the toxicity of monoadducted DNA is most significantly dictated by lesion size, the toxicity can increase or decrease upon a second damaging event depending on lesion size and relative position. Overall, our work adds the number of lesions and their spatial separation to the growing list of factors that determine the structure and biological outcomes of adducted DNA.
Collapse
Affiliation(s)
- Ryan W Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Trinity K Deak
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Cassidy A Griffith-Salik
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
7
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
8
|
Powell BV, Basu AK. 6-Nitrochrysene-Derived C8-2'-Deoxyadenosine Adduct: Synthesis of Site-Specific Oligodeoxynucleotides and Mutagenicity in Escherichia coli. Chem Res Toxicol 2020; 33:604-613. [PMID: 31903755 DOI: 10.1021/acs.chemrestox.9b00429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
6-Nitrochrysene (6-NC), the most potent carcinogen evaluated by the newborn mouse assay, is metabolically activated by nitroreduction and a combination of ring oxidation and nitroreduction pathways. The nitroreduction pathway yields three major DNA adducts: at the C8 and N2 positions of 2'-deoxyguanosine (dG), N-(dG-8-yl)-6-AC and 5-(dG-N2-yl)-6-AC, and at the C8 position of 2'-deoxyadenosine (dA), N-(dA-8-yl)-6-AC. A nucleotide excision repair assay demonstrated that N-(dA-8-yl)-6-AC is repaired much more slowly than many other bulky DNA adducts, including the other DNA adducts formed by 6-NC. But neither the total synthesis nor evaluation of other biological activities of this dA adduct has ever been reported. Herein, we report a convenient synthesis of the 6-NC-derived dA adduct by employing the Buchwald-Hartwig coupling strategy, which provided a high yield of the protected N-(dA-8-yl)-6-AC. The deprotected nucleoside showed syn conformational preference by NMR spectroscopy. Following DMT protection of the 5'-hydroxyl, N-(dA-8-yl)-6-AC was converted to its 3'-phosphoramidite, which was used to prepare oligonucleotides containing a single N-(dA-8-yl)-6-AC adduct. Circular dichroism spectra of the adducted duplex showed only a slight departure from the B-DNA helix profile of the control duplex. The 15-mer N-(dA-8-yl)-6-AC oligonucleotide was used to construct a single-stranded plasmid vector containing a single adduct, which was replicated in Escherichia coli. Viability of the adducted construct was ∼60% of the control, indicating slower translesion synthesis of the adduct, which increased to nearly 90% upon induction of the SOS functions. Without SOS, the mutation frequency (MF) of the adduct was 5.2%, including 2.9% targeted and 2.3% semi-targeted mutations. With SOS, the targeted MF increased 3-fold to 9.0%, whereas semi-targeted mutation increased only marginally to 3.2%. The major type of targeted mutation was A*→G in both uninduced and SOS-induced cells.
Collapse
Affiliation(s)
- Brent V Powell
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ashis K Basu
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| |
Collapse
|
9
|
Manning TW, Al-Abdul-Wahid MS, Manderville RA, Josephy PD, Kung RW, Wetmore SD. Structure of an Unusual Tetracyclic Deoxyguanosine Adduct: Implications for Frameshift Mutagenicity of ortho-Cyano Nitroanilines. Chem Res Toxicol 2019; 33:584-593. [DOI: 10.1021/acs.chemrestox.9b00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | - Ryan W. Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
10
|
Berger FD, Manderville RA, Sturla SJ. Adduct Fluorescence as a Tool to Decipher Sequence Impact on Frameshift Mutations Mediated by a C-Linked C8-Biphenyl-Guanine Lesion. Chem Res Toxicol 2019; 32:784-791. [PMID: 30785283 DOI: 10.1021/acs.chemrestox.9b00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatic chemicals can undergo metabolic activation to afford electrophilic species that react at the C8-site of 2'-deoxyguanosine (dG) to generate bulky C8-dG adducts as a basis of initiating carcinogenesis. These DNA lesions have served as models to understand the mechanism of frameshift mutagenesis, especially within CG-dinucleotide repeat sequences, such as NarI (5'-GGCXCC-3', where X = C8-dG adduct), however there is still limited capacity to predict the likelihood of mutation arising within particular contexts, and hence chemistry-based strategies are needed for probing relationships between nucleic acid sequence and structure with replication errors. In the NarI sequence, certain C8-dG adducts may trigger in the course of DNA synthesis the formation of a slipped mutagenic intermediate (SMI) that contains a two nucleotide (XC) bulge in the template strand that can form upstream of the polymerase active site. This distortion facilitates polymerization but affords a GC dinucleotide deletion product (-2 frameshift mutation). In the current study, incorporating the fluorescent C-linked 4-fluorobiphenyl-dG (FBP-dG) adduct into two 22-mer templates containing CG-dinucleotide repeats ( NarI: 3'-CXCGGC-5' and CG3: 3'-CXCGCG-5', X = FBP-dG) and performing primer extension reactions using DNA polymerase I, Klenow fragment exo- (Kf-) revealed a dramatic sequence-based difference in polymerase bypass efficiency. Primer extension past FBP-dG within the NarI sequence was strongly blocked, whereas Kf- extended the primer past FBP-dG within a CG3 template to afford a full-length product and the GC dinucleotide deletion. To model the nucleotide insertion steps in the fully paired (FP) versus the slipped mutagenic (SM) translesion pathways, adducted template:primer duplexes were constructed and characterized by UV thermal denaturation and fluorescence spectroscopy. The emission intensity of the FBP-dG lesion exhibits sensitivity to SMI formation (turn-on) versus a FP duplex (turn-off), permitting insight into adduct base-pairing within the template:primer duplexes. This fluorescence sensitivity provides a rationale for sequence impact on -2 frameshift mutations mediated by the C-linked FBP-dG lesion.
Collapse
Affiliation(s)
- Florence D Berger
- Department of Health Sciences and Technology , ETH Zurich , 8092 Zurich , Switzerland
| | - Richard A Manderville
- Departments of Chemistry and Toxicology , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - Shana J Sturla
- Department of Health Sciences and Technology , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
11
|
Kung RW, Sharma P, Wetmore SD. Effect of Size and Shape of Nitrogen-Containing Aromatics on Conformational Preferences of DNA Containing Damaged Guanine. J Chem Inf Model 2018; 58:1415-1425. [PMID: 29923712 DOI: 10.1021/acs.jcim.8b00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ryan W. Kung
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
12
|
Berger FD, Sturla SJ, Kung RW, Montina T, Wetmore SD, Manderville RA. Conformational Preference and Fluorescence Response of a C-Linked C8-Biphenyl-Guanine Lesion in the NarI Mutational Hotspot: Evidence for Enhanced Syn Adduct Formation. Chem Res Toxicol 2017; 31:37-47. [DOI: 10.1021/acs.chemrestox.7b00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Florence D. Berger
- Department
of Health Sciences and Technology, Institute of Food, Nutrition, and
Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Shana J. Sturla
- Department
of Health Sciences and Technology, Institute of Food, Nutrition, and
Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Ryan W. Kung
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Tony Montina
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D. Wetmore
- Department
of Chemistry and Biochemistry, and the Canadian Centre for Research
in Advanced Fluorine Technologies, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
13
|
Gahlon HL, Romano LJ, Rueda D. Influence of DNA Lesions on Polymerase-Mediated DNA Replication at Single-Molecule Resolution. Chem Res Toxicol 2017; 30:1972-1983. [PMID: 29020440 DOI: 10.1021/acs.chemrestox.7b00224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Faithful replication of DNA is a critical aspect in maintaining genome integrity. DNA polymerases are responsible for replicating DNA, and high-fidelity polymerases do this rapidly and at low error rates. Upon exposure to exogenous or endogenous substances, DNA can become damaged and this can alter the speed and fidelity of a DNA polymerase. In this instance, DNA polymerases are confronted with an obstacle that can result in genomic instability during replication, for example, by nucleotide misinsertion or replication fork collapse. It is important to know how DNA polymerases respond to damaged DNA substrates to understand the mechanism of mutagenesis and chemical carcinogenesis. Single-molecule techniques have helped to improve our current understanding of DNA polymerase-mediated DNA replication, as they enable the dissection of mechanistic details that can otherwise be lost in ensemble-averaged experiments. These techniques have also been used to gain a deeper understanding of how single DNA polymerases behave at the site of the damage in a DNA substrate. In this review, we evaluate single-molecule studies that have examined the interaction between DNA polymerases and damaged sites on a DNA template.
