1
|
Amjadi R, Werten S, Lomada SK, Baldin C, Scheffzek K, Dunzendorfer-Matt T, Wieland T. Mechanistic Insights into Substrate Recognition of Human Nucleoside Diphosphate Kinase C Based on Nucleotide-Induced Structural Changes. Int J Mol Sci 2024; 25:9768. [PMID: 39337255 PMCID: PMC11431768 DOI: 10.3390/ijms25189768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Nucleoside diphosphate kinases (NDPKs) are encoded by nme genes and exist in various isoforms. Based on interactions with other proteins, they are involved in signal transduction, development and pathological processes such as tumorigenesis, metastasis and heart failure. In this study, we report a 1.25 Å resolution structure of human homohexameric NDPK-C bound to ADP and describe the yet unknown complexes formed with GDP, UDP and cAMP, all obtained at a high resolution via X-ray crystallography. Each nucleotide represents a distinct group of mono- or diphosphate purine or pyrimidine bases. We analyzed different NDPK-C nucleotide complexes in the presence and absence of Mg2+ and explain how this ion plays an essential role in NDPKs' phosphotransferase activity. By analyzing a nucleotide-depleted NDPK-C structure, we detected conformational changes upon substrate binding and identify flexible regions in the substrate binding site. A comparison of NDPK-C with other human isoforms revealed a strong similarity in the overall composition with regard to the 3D structure, but significant differences in the charge and hydrophobicity of the isoforms' surfaces. This may play a role in isoform-specific NDPK interactions with ligands and/or important complex partners like other NDPK isoforms, as well as monomeric and heterotrimeric G proteins. Considering the recently discovered role of NDPK-C in different pathologies, these high-resolution structures thus might provide a basis for interaction studies with other proteins or small ligands, like activators or inhibitors.
Collapse
Affiliation(s)
- Rezan Amjadi
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Sebastiaan Werten
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria;
| | - Santosh Kumar Lomada
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13–17, 68167 Mannheim, Germany;
| | - Clara Baldin
- Department of Microbiology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria;
| | - Klaus Scheffzek
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Theresia Dunzendorfer-Matt
- Institute of Molecular Biochemistry, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (R.A.); (K.S.)
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13–17, 68167 Mannheim, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
2
|
Mao X, Li L, Abubakar YS, Li Y, Luo Z, Chen M, Zheng W, Wang Z, Zheng H. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9637-9646. [PMID: 38642053 DOI: 10.1021/acs.jafc.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
Nucleoside diphosphate kinases (NDPKs) are nucleotide metabolism enzymes that play different physiological functions in different species. However, the roles of NDPK in phytopathogen and mycotoxin production are not well understood. In this study, we showed that Fusarium graminearum FgNdpk is important for vegetative growth, conidiation, sexual development, and pathogenicity. Furthermore, FgNdpk is required for deoxynivalenol (DON) production; deletion of FgNDPK downregulates the expression of DON biosynthesis genes and disrupts the formation of FgTri4-GFP-labeled toxisomes, while overexpression of FgNDPK significantly increases DON production. Interestingly, FgNdpk colocalizes with the DON biosynthesis proteins FgTri1 and FgTri4 in the toxisome, and coimmunoprecipitation (Co-IP) assays show that FgNdpk associates with FgTri1 and FgTri4 in vivo and regulates their localizations and expressions, respectively. Taken together, these data demonstrate that FgNdpk is important for vegetative growth, conidiation, and pathogenicity and acts as a key protein that regulates toxisome formation and DON biosynthesis in F. graminearum.