Collapse
Affiliation(s)
- Hailey L Gahlon
- Molecular Virology, Department of Medicine, Imperial College London , Du Cane Road, London W12 0NN, U.K.,Single Molecule Imaging Group, MRC London Institute of Medical Sciences , Du Cane Road, London W12 0NN, U.K
| | - Louis J Romano
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - David Rueda
- Molecular Virology, Department of Medicine, Imperial College London , Du Cane Road, London W12 0NN, U.K.,Single Molecule Imaging Group, MRC London Institute of Medical Sciences , Du Cane Road, London W12 0NN, U.K
| |
Collapse
|
14
|
Manderville RA, Wetmore SD. Mutagenicity of Ochratoxin A: Role for a Carbon-Linked C8-Deoxyguanosine Adduct? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7097-7105. [PMID: 28830149 DOI: 10.1021/acs.jafc.6b03897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ochratoxin A (OTA) is a fungal toxin that is considered to be a potent kidney carcinogen in rodent models. The toxin produces double strand breaks and has a propensity for deletions, single-base substitutions, and insertions. The toxin reacts covalently with DNA to afford a C8-2'-deoxyguanosine carbon-linked adduct (OT-dG) as the major lesion in animal tissues. Incorporation of model C-linked C8-aryl-dG adducts into the G3 site of the NarI sequence demonstrates a tendency to induce base substitutions and deletion mutations in primer extension assays using model polymerases. The degree of misincorporation induced by the C-linked C8-dG adducts correlates with an ability to adopt the promutagenic syn conformation within the NarI duplex as predicted by molecular dynamics (MD) simulations. MD simulations of the OT-dG adduct within the NarI duplex predict an even greater degree of conformational flexibility, suggesting enhanced in vitro mutagenicity compared to the simpler model C-linked C8-dG adducts. Together these findings support the role of OT-dG in promoting OTA-mediated mutagenicity and carcinogenicity in animal studies.
Collapse
Affiliation(s)
- Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph , Guelph, Ontario, Canada N1G 2W1
| | - Stacey D Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge , Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
15
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
16
|
Kathuria P, Sharma P, Manderville RA, Wetmore SD. Molecular Modeling of the Major DNA Adduct Formed from Food Mutagen Ochratoxin A in NarI Two-Base Deletion Duplexes: Impact of Sequence Context and Adduct Ionization on Conformational Preference and Mutagenicity. Chem Res Toxicol 2017; 30:1582-1591. [PMID: 28719194 DOI: 10.1021/acs.chemrestox.7b00103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Exposure to ochratoxin A (OTA), a possible human carcinogen, leads to many different DNA mutations. As a first step toward understanding the structural basis of OTA-induced mutagenicity, the present work uses a robust computational approach and a slipped mutagenic intermediate model previously studied for C8-dG aromatic amine adducts to analyze the conformational features of postreplication two-base deletion DNA duplexes containing OT-dG, the major OTA lesion at the C8 position of guanine. Specifically, a total of 960 ns of molecular dynamics simulations (excluding trial simulations) were carried out on four OT-dG ionization states in three sequence contexts within oligomers containing the NarI recognition sequence, a known hotspot for deletion mutations induced by related adducts formed from known carcinogens. Our results indicate that the structural properties and relative stability of the competing "major groove" and "stacked" conformations of OTA adducted two-base deletion duplexes depend on both the OTA ionization state and the sequence context, mainly due to conformation-dependent deviations in discrete local (hydrogen-bonding and stacking) interactions at the lesion site, as well as DNA bending. When the structural characteristics of the OT-dG adducted two-base deletion duplexes are compared to those associated with previously studied C8-dG adducts, a greater understanding of the effects of the nucleobase-carcinogen linkage, and size of the carcinogenic moiety on the conformational preferences of damaged DNA is obtained. Most importantly, our work predicts key structural features for OT-dG-adducted deletion DNA duplexes, which in turn allow us to develop hypotheses regarding OT-dG replication outcomes. Thus, our computational results are valuable for the design and interpretation of future biochemical studies on the potentially carcinogenic OT-dG lesion.
Collapse
Affiliation(s)
- Preetleen Kathuria
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University , Chandigarh 160014, India
| | - Purshotam Sharma
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University , Chandigarh 160014, India
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge , Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
17
|
Manderville RA, Wetmore SD. Understanding the Mutagenicity of O-Linked and C-Linked Guanine DNA Adducts: A Combined Experimental and Computational Approach. Chem Res Toxicol 2016; 30:177-188. [DOI: 10.1021/acs.chemrestox.6b00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Stacey D. Wetmore
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
18
|
Basu AK, Pande P, Bose A. Translesion Synthesis of 2'-Deoxyguanosine Lesions by Eukaryotic DNA Polymerases. Chem Res Toxicol 2016; 30:61-72. [PMID: 27760288 PMCID: PMC5241707 DOI: 10.1021/acs.chemrestox.6b00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
With the discovery
of translesion synthesis DNA polymerases, great
strides have been made in the last two decades in understanding the
mode of replication of various DNA lesions in prokaryotes and eukaryotes.
A database search indicated that approximately 2000 articles on this
topic have been published in this period. This includes research involving
genetic and structural studies as well as in vitro experiments using purified DNA polymerases and accessory proteins.
It is a daunting task to comprehend this exciting and rapidly emerging
area of research. Even so, as the majority of DNA damage occurs at
2′-deoxyguanosine residues, this perspective attempts to summarize
a subset of this field, focusing on the most relevant eukaryotic DNA
polymerases responsible for their bypass.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Paritosh Pande
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Arindam Bose
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
19
|
Dracínský M, Pohl R. Determination of the Nucleic Acid Adducts Structure at the Nucleoside/Nucleotide Level by NMR Spectroscopy. Chem Res Toxicol 2016; 28:155-65. [PMID: 25584790 DOI: 10.1021/tx5004535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All living organisms are exposed to xenobiotics from the environment. The exposure can lead to the formation of covalent adducts of xenobiotics or their metabolites with nucleic acids (NAs).The knowledge of NA adduct structure provides valuable information n the mechanism of carcinogenesis on a molecular level. While NMR spectroscopy is extremely successful in structural analysis of many classes of molecules ranging from small inorganic and organic molecules to large biomacromolecules, the structural analysis of NA adducts by NMR spectroscopy is accompanied by some challenges. First, the structural diversity of the adducts is very large; the electrophilic species generated from the metabolism of xenobiotics can attack various atoms of the nucleobases, and new rings are frequently formed. The second challenge in the DNA adducts structure determination is the low sensitivity of NMR spectroscopy and low amount of the adducts isolated from in vivo experiments. Recent developments of NMR hardware and experimental methods have led, however, to unprecedented sensitivity. This contribution reviews NMR techniques that are commonly applied in the determination of nucleic acid adducts structure at the nucleoside/nucleotide level. These NMR techniques and the large structural heterogeneity of NA adducts are demonstrated on recent examples (mostly published after 2000) of NA adducts structure determined by NMR. Most of the examples report 2′-deoxyribonucles(t)ide derivatives, but RNA adducts are also briefly discussed. The influence of the formation of NA adducts on nucleoside conformation (particularly syn/anti orientation of the base) is also demonstrated on recent examples.
Collapse
|
20
|
Xu L, Cho BP. Conformational Insights into the Mechanism of Acetylaminofluorene-dG-Induced Frameshift Mutations in the NarI Mutational Hotspot. Chem Res Toxicol 2016; 29:213-26. [PMID: 26733364 DOI: 10.1021/acs.chemrestox.5b00484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Frameshift mutagenesis encompasses the gain or loss of DNA base pairs, resulting in altered genetic outcomes. The NarI restriction site sequence 5'-G1G2CG3CX-3' in Escherichia coli is a well-known mutational hotspot, in which lesioning of acetylaminofluorene (AAF) at G3* induces a greater -2 deletion frequency than that at other guanine sites. Its mutational efficiency is modulated by the nature of the nucleotide in the X position (C ∼ A > G ≫ T). Here, we conducted a series of polymerase-free solution experiments that examine the conformational and thermodynamic basis underlying the propensity of adducted G3 to form a slipped mutagenic intermediate (SMI) and its sequence dependence during translesion synthesis (TLS). Instability of the AAF-dG3:dC pair at the replication fork promoted slippage to form a G*C bulge-out SMI structure, consisting of S- ("lesion stacked") and B-SMI ("lesion exposed") conformations, with conformational rigidity increasing as a function of primer elongation. We found greater stability of the S- compared to the B-SMI conformer throughout TLS. The dependence of their population ratios was determined by the 3'-next flanking base X at fully elongated bulge structures, with 59% B/41% S and 86% B/14% S for the dC and dT series, respectively. These results indicate the importance of direct interactions of the hydrophobic AAF lesion with the 3'-next flanking base pair and its stacking fit within the -2 bulge structure. A detailed conformational understanding of the SMI structures and their sequence dependence may provide a useful model for DNA polymerase complexes.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | - Bongsup P Cho
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| |
Collapse
|
21
|
Toxicology of DNA Adducts Formed Upon Human Exposure to Carcinogens. ADVANCES IN MOLECULAR TOXICOLOGY 2016. [DOI: 10.1016/b978-0-12-804700-2.00007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Brenlla A, Rueda D, Romano LJ. Mechanism of aromatic amine carcinogen bypass by the Y-family polymerase, Dpo4. Nucleic Acids Res 2015; 43:9918-27. [PMID: 26481355 PMCID: PMC4787768 DOI: 10.1093/nar/gkv1067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023] Open
Abstract
Bulky DNA damage inhibits DNA synthesis by replicative polymerases and often requires the action of error prone bypass polymerases. The exact mechanism governing adduct-induced mutagenesis and its dependence on the DNA sequence context remains unclear. In this work, we characterize Dpo4 binding conformations and activity with DNA templates modified with the carcinogenic DNA adducts, 2-aminofluoene (AF) or N-acetyl-2-aminofluorene (AAF), using single-molecule FRET (smFRET) analysis and DNA synthesis extension assays. We find that in the absence of dNTPs, both adducts alter polymerase binding as measured by smFRET, but the addition of dNTPs induces the formation of a ternary complex having what appears to be a conformation similar to the one observed with an unmodified DNA template. We also observe that the misincorporation pathways for each adduct present significant differences: while an AF adduct induces a structure consistent with the previously observed primer-template looped structure, its acetylated counterpart uses a different mechanism, one consistent with a dNTP-stabilized misalignment mechanism.
Collapse
Affiliation(s)
- Alfonso Brenlla
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - David Rueda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA Department of Medicine, Section of Virology, Imperial College London, London, UK Single Molecule Imaging Group, MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Louis J Romano
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
23
|
Sproviero M, Verwey AMR, Witham AA, Manderville RA, Sharma P, Wetmore SD. Enhancing Bulge Stabilization through Linear Extension of C8-Aryl-Guanine Adducts to Promote Polymerase Blockage or Strand Realignment to Produce a C:C Mismatch. Chem Res Toxicol 2015. [PMID: 26225720 DOI: 10.1021/acs.chemrestox.5b00233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aryl radicals can react at the C8-site of 2'-deoxyguanosine (dG) to produce DNA adducts with a C8-C linkage (denoted C-linked). Such adducts are structurally distinct from those possessing a flexible amine (N-linked) or ether (O-linked) linkage, which separates the C8-aryl moiety from the guanine nucleobase. In the current study, two model C-linked C8-dG adducts, namely, C8-benzo[b]thienyl-dG ([BTh]G) and C8-(pyren-1-yl)-dG ([Py]G), were incorporated into the NarI (12mer, NarI(12) and 22mer, NarI(22)) hotspot sequence for frameshift mutations in bacteria. For the first time, C-linked C8-dG adducts are shown to stabilize the -2 deletion duplex within the NarI sequence. Primer-elongation assays employing Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) demonstrates the influence of C8-aryl ring size and shape in promoting Dpo4 blockage or strand realignment to produce a C:C mismatch downstream of the adduct site. Molecular dynamics simulations of the -2 deletion duplex suggest that both anti and syn adduct structures are energetically accessible. These findings provide a rationale for describing the biochemical outcome induced by C-linked C8-dG adducts when processed by Dpo4.
Collapse
Affiliation(s)
- Michael Sproviero
- †Department of Chemistry and Toxicology, University of Guelph, Guelph, ON Canada N1G 2W1
| | - Anne M R Verwey
- †Department of Chemistry and Toxicology, University of Guelph, Guelph, ON Canada N1G 2W1
| | - Aaron A Witham
- †Department of Chemistry and Toxicology, University of Guelph, Guelph, ON Canada N1G 2W1
| | - Richard A Manderville
- †Department of Chemistry and Toxicology, University of Guelph, Guelph, ON Canada N1G 2W1
| | | | | |
Collapse
|
24
|
Witham AA, Verwey AMR, Sproviero M, Manderville RA, Sharma P, Wetmore SD. Chlorine functionalization of a model phenolic C8-guanine adduct increases conformational rigidity and blocks extension by a Y-family DNA polymerase. Chem Res Toxicol 2015; 28:1346-56. [PMID: 26004422 DOI: 10.1021/acs.chemrestox.5b00143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Certain phenoxyl radicals can attach covalently to the C8-site of 2'-deoxyguanosine (dG) to afford oxygen-linked C8-dG adducts. Such O-linked adducts can be chemically synthesized through a nucleophilic displacement reaction between a phenolate and a suitably protected 8-Br-dG derivative. This permits the generation of model O-linked C8-dG adducts on scales suitable for insertion into oligonucleotide substrates using solid-phase DNA synthesis. Variation of the C8-aryl moiety provides an opportunity to derive structure-activity relationships on adduct conformation in duplex DNA and replication bypass by DNA polymerases. In the current study, the influence of chlorine C8-dG functionalization on in vitro DNA replication by Klenow fragment exo(-) (Kf(-)) and the Y-family polymerase (Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4)) has been determined. Model O-linked C8-dG adducts derived from the pentachlorophenoxyl radical ([PCP]G) and 2,4,6-trichlorophenoxyl radical ([TCP]G) were inserted into the reiterated G3-position of the NarI sequence (12-mer, NarI(12); and 22-mer, NarI(22)), which is a known hotspot for frameshift mutations mediated by N-linked polycyclic C8-dG adducts in bacterial mutagenesis. Within the NarI(12) duplex, the unsubstituted C8-phenoxy-dG ([PhO]G) adduct adopts a minimally perturbed B-form helix. Chlorination of [PhO]G to afford [PCP]G does not significantly change the adduct conformation within the NarI(12) duplex, as predicted by molecular dynamics simulations. However, when using NarI(22) for DNA synthesis in vitro, the chlorinated [PCP]G and [TCP]G lesions significantly block DNA replication by Kf(-) and Dpo4, whereas [PhO]G is readily bypassed. These findings highlight the impact that chlorine substituents impart to bulky C8-dG lesions.