Collapse
Affiliation(s)
- Xuzhao Mao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingping Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810281, Nigeria
| | - Yulong Li
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zenghong Luo
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
3
|
Iuso D, Garcia-Saez I, Couté Y, Yamaryo-Botté Y, Boeri Erba E, Adrait A, Zeaiter N, Tokarska-Schlattner M, Jilkova ZM, Boussouar F, Barral S, Signor L, Couturier K, Hajmirza A, Chuffart F, Bourova-Flin E, Vitte AL, Bargier L, Puthier D, Decaens T, Rousseaux S, Botté C, Schlattner U, Petosa C, Khochbin S. Nucleoside diphosphate kinases 1 and 2 regulate a protective liver response to a high-fat diet. SCIENCE ADVANCES 2023; 9:eadh0140. [PMID: 37672589 PMCID: PMC10482350 DOI: 10.1126/sciadv.adh0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023]
Abstract
The synthesis of fatty acids from acetyl-coenzyme A (AcCoA) is deregulated in diverse pathologies, including cancer. Here, we report that fatty acid accumulation is negatively regulated by nucleoside diphosphate kinases 1 and 2 (NME1/2), housekeeping enzymes involved in nucleotide homeostasis that were recently found to bind CoA. We show that NME1 additionally binds AcCoA and that ligand recognition involves a unique binding mode dependent on the CoA/AcCoA 3' phosphate. We report that Nme2 knockout mice fed a high-fat diet (HFD) exhibit excessive triglyceride synthesis and liver steatosis. In liver cells, NME2 mediates a gene transcriptional response to HFD leading to the repression of fatty acid accumulation and activation of a protective gene expression program via targeted histone acetylation. Our findings implicate NME1/2 in the epigenetic regulation of a protective liver response to HFD and suggest a potential role in controlling AcCoA usage between the competing paths of histone acetylation and fatty acid synthesis.
Collapse
Affiliation(s)
- Domenico Iuso
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Isabel Garcia-Saez
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Yoshiki Yamaryo-Botté
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Elisabetta Boeri Erba
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Annie Adrait
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble 38000, France
| | - Nour Zeaiter
- Univ. Grenoble Alpes, INSERM, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | | | - Zuzana Macek Jilkova
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
- CHU Grenoble Alpes, Service d’hépato-gastroentérologie, Pôle Digidune, La Tronche 38700, France
| | - Fayçal Boussouar
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Sophie Barral
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Luca Signor
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Karine Couturier
- Univ. Grenoble Alpes, INSERM, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Azadeh Hajmirza
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Florent Chuffart
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Ekaterina Bourova-Flin
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Anne-Laure Vitte
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Lisa Bargier
- Aix Marseille Université, INSERM, TAGC, TGML, Marseille 13288, France
| | - Denis Puthier
- Aix Marseille Université, INSERM, TAGC, TGML, Marseille 13288, France
| | - Thomas Decaens
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
- CHU Grenoble Alpes, Service d’hépato-gastroentérologie, Pôle Digidune, La Tronche 38700, France
| | - Sophie Rousseaux
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Cyrille Botté
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| | - Uwe Schlattner
- Univ. Grenoble Alpes, INSERM, Institut Universitaire de France, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France
| | - Carlo Petosa
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
| | - Saadi Khochbin
- Univ. Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences, La Tronche 38706, France
| |
Collapse
|
4
|
Tossounian MA, Hristov SD, Semelak JA, Yu BYK, Baczynska M, Zhao Y, Estrin DA, Trujillo M, Filonenko V, Gouge J, Gout I. A Unique Mode of Coenzyme A Binding to the Nucleotide Binding Pocket of Human Metastasis Suppressor NME1. Int J Mol Sci 2023; 24:9359. [PMID: 37298313 PMCID: PMC10253429 DOI: 10.3390/ijms24119359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Coenzyme A (CoA) is a key cellular metabolite which participates in diverse metabolic pathways, regulation of gene expression and the antioxidant defense mechanism. Human NME1 (hNME1), which is a moonlighting protein, was identified as a major CoA-binding protein. Biochemical studies showed that hNME1 is regulated by CoA through both covalent and non-covalent binding, which leads to a decrease in the hNME1 nucleoside diphosphate kinase (NDPK) activity. In this study, we expanded the knowledge on previous findings by focusing on the non-covalent mode of CoA binding to the hNME1. With X-ray crystallography, we solved the CoA bound structure of hNME1 (hNME1-CoA) and determined the stabilization interactions CoA forms within the nucleotide-binding site of hNME1. A hydrophobic patch stabilizing the CoA adenine ring, while