Collapse
Affiliation(s)
- Aaron A Witham
- †Departments of Chemistry and Toxicology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Anne M R Verwey
- †Departments of Chemistry and Toxicology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Michael Sproviero
- †Departments of Chemistry and Toxicology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Richard A Manderville
- †Departments of Chemistry and Toxicology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Purshotam Sharma
- ‡Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- ‡Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
25
|
Kathuria P, Sharma P, Abendong MN, Wetmore SD. Conformational Preferences of DNA following Damage by Aristolochic Acids: Structural and Energetic Insights into the Different Mutagenic Potential of the ALI and ALII-N6-dA Adducts. Biochemistry 2015; 54:2414-28. [PMID: 25761009 DOI: 10.1021/bi501484m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Preetleen Kathuria
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Minette N. Abendong
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
26
|
Sproviero M, Verwey AMR, Rankin KM, Witham AA, Soldatov DV, Manderville RA, Fekry MI, Sturla SJ, Sharma P, Wetmore SD. Structural and biochemical impact of C8-aryl-guanine adducts within the NarI recognition DNA sequence: influence of aryl ring size on targeted and semi-targeted mutagenicity. Nucleic Acids Res 2014; 42:13405-21. [PMID: 25361967 PMCID: PMC4245952 DOI: 10.1093/nar/gku1093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chemical mutagens with an aromatic ring system may be enzymatically transformed to afford aryl radical species that preferentially react at the C8-site of 2′-deoxyguanosine (dG). The resulting carbon-linked C8-aryl-dG adduct possesses altered biophysical and genetic coding properties compared to the precursor nucleoside. Described herein are structural and in vitro mutagenicity studies of a series of fluorescent C8-aryl-dG analogues that differ in aryl ring size and are representative of authentic DNA adducts. These structural mimics have been inserted into a hotspot sequence for frameshift mutations, namely, the reiterated G3-position of the NarI sequence within 12mer (NarI(12)) and 22mer (NarI(22)) oligonucleotides. In the NarI(12) duplexes, the C8-aryl-dG adducts display a preference for adopting an anti-conformation opposite C, despite the strong syn preference of the free nucleoside. Using the NarI(22) sequence as a template for DNA synthesis in vitro, mutagenicity of the C8-aryl-dG adducts was assayed with representative high-fidelity replicative versus lesion bypass Y-family DNA polymerases, namely, Escherichia coli pol I Klenow fragment exo− (Kf−) and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Our experiments provide a basis for a model involving a two-base slippage and subsequent realignment process to relate the miscoding properties of C-linked C8-aryl-dG adducts with their chemical structures.
Collapse
Affiliation(s)
- Michael Sproviero
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Anne M R Verwey
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Katherine M Rankin
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Aaron A Witham
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Dmitriy V Soldatov
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Mostafa I Fekry
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8032 Zürich, Switzerland Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Shana J Sturla
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8032 Zürich, Switzerland
| | - Purshotam Sharma
- Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1 Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zürich, 8032 Zürich, Switzerland Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| |
Collapse
|
27
|
Xu L, Vaidyanathan VG, Cho BP. Real-time surface plasmon resonance study of biomolecular interactions between polymerase and bulky mutagenic DNA lesions. Chem Res Toxicol 2014; 27:1796-807. [PMID: 25195494 PMCID: PMC4203393 DOI: 10.1021/tx500252z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Surface plasmon resonance (SPR) was
used to measure polymerase-binding
interactions of the bulky mutagenic DNA lesions N-(2′-deoxyguanosin-8-yl)-4′-fluoro-4-aminobiphenyl
(FABP) or N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene
(FAAF) in the context of two unique 5′-flanking bases (CG*A and TG*A). The enzymes used
were exo-nuclease-deficient Klenow fragment (Kf-exo–) or polymerase β (pol β). Specific binary and ternary
DNA binding affinities of the enzymes were characterized at subnanomolar
concentrations. The SPR results showed that Kf-exo– binds strongly to a double strand/single strand template/primer
junction, whereas pol β binds preferentially to double-stranded
DNA having a one-nucleotide gap. Both enzymes exhibited tight binding
to native DNA, with high nucleotide selectivity, where the KD values for each base pair increased in the
order dCTP ≪ dTTP ∼ dATP ≪ dGTP. In contrast
to that for pol β, Kf-exo– binds tightly to
lesion-modified templates; however, both polymerases exhibited minimal
nucleotide selectivity toward adducted DNA. Primer steady-state kinetics
and 19F NMR results support the SPR data. The relative
insertion efficiency fins of dCTP opposite
FABP was significantly higher in the TG*A sequence
compared to that in CG*A. Although Kf-exo– was not sensitive to the presence of a DNA lesion,
FAAF-induced conformational heterogeneity perturbed the active site
of pol β, weakening the enzyme’s ability to bind to FAAF
adducts compared to FABP adducts. The present study demonstrates the
effectiveness of SPR for elucidating how lesion-induced conformational
heterogeneity affects the binding capability of polymerases and ultimately
the nucleotide insertion efficiency.
Collapse
Affiliation(s)
- Lifang Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island , Kingston, Rhode Island 02881, United States
| | | | | |
Collapse
|
28
|
Sharma P, Manderville RA, Wetmore SD. Structural and energetic characterization of the major DNA adduct formed from the food mutagen ochratoxin A in the NarI hotspot sequence: influence of adduct ionization on the conformational preferences and implications for the NER propensity. Nucleic Acids Res 2014; 42:11831-45. [PMID: 25217592 PMCID: PMC4191402 DOI: 10.1093/nar/gku821] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The nephrotoxic food mutagen ochratoxin A (OTA) produces DNA adducts in rat kidneys, the major lesion being the C8-linked-2′-deoxyguanosine adduct (OTB-dG). Although research on other adducts stresses the importance of understanding the structure of the associated adducted DNA, site-specific incorporation of OTB-dG into DNA has yet to be attempted. The present work uses a robust computational approach to determine the conformational preferences of OTB-dG in three ionization states at three guanine positions in the NarI recognition sequence opposite cytosine. Representative adducted DNA helices were derived from over 2160 ns of simulation and ranked via free energies. For the first time, a close energetic separation between three distinct conformations is highlighted, which indicates OTA-adducted DNA likely adopts a mixture of conformations regardless of the sequence context. Nevertheless, the preferred conformation depends on the flanking bases and ionization state due to deviations in discrete local interactions at the lesion site. The structural characteristics of the lesion thus discerned have profound implications regarding its repair propensity and mutagenic outcomes, and support recent experiments suggesting the induction of double-strand breaks and deletion mutations upon OTA exposure. This combined structural and energetic characterization of the OTB-dG lesion in DNA will encourage future biochemical experiments on this potentially genotoxic lesion.
Collapse
Affiliation(s)
- Purshotam Sharma
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| | - Richard A Manderville
- Department of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
29
|
Sproviero M, Rankin KM, Witham AA, Manderville RA. Utility of 5'-O-2,7-dimethylpixyl for solid-phase synthesis of oligonucleotides containing acid-sensitive 8-aryl-guanine adducts. J Org Chem 2014; 79:692-9. [PMID: 24392939 DOI: 10.1021/jo4024842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To study the structural and biological impact of 8-aryl-2'-deoxyguanosine adducts, an efficient protocol is required to incorporate them site-specifically into oligonucleotide substrates. Traditional phosphoramidite chemistry using 5'-O-DMT protection can be limiting because 8-aryl-dG adducts suffer from greater rates of acid-catalyzed depurination than dG and are sensitive to the acidic deblock conditions required to remove the DMT group. Herein we show that the 5'-O-2,7-dimethylpixyl (DMPx) protecting group can be used to limit acid exposure and improve DNA synthesis efficiency for DNA substrates containing 8-aryl-dG adducts. Our studies focus on 8-aryl-dG adducts with 8-substituents consisting of furyl ((Fur)dG), phenyl ((Ph)dG), 4-cyanophenyl ((CNPh)dG), and quinolyl ((Q)dG). These adducts differ in ring size and sensitivity to acid-promoted deglycosylation. A kinetic study for adduct hydrolysis in 0.1 M aqueous HCl determined that (Fur)dG was the most acid-sensitive (55.2-fold > dG), while (Q)dG was the most resistant (5.6-fold > dG). The most acid-sensitive (Fur)dG was chosen for optimization of solid-phase DNA synthesis. Our studies show that the 5'-O-DMPx group can provide a 4-fold increase in yield compared to 5'-O-DMT for incorporation of (Fur)dG into DNA substrates critical for determining adduct impact on DNA synthesis and repair.
Collapse
Affiliation(s)
- Michael Sproviero
- Departments of Chemistry and Toxicology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
30
|
Nauwelaërs G, Bellamri M, Fessard V, Turesky RJ, Langouët S. DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human hepatocytes. Chem Res Toxicol 2013; 26:1367-77. [PMID: 23898916 PMCID: PMC3904354 DOI: 10.1021/tx4002226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25-100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ∼5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a 10,000-fold concentration range (1 nM-10 μM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes suggest that AαC can contribute to DNA damage and the risk of hepatocellular cancer in smokers.
Collapse
|
31
|
Vrtis KB, Markiewicz RP, Romano LJ, Rueda D. Carcinogenic adducts induce distinct DNA polymerase binding orientations. Nucleic Acids Res 2013; 41:7843-53. [PMID: 23814187 PMCID: PMC3763543 DOI: 10.1093/nar/gkt554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/15/2013] [Accepted: 05/24/2013] [Indexed: 12/18/2022] Open
Abstract
DNA polymerases must accurately replicate DNA to maintain genome integrity. Carcinogenic adducts, such as 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF), covalently bind DNA bases and promote mutagenesis near the adduct site. The mechanism by which carcinogenic adducts inhibit DNA synthesis and cause mutagenesis remains unclear. Here, we measure interactions between a DNA polymerase and carcinogenic DNA adducts in real-time by single-molecule fluorescence. We find the degree to which an adduct affects polymerase binding to the DNA depends on the adduct location with respect to the primer terminus, the adduct structure and the nucleotides present in the solution. Not only do the adducts influence the polymerase dwell time on the DNA but also its binding position and orientation. Finally, we have directly observed an adduct- and mismatch-induced intermediate state, which may be an obligatory step in the DNA polymerase proofreading mechanism.
Collapse
Affiliation(s)
- Kyle B. Vrtis
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA and Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK
| | - Radoslaw P. Markiewicz
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA and Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK
| | - Louis J. Romano
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA and Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK
| | - David Rueda
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA and Department of Medicine, Section of Virology, Imperial College London, London W12 0NN, UK
| |
Collapse
|
32
|
Kuska MS, Witham AA, Sproviero M, Manderville RA, Majdi Yazdi M, Sharma P, Wetmore SD. Structural Influence of C8-Phenoxy-Guanine in the NarI Recognition DNA Sequence. Chem Res Toxicol 2013; 26:1397-408. [DOI: 10.1021/tx400252g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Michael S. Kuska
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Aaron A. Witham
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Michael Sproviero
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Mohadeseh Majdi Yazdi
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Purshotam Sharma
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D. Wetmore
- Department
of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
33
|
Kuska MS, Majdi Yazdi M, Witham AA, Dahlmann HA, Sturla SJ, Wetmore SD, Manderville RA. Influence of Chlorine Substitution on the Hydrolytic Stability of Biaryl Ether Nucleoside Adducts Produced by Phenolic Toxins. J Org Chem 2013; 78:7176-85. [DOI: 10.1021/jo401122j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael S. Kuska
- Departments of Chemistry and
Toxicology, University of Guelph, Guelph,
Ontario, N1G 2W1, Canada
| | - Mohadeseh Majdi Yazdi
- Department of Chemistry and
Biochemistry, University of Lethbridge,
Lethbridge, Alberta, T1K 3M4, Canada
| | - Aaron A. Witham
- Departments of Chemistry and
Toxicology, University of Guelph, Guelph,
Ontario, N1G 2W1, Canada
| | - Heidi A. Dahlmann
- Institute of Food, Nutrition and
Health, ETH Zürich, 8006 Zürich,
Switzerland
| | - Shana J. Sturla
- Institute of Food, Nutrition and
Health, ETH Zürich, 8006 Zürich,
Switzerland
| | - Stacey D. Wetmore
- Department of Chemistry and
Biochemistry, University of Lethbridge,
Lethbridge, Alberta, T1K 3M4, Canada
| | - Richard A. Manderville
- Departments of Chemistry and
Toxicology, University of Guelph, Guelph,
Ontario, N1G 2W1, Canada
| |
Collapse
|
34
|
Vaidyanathan VG, Liang F, Beard WA, Shock DD, Wilson SH, Cho BP. Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site. J Biol Chem 2013; 288:23573-85. [PMID: 23798703 DOI: 10.1074/jbc.m113.476150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The active site conformation of the mutagenic fluoroaminofluorene-deoxyguanine adduct (dG-FAF, N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene) has been investigated in the presence of Klenow fragment of Escherichia coli DNA polymerase I (Kfexo(-)) and DNA polymerase β (pol β) using (19)F NMR, insertion assay, and surface plasmon resonance. In a single nucleotide gap, the dG-FAF adduct adopts both a major-groove- oriented and base-displaced stacked conformation, and this heterogeneity is retained upon binding pol β. The addition of a non-hydrolysable 2'-deoxycytosine-5'-[(α,β)-methyleno]triphosphate (dCMPcPP) nucleotide analog to the binary complex results in an increase of the major groove conformation of the adduct at the expense of the stacked conformation. Similar results were obtained with the addition of an incorrect dAMPcPP analog but with formation of the minor groove binding conformer. In contrast, dG-FAF adduct at the replication fork for the Kfexo(-) complex adopts a mix of the major and minor groove conformers with minimal effect upon the addition of non-hydrolysable nucleotides. For pol β, the insertion of dCTP was preferred opposite the dG-FAF adduct in a single nucleotide gap assay consistent with (19)F NMR data. Surface plasmon resonance binding kinetics revealed that pol β binds tightly with DNA in the presence of correct dCTP, but the adduct weakens binding with no nucleotide specificity. These results provide molecular insights into the DNA binding characteristics of FAF in the active site of DNA polymerases and the role of DNA structure and sequence on its coding potential.