salt bridges and hydrogen bonds stabilizing the phosphate groups of CoA were observed. With molecular dynamics studies, we extended our structural analysis by characterizing the hNME1-CoA structure and elucidating possible orientations of the pantetheine tail, which is absent in the X-ray structure due to its flexibility. Crystallographic studies suggested the involvement of arginine 58 and threonine 94 in mediating specific interactions with CoA. Site-directed mutagenesis and CoA-based affinity purifications showed that arginine 58 mutation to glutamate (R58E) and threonine 94 mutation to aspartate (T94D) prevent hNME1 from binding to CoA. Overall, our results reveal a unique mode by which hNME1 binds CoA, which differs significantly from that of ADP binding: the α- and β-phosphates of CoA are oriented away from the nucleotide-binding site, while 3'-phosphate faces catalytic histidine 118 (H118). The interactions formed by the CoA adenine ring and phosphate groups contribute to the specific mode of CoA binding to hNME1.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Stefan Denchev Hristov
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Jonathan Alexis Semelak
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Maria Baczynska
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
| | - Dario Ariel Estrin
- Departmento de Química Inorgánica Analítica y Química Física, Instituto de Química Física de los Materiales, Medioambiente y Energía (INQUIMAE) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Pab. 2 C1428EHA, Buenos Aires 1865, Argentina; (J.A.S.); (D.A.E.)
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| | - Jerome Gouge
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK; (S.D.H.); (B.Y.K.Y.); (M.B.); (Y.Z.); (I.G.)
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine;
| |
Collapse
|
5
|
Structure, Folding and Stability of Nucleoside Diphosphate Kinases. Int J Mol Sci 2020; 21:ijms21186779. [PMID: 32947863 PMCID: PMC7554756 DOI: 10.3390/ijms21186779] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/29/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPK) are oligomeric proteins involved in the synthesis of nucleoside triphosphates. Their tridimensional structure has been solved by X-ray crystallography and shows that individual subunits present a conserved ferredoxin fold of about 140 residues in prokaryotes, archaea, eukaryotes and viruses. Monomers are functionally independent from each other inside NDPK complexes and the nucleoside kinase catalytic mechanism involves transient phosphorylation of the conserved catalytic histidine. To be active, monomers must assemble into conserved head to tail dimers, which further assemble into hexamers or tetramers. The interfaces between these oligomeric states are very different but, surprisingly, the assembly structure barely affects the catalytic efficiency of the enzyme. While it has been shown that assembly into hexamers induces full formation of the catalytic site and stabilizes the complex, it is unclear why assembly into tetramers is required for function. Several additional activities have been revealed for NDPK, especially in metastasis spreading, cytoskeleton dynamics, DNA binding and membrane remodeling. However, we still lack the high resolution structural data of NDPK in complex with different partners, which is necessary for deciphering the mechanism of these diverse functions. In this review we discuss advances in the structure, folding and stability of NDPKs.
Collapse
|
6
|
Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int J Mol Sci 2020; 21:E5848. [PMID: 32823988 PMCID: PMC7461546 DOI: 10.3390/ijms21165848] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.
Collapse
Affiliation(s)
| | | | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (K.A.); (J.N.); (J.R.)
| |
Collapse
|
7
|
Wang W, Dong M, Cui J, Xu F, Yan C, Ma C, Yi L, Tang W, Dong J, Wei Y. NME4 may enhance non‑small cell lung cancer progression by overcoming cell cycle arrest and promoting cellular proliferation. Mol Med Rep 2019; 20:1629-1636. [PMID: 31257488 PMCID: PMC6625391 DOI: 10.3892/mmr.2019.10413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Nucleoside diphosphate kinase 4 (NME4) is abnormally expressed in a variety of cancer types. However, the function of the NME4 gene in non-small cell lung cancer (NSCLC) remains to be elucidated. In order to investigate the role of NME4 in NSCLC, the present study detected the expression of the NME4 gene in the Cancer Genome Atlas database, and in BEAS-2B, NCI-H1299 and A549 cell lines. NME4 was significantly overexpressed in NSCLC tissues and NSCLC cell lines. Furthermore, lentivirus-mediated knockdown vector infection, cell proliferation, cell cycle, apoptosis, colony formation and MTT assays were conducted to explore the effect of NME4 on NSCLC in vitro. After knockdown of NME4 with short hairpin RNA, the cell cycle was arrest at the G1 phase, and proliferation and colony formation were inhibited in the NCI-H1299 and A549 cell lines. The present results suggested that NME4 may serve as a novel tumor promoter, capable of enhancing NSCLC progression by overcoming cell cycle arrest and promoting proliferation.