Collapse
Affiliation(s)
- Vaidyanathan G Vaidyanathan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sandineni A, Lin B, MacKerell AD, Cho BP. Structure and thermodynamic insights on acetylaminofluorene-modified deletion DNA duplexes as models for frameshift mutagenesis. Chem Res Toxicol 2013; 26:937-51. [PMID: 23688347 DOI: 10.1021/tx400116n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2-Acetylaminofluorene (AAF) is a prototype arylamine carcinogen that forms C8-substituted dG-AAF and dG-AF as the major DNA lesions. The bulky N-acetylated dG-AAF lesion can induce various frameshift mutations depending on the base sequence around the lesion. We hypothesized that the thermodynamic stability of bulged-out slipped mutagenic intermediates (SMIs) is directly related to deletion mutations. The objective of the present study was to probe the structural/conformational basis of various dG-AAF-induced SMIs formed during translesion synthesis. We performed spectroscopic, thermodynamic, and molecular dynamics studies of several AAF-modified 16-mer model DNA duplexes, including fully paired and -1, -2, and -3 deletion duplexes of the 5'-CTCTCGATG[FAAF]CCATCAC-3' sequence and an additional -1 deletion duplex of the 5'-CTCTCGGCG[FAAF]CCATCAC-3' NarI sequence. Modified deletion duplexes existed in a mixture of external B and stacked S conformers, with the population of the S conformer being 'GC'-1 (73%) > 'AT'-1 (72%) > full (60%) > -2 (55%) > -3 (37%). Thermodynamic stability was in the order of -1 deletion > -2 deletion > fully paired > -3 deletion duplexes. These results indicate that the stacked S-type conformer of SMIs is thermodynamically more stable than the conformationally flexible external B conformer. Results from the molecular dynamics simulations indicate that perturbation of base stacking dominates the relative stability along with contributions from bending, duplex dynamics, and solvation effects that are important in specific cases. Taken together, these results support a hypothesis that the conformational and thermodynamic stabilities of the SMIs are critical determinants for the induction of frameshift mutations.
Collapse
Affiliation(s)
- Anusha Sandineni
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | |
Collapse
|
36
|
Rankin KM, Sproviero M, Rankin K, Sharma P, Wetmore SD, Manderville RA. C8-heteroaryl-2'-deoxyguanosine adducts as conformational fluorescent probes in the NarI recognition sequence. J Org Chem 2012; 77:10498-508. [PMID: 23171213 DOI: 10.1021/jo302164c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The optical, redox, and electronic properties of C(8)-heteroaryl-2'-deoxyguanosine (dG) adducts with C(8)-substituents consisting of furyl ((Fur)dG), pyrrolyl ((Pyr)dG), thienyl ((Th)dG), benzofuryl ((Bfur)dG), indolyl ((Ind)dG), and benzothienyl ((Bth)dG) are described. These adducts behave as fluorescent nucleobase probes with emission maxima from 379 to 419 nm and fluorescence quantum yields (Φ(fl)) in the 0.1-0.8 range in water at neutral pH. The probes exhibit quenched fluorescence with increased solvent viscosity and decreased solvent polarity. The (Fur)dG, (Bfur)dG, (Ind)dG, and (Bth)dG derivatives were incorporated into the G(3) position of the 12-mer oligonucleotide 5'-CTCG(1)G(2)CG(3)CCATC-3' that contains the recognition sequence of the NarI Type II restriction endonuclease. This sequence is widely used to study the biological activity (mutagenicity) of C(8)-arylamine-dG adducts with adduct conformation (anti vs syn) playing a critical role in the biological outcome. The modified NarI(X = (Fur)G, (Ind)G, (Bfur)G, or (Bth)G) oligonucleotides were hybridized to the complementary strand containing either C (NarI'(C)) or G (NarI'(G)) opposite the probe. The duplex structures were characterized by UV melting temperature analysis, fluorescence spectroscopy, collisional fluorescence quenching studies, and circular dichroism (CD). The emission of the probes showed sensitivity to the opposing base in the duplex, and suggested the utility of fluorescence spectroscopy to monitor probe conformation.
Collapse
Affiliation(s)
- Katherine M Rankin
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Tang Y, Liu Z, Ding S, Lin CH, Cai Y, Rodriguez FA, Sayer JM, Jerina DM, Amin S, Broyde S, Geacintov NE. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing. Biochemistry 2012; 51:9751-62. [PMID: 23121427 DOI: 10.1021/bi3013577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.
Collapse
Affiliation(s)
- Yijin Tang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yeo JE, Khoo A, Fagbemi AF, Schärer OD. The efficiencies of damage recognition and excision correlate with duplex destabilization induced by acetylaminofluorene adducts in human nucleotide excision repair. Chem Res Toxicol 2012; 25:2462-8. [PMID: 23088760 DOI: 10.1021/tx3003033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nucleotide excision repair (NER) removes lesions caused by environmental mutagens or UV light from DNA. A hallmark of NER is the extraordinarily wide substrate specificity, raising the question of how one set of proteins is able to recognize structurally diverse lesions. Two key features of good NER substrates are that they are bulky and thermodynamically destabilize DNA duplexes. To understand what the limiting step in damage recognition in NER is, we set out to test the hypothesis that there is a correlation of the degree of thermodynamic destabilization induced by a lesion, binding affinity to the damage recognition protein XPC-RAD23B, and overall NER efficiency. We chose to use acetylaminofluorene (AAF) and aminofluorene (AF) adducts at the C8 position of guanine in different positions within the NarI (GGCGCC) sequence, as it is known that the structures of the duplexes depend on the position of the lesion in this context. We found that the efficiency of NER and the binding affinity of the damage recognition factor XPC-RAD23B correlated with the thermodynamic destabilization induced by the lesion. Our study is the first systematic analysis correlating these three parameters and supports the idea that initial damage recognition by XPC-RAD23B is a key rate-limiting step in NER.
Collapse
Affiliation(s)
- Jung-Eun Yeo
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
39
|
C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity. Future Med Chem 2012; 4:1981-2007. [PMID: 23088278 DOI: 10.4155/fmc.12.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bulky DNA adducts are formed through the covalent attachment of aryl groups to the DNA nucleobases. Many of these adducts are known to possess conformational heterogeneity, which is responsible for the variety of mutagenic outcomes associated with these lesions. The present contribution reviews several conformational and mutagenic themes that are prevalent among the DNA adducts formed at the C8-site of the guanine nucleobase. The most important conclusions obtained (to date) from experiments are summarized including the anti/syn conformational preference of the adducts, their potential to inflict DNA mutations and mismatch stabilization, and their interactions with DNA polymerases and repair enzymes. Additionally, the unique role that computer calculations can play in understanding the structural properties of these adducts are highlighted.
Collapse
|
40
|
Mu H, Kropachev K, Wang L, Zhang L, Kolbanovskiy A, Kolbanovskiy M, Geacintov NE, Broyde S. Nucleotide excision repair of 2-acetylaminofluorene- and 2-aminofluorene-(C8)-guanine adducts: molecular dynamics simulations elucidate how lesion structure and base sequence context impact repair efficiencies. Nucleic Acids Res 2012; 40:9675-90. [PMID: 22904073 PMCID: PMC3479214 DOI: 10.1093/nar/gks788] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nucleotide excision repair (NER) efficiencies of DNA lesions can vary by orders of magnitude, for reasons that remain unclear. An example is the pair of N-(2′-deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF) and N-(2′-deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF) adducts that differ by a single acetyl group. The NER efficiencies in human HeLa cell extracts of these lesions are significantly different when placed at G1, G2 or G3 in the duplex sequence (5′-CTCG1G2CG3CCATC-3′) containing the NarI mutational hot spot. Furthermore, the dG-C8-AAF adduct is a better substrate of NER than dG-C8-AF in all three NarI sequence contexts. The conformations of each of these adducts were investigated by Molecular dynamics (MD) simulation methods. In the base-displaced conformational family, the greater repair susceptibility of dG-C8-AAF in all sequences stems from steric hindrance effects of the acetyl group which significantly diminish the adduct-base stabilizing van der Waals stacking interactions relative to the dG-C8-AF case. Base sequence context effects for each adduct are caused by differences in helix untwisting and minor groove opening that are derived from the differences in stacking patterns. Overall, the greater NER efficiencies are correlated with greater extents of base sequence-dependent local untwisting and minor groove opening together with weaker stacking interactions.