Collapse
Affiliation(s)
- Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ming Dong
- Gumei Community Health Center of Minhang District of Shanghai, Shanghai 201102, P.R. China
| | - Jie Cui
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Fei Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Cheng Ma
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
8
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
9
|
Dautant A, Henri J, Wales TE, Meyer P, Engen JR, Georgescauld F. Remodeling of the Binding Site of Nucleoside Diphosphate Kinase Revealed by X-ray Structure and H/D Exchange. Biochemistry 2019; 58:1440-1449. [PMID: 30785730 DOI: 10.1021/acs.biochem.8b01308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To be fully active and participate in the metabolism of phosphorylated nucleotides, most nucleoside diphosphate kinases (NDPKs) have to assemble into stable hexamers. Here we studied the role played by six intersubunit salt bridges R80-D93 in the stability of NDPK from the pathogen Mycobacterium tuberculosis ( Mt). Mutating R80 into Ala or Asn abolished the salt bridges. Unexpectedly, compensatory stabilizing mechanisms appeared for R80A and R80N mutants and we studied them by biochemical and structural methods. The R80A mutant crystallized into space group I222 that is unusual for NDPK, and its hexameric structure revealed the occurrence at the trimer interface of a stabilizing hydrophobic patch around the mutation. Functionally relevant, a trimer of the R80A hexamer showed a remodeling of the binding site. In this conformation, the cleft of the active site is more open, and then active His117 is more accessible to substrates. H/D exchange mass spectrometry analysis of the wild type and the R80A and R80N mutants showed that the remodeled region of the protein is highly solvent accessible, indicating that equilibrium between open and closed conformations is possible. We propose that such equilibrium occurs in vivo and explains how bulky substrates access the catalytic His117.
Collapse
Affiliation(s)
- Alain Dautant
- Université de Bordeaux , CNRS, Institut de Biochimie et Génétique Cellulaires, UMR5095 , 146 rue Léo Saignat , 33077 Bordeaux , France
| | - Julien Henri
- Sorbonne Universités , UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Philippe Meyer
- Sorbonne Universités , UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - John R Engen
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Florian Georgescauld
- Sorbonne Universités , UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| |
Collapse
|
10
|
Bunce CM, Khanim FL. The 'known-knowns', and 'known-unknowns' of extracellular Nm23-H1/NDPK proteins. J Transl Med 2018; 98:602-608. [PMID: 29339833 DOI: 10.1038/s41374-017-0012-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023] Open
Abstract
Nucleoside diphosphate kinases (NDPKs/NDK/NME) are a multifunctional class of proteins conserved throughout evolution. Whilst many of the functions of NDPKs have been identified as intracellular, extracellular eukaryotic and prokaryotic NDPK proteins are also detected in multiple systems and have been implicated in both normal physiology and disease. This review provides an overview of where the field stands on our developing understanding of how NDPK proteins get out of cells, the physiological role of extracellular NDPKs, and how extracellular NDPKs may signal to cells. We will also discuss some of the unanswered questions, the 'known-unknowns' that particularly warrant further investigation.