Collapse
Affiliation(s)
- Hong Mu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Manderville RA, Omumi A, Rankin née Schlitt KM, Wilson KA, Millen AL, Wetmore SD. Fluorescent C-linked C8-aryl-guanine probe for distinguishing syn from anti structures in duplex DNA. Chem Res Toxicol 2012; 25:1271-82. [PMID: 22667322 DOI: 10.1021/tx300152q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The synthesis and optical properties of the carbon (C)-linked C(8)-(2"-benzo[b]thienyl)-2'-deoxyguanosine ((Bth)dG), which acts as a fluorescent reporter of syn versus anti glycosidic conformations in duplex DNA, are described. In the syn-conformation, the probe stabilizes a G:G mismatch, emits at ∼385 nm (excitation ∼285 nm), and shows an induced circular dichroism (ICD) signal at ∼320 nm. Molecular dynamics (MD) simulations predict a wedge (W)-conformation for the mismatched duplex with the C(8)-benzo[b]thienyl moiety residing in the minor groove. In contrast, the probe destabilizes the duplex when base paired with its normal pyrimidine partner C. With flanking purine bases, a major groove B-type duplex is favored with (Bth)dG present in the anti-conformation emitting at ∼413 nm (excitation ∼326 nm) and no ICD signal. However, with flanking pyrimidine bases, (Bth)dG adopts the syn-conformation when base paired with C, and MD simulations predict a base-displaced stacked (S)-conformation, with the opposing C flipped out of the helix. The different duplex (B-, S-, and W-) conformers formed upon incorporation of (Bth)dG are known to play a critical role in the biological activity of N-linked C8-dG adducts formed by arylamine carcinogens. Bulky environment-sensitive fluorescent C(8)-dG adducts that mimic the duplex structures formed by carcinogens may be useful in luminescence-based DNA polymerase assays.
Collapse
|
42
|
Vaidyanathan VG, Cho BP. Sequence Effects on Translesion Synthesis of an Aminofluorene–DNA Adduct: Conformational, Thermodynamic, and Primer Extension Kinetic Studies. Biochemistry 2012; 51:1983-95. [DOI: 10.1021/bi2017443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- V. G. Vaidyanathan
- Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Bongsup P. Cho
- Department of Biomedical and Pharmaceutical
Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
43
|
Jain V, Hilton B, Patnaik S, Zou Y, Chiarelli MP, Cho BP. Conformational and thermodynamic properties modulate the nucleotide excision repair of 2-aminofluorene and 2-acetylaminofluorene dG adducts in the NarI sequence. Nucleic Acids Res 2012; 40:3939-51. [PMID: 22241773 PMCID: PMC3351159 DOI: 10.1093/nar/gkr1307] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G(1), G(2) or G(3) of NarI sequence (5'-CCG(1)G(2)CG(3)CC-3'). Our (19)F-NMR/ICD results showed that FAAF at G(1) and G(3) prefer syn S- and W-conformers, whereas anti B-conformer was predominant for G(2). We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G(3) and -G(1) duplexes incised more efficiently than the B-type G(2) duplex (G(3)∼G(1)> G(2)). The melting and thermodynamic data indicate that the S- and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2'-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2- to 3-fold less than FAAF: however, the incision efficiency was in order of G(2)∼G(1)> G(3), a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts.
Collapse
Affiliation(s)
- Vipin Jain
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
44
|
Millen AL, Kamenz BL, Leavens FMV, Manderville RA, Wetmore SD. Conformational flexibility of C8-phenoxylguanine adducts in deoxydinucleoside monophosphates. J Phys Chem B 2011; 115:12993-3002. [PMID: 21942470 DOI: 10.1021/jp2057332] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
M06-2X/6-31G(d,p) is used to calculate the structure of all natural deoxydinucleoside monophosphates with G in the 5' or 3' position, the anti or syn conformation, and each natural (A, C, G, T) base in the corresponding flanking position. When the ortho or para C8-phenoxyl-2'-deoxyguanosine (C8-phenoxyl-dG) adduct replaces G in each model, there is little change in the relative base-base orientation or backbone conformation. However, the orientation of the C8-phenoxyl group can be characterized according to the position (5' versus 3'), conformation (anti versus syn), and isomer (ortho versus para) of damage. Although the degree of coplanarity between the phenoxyl ring and G base in the ortho adduct is highly affected by the sequence since the hydroxyl group can interact with neighboring bases, the para adduct generally does not exhibit discrete interactions with flanking bases. For both adducts, steric clashes between the phenoxyl group and the backbone or flanking base destabilize the anti conformation preferred by the natural nucleotide and thereby result in a clear preference for the syn conformation regardless of the sequence or position. This contrasts the conclusions drawn from smaller (nucleoside, nucleotide) models previously used in the literature, which stresses the importance of using models that address the steric constraints present due to the surrounding environment. Since replication errors for other C8-dG bulky adducts have been linked to a preference for the syn conformation, our findings provide insight into the possible mutagenicity of phenolic adducts.
Collapse
Affiliation(s)
- Andrea L Millen
- Department of Chemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | | | | | | |
Collapse
|
45
|
Omumi A, Millen AL, Wetmore SD, Manderville RA. Fluorescent properties and conformational preferences of C-linked phenolic-DNA adducts. Chem Res Toxicol 2011; 24:1694-709. [PMID: 21905681 DOI: 10.1021/tx200247f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phenolic toxins and mutagenic diazoquinones generate C-linked adducts at the C8 site of 2'-deoxyguanosine (dG) through the intermediacy of radical species. We have previously reported the site-specific incorporation of these adducts into oligonucleotides using a postsynthetic palladium-catalyzed cross-coupling strategy [Omumi (2011 ) J. Am. Chem. Soc. 133 , 42 - 50 ]. We report here the structural impact of these lesions within two decanucleotide sequences containing either 5'- and 3'-flanking pyrimidines or purines. In the complementary strands, the base opposite (N) the C-linked adduct was varied to determine the possibility of mismatch stabilization by the modified nucleobases. The resulting adducted duplex structures were characterized using UV thermal denaturation studies, circular dichroism, fluorescence spectroscopy, and molecular dynamics (MD) simulations. The experimental data showed the C-linked adducts to destabilize the duplex when base paired with its normal partner C but to increase duplex stability within a G:G mismatch. The stabilization within the G:G mismatch was sequence dependent, with flanking purine bases playing a key role in the stabilizing influence of the adduct. MD simulations showed no large structural changes to the B form double helix, regardless of the (anti/syn) adduct preference. Consideration of H-bonding and stacking interactions derived from the MD simulations together with the thermal melting data and changes in fluorescent emission of the adducts upon hybridization to the complementary strands implied that the C-linked phenolic adducts preferentially adopt the syn-conformation within both duplexes regardless of the opposite base N. Given that biological outcome in terms of mutagenicity appears to be strongly correlated to the conformational preference of the corresponding N-linked C8-dG adducts, the potential biological implications of phenolic C-linked adducts are discussed.