Collapse
Affiliation(s)
- Chris M Bunce
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Farhat L Khanim
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Comprehensive reduction of amino acid set in a protein suggests the importance of prebiotic amino acids for stable proteins. Sci Rep 2018; 8:1227. [PMID: 29352156 PMCID: PMC5775292 DOI: 10.1038/s41598-018-19561-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/03/2018] [Indexed: 11/19/2022] Open
Abstract
Modern organisms commonly use the same set of 20 genetically coded amino acids for protein synthesis with very few exceptions. However, earlier protein synthesis was plausibly much simpler than modern one and utilized only a limited set of amino acids. Nevertheless, few experimental tests of this issue with arbitrarily chosen amino acid sets had been reported prior to this report. Herein we comprehensively and systematically reduced the size of the amino acid set constituting an ancestral nucleoside kinase that was reconstructed in our previous study. We eventually found that two convergent sequences, each comprised of a 13-amino acid alphabet, folded into soluble, stable and catalytically active structures, even though their stabilities and activities were not as high as those of the parent protein. Notably, many but not all of the reduced-set amino acids coincide with those plausibly abundant in primitive Earth. The inconsistent amino acids appeared to be important for catalytic activity but not for stability. Therefore, our findings suggest that the prebiotically abundant amino acids were used for creating stable protein structures and other amino acids with functional side chains were recruited to achieve efficient catalysis.
Collapse
|
12
|
Discovery of novel inhibitors for Leishmania nucleoside diphosphatase kinase (NDK) based on its structural and functional characterization. J Comput Aided Mol Des 2017; 31:547-562. [DOI: 10.1007/s10822-017-0022-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
13
|
Dautant A, Meyer P, Georgescauld F. Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Mechanistic Details of Activation of Nucleoside Diphosphate Kinases by Oligomerization. Biochemistry 2017; 56:2886-2896. [DOI: 10.1021/acs.biochem.7b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Dautant
- Université
de Bordeaux, CNRS, Institut de Biochimie et Génétique
Cellulaires, UMR 5095, Bordeaux, France
| | - Philippe Meyer
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Florian Georgescauld
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
14
|
Abu-Taha IH, Heijman J, Hippe HJ, Wolf NM, El-Armouche A, Nikolaev VO, Schäfer M, Würtz CM, Neef S, Voigt N, Baczkó I, Varró A, Müller M, Meder B, Katus HA, Spiger K, Vettel C, Lehmann LH, Backs J, Skolnik EY, Lutz S, Dobrev D, Wieland T. Nucleoside Diphosphate Kinase-C Suppresses cAMP Formation in Human Heart Failure. Circulation 2016; 135:881-897. [PMID: 27927712 DOI: 10.1161/circulationaha.116.022852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/23/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND Chronic heart failure (HF) is associated with altered signal transduction via β-adrenoceptors and G proteins and with reduced cAMP formation. Nucleoside diphosphate kinases (NDPKs) are enriched at the plasma membrane of patients with end-stage HF, but the functional consequences of this are largely unknown, particularly for NDPK-C. Here, we investigated the potential role of NDPK-C in cardiac cAMP formation and contractility. METHODS Real-time polymerase chain reaction, (far) Western blot, immunoprecipitation, and immunocytochemistry were used to study the expression, interaction with G proteins, and localization of NDPKs. cAMP levels were determined with immunoassays or fluorescent resonance energy transfer, and contractility was determined in cardiomyocytes (cell shortening) and in vivo (fractional shortening). RESULTS NDPK-C was essential for the formation of an NDPK-B/G protein complex. Protein and mRNA levels of NDPK-C were upregulated in end-stage human HF, in rats after long-term isoprenaline stimulation through osmotic minipumps, and after incubation of rat neonatal cardiomyocytes with isoprenaline. Isoprenaline also promoted translocation of NDPK-C to the plasma membrane. Overexpression of NDPK-C in cardiomyocytes increased cAMP levels and sensitized cardiomyocytes to isoprenaline-induced augmentation of contractility, whereas NDPK-C knockdown decreased cAMP levels. In vivo, depletion of NDPK-C in zebrafish embryos caused cardiac edema and ventricular dysfunction. NDPK-B knockout mice had unaltered NDPK-C expression but showed contractile dysfunction and exacerbated cardiac remodeling during long-term isoprenaline stimulation. In human