Collapse
Affiliation(s)
- Alireza Omumi
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
46
|
Shamovsky I, Ripa L, Börjesson L, Mee C, Nordén B, Hansen P, Hasselgren C, O’Donovan M, Sjö P. Explanation for Main Features of Structure–Genotoxicity Relationships of Aromatic Amines by Theoretical Studies of Their Activation Pathways in CYP1A2. J Am Chem Soc 2011; 133:16168-85. [DOI: 10.1021/ja206427u] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Igor Shamovsky
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Lena Börjesson
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Christine Mee
- Genetic Toxicology, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - Bo Nordén
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | - Peter Hansen
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| | | | - Mike O’Donovan
- Genetic Toxicology, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - Peter Sjö
- Department of Medicinal Chemistry, R&I iMed, AstraZeneca R&D, Pepparedsleden 1, S-431 83 Mölndal, Sweden
| |
Collapse
|
47
|
Stone MP, Huang H, Brown KL, Shanmugam G. Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 2011; 8:1571-615. [PMID: 21922653 PMCID: PMC3714022 DOI: 10.1002/cbdv.201100033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The formation of adducts by the reaction of chemicals with DNA is a critical step for the initiation of carcinogenesis. The structural analysis of various DNA adducts reveals that conformational and chemical rearrangements and interconversions are a common theme. Conformational changes are modulated both by the nature of adduct and the base sequences neighboring the lesion sites. Equilibria between conformational states may modulate both DNA repair and error-prone replication past these adducts. Likewise, chemical rearrangements of initially formed DNA adducts are also modulated both by the nature of adducts and the base sequences neighboring the lesion sites. In this review, we focus on DNA damage caused by a number of environmental and endogenous agents, and biological consequences.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
48
|
Turesky RJ, Le Marchand L. Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem Res Toxicol 2011; 24:1169-214. [PMID: 21688801 PMCID: PMC3156293 DOI: 10.1021/tx200135s] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatic amines and heterocyclic aromatic amines (HAAs) are structurally related classes of carcinogens that are formed during the combustion of tobacco or during the high-temperature cooking of meats. Both classes of procarcinogens undergo metabolic activation by N-hydroxylation of the exocyclic amine group to produce a common proposed intermediate, the arylnitrenium ion, which is the critical metabolite implicated in toxicity and DNA damage. However, the biochemistry and chemical properties of these compounds are distinct, and different biomarkers of aromatic amines and HAAs have been developed for human biomonitoring studies. Hemoglobin adducts have been extensively used as biomarkers to monitor occupational and environmental exposures to a number of aromatic amines; however, HAAs do not form hemoglobin adducts at appreciable levels, and other biomarkers have been sought. A number of epidemiologic studies that have investigated dietary consumption of well-done meat in relation to various tumor sites reported a positive association between cancer risk and well-done meat consumption, although some studies have shown no associations between well-done meat and cancer risk. A major limiting factor in most epidemiological studies is the uncertainty in quantitative estimates of chronic exposure to HAAs, and thus, the association of HAAs formed in cooked meat and cancer risk has been difficult to establish. There is a critical need to establish long-term biomarkers of HAAs that can be implemented in molecular epidemioIogy studies. In this review, we highlight and contrast the biochemistry of several prototypical carcinogenic aromatic amines and HAAs to which humans are chronically exposed. The biochemical properties and the impact of polymorphisms of the major xenobiotic-metabolizing enzymes on the biological effects of these chemicals are examined. Lastly, the analytical approaches that have been successfully employed to biomonitor aromatic amines and HAAs, and emerging biomarkers of HAAs that may be implemented in molecular epidemiology studies are discussed.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Environmental Health Sciences, Wadsworth Center , Albany, New York 12201, United States.
| | | |
Collapse
|
49
|
Liang F, Cho BP. Conformational and thermodynamic impact of bulky aminofluorene adduction on simulated translesion DNA synthesis. Chem Res Toxicol 2011; 24:597-605. [PMID: 21410284 DOI: 10.1021/tx2000587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a systematic spectroscopic investigation on the conformational evolution during primer extension of a bulky fluoroaminofluorene-modified dG adduct (FAF-dG) in chemically simulated translesion synthesis. FAF-dG was paired either with dC or dA (dC-match and dA-mismatch series, respectively). Dynamic (19)F NMR/CD results showed that the FAF-adduct exists in a syn/anti equilibrium and that its conformational characteristics are modulated by the identity of an inserted nucleotide at the lesion site and the extent of primer elongation. At the pre-insertion site, the adduct adopted preferentially a syn conformation where FAF stacked with preceding bases. Insertion of the correct nucleotide dC at the lesion site and subsequent elongation resulted in a gradual transition to the anti conformation. By contrast, the syn conformer was persistent along with primer extension in the dA-mismatch series. In the dC-match series, FAF-induced thermal (T(m)) and thermodynamic (-ΔG°(37 °C)) stabilities were significantly reduced relative to those of the controls. However, the corresponding T(m) and -ΔG°(37 °C) values were increased in the FAF-modified mismatched dA series. The lesion impact persisted up to three 5'-nucleotides from the lesion. Occupation of the minor groove of the W-conformer with the bulky carcinogenic fluorene moiety not only would limit the DNA mobility but also would impose a serious difficulty for the active site of a polymerase throughout the replication process. Our spectroscopic results are consistent with reported data on AF, which showed dramatic (~10(4)-fold) differences in the nucleotide insertion rates between the dC-match and dA-mismatch series. The results emphasize the importance of adduct-induced steric constraints for determining the replication fidelity of a polymerase.
Collapse
Affiliation(s)
- Fengting Liang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | | |
Collapse
|
50
|
Christov PP, Petrova KV, Shanmugam G, Kozekov ID, Kozekova A, Guengerich FP, Stone MP, Rizzo CJ. Comparison of the in vitro replication of the 7-(2-oxoheptyl)-1,N2-etheno-2'-deoxyguanosine and 1,N2-etheno-2'-deoxyguanosine lesions by Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4). Chem Res Toxicol 2011; 23:1330-41. [PMID: 20578729 DOI: 10.1021/tx100082e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oligonucleotides were synthesized containing the 7-(2-oxoheptyl)-etheno-dGuo adduct, which is derived from the reaction of dGuo and the lipid peroxidation product 4-oxo-2-nonenal. The in vitro replication of 7-(2-oxoheptyl)-etheno-dGuo by the model Y-family polymerase Sulfolobus solfataricus P2 DNA Polymerase IV (Dpo4) was examined in two sequences. The extension products were sequenced using an improved LC-ESI-MS/MS protocol developed in our laboratories, and the results were compared to that of the 1,N(2)-etheno-dGuo adduct in the same sequence contexts. Both etheno adducts were highly miscoding when situated in 5'-TXG-3' local sequence contexts with <4% of the extension products being derived from error-free bypass. The major extension products resulted from the misinsertion of Ade opposite the adduct and a one-base deletion. The major extension products from replication of the etheno lesions in a 5'-CXG-3' local sequence context were the result of misinsertion of Ade, a one-base deletion, and error-free bypass. Other minor extension products were also identified. The 7-(2-oxoheptyl)-etheno-dGuo lesion resulted in a larger frequency of misinsertion of Ade, whereas the 1,N(2)-etheno-dGuo gave more of the one-base deletion product. Conformational studies of duplex DNA containing the 7-(2-oxoheptyl)-etheno-dGuo in a 5'-TXG-3' sequence context by NMR indicated the presence of a pH-dependent conformational transition, likely involving the glycosyl bond at the adducted guanosine; the pK(a) for this transition was lower than that observed for the 1,N(2)-epsilon-dGuo lesion. However, the 7-(2-oxoheptyl)-etheno-dGuo lesion, the complementary Cyt, and both flanking base pairs remained disordered at all pH values, which is attributed to the presence of the hydrophobic heptyl group of the 7-(2-oxoheptyl)-etheno-dGuo lesion. The altered pK(a) value and the structural disorder at the 7-(2-oxoheptyl)-etheno-dGuo lesion site, as compared to the same sequence containing the 1,N(2)-etheno-dGuo, may contribute to higher frequency of misinsertion of Ade.
Collapse
Affiliation(s)
- Plamen P Christov
- Department of Chemistry, Department of Biochemistry, and Center in Molecular Toxicology, Vanderbilt University, Nashville, TN 37235-1822, USA
| | | | | | | | | | | | | | | |
Collapse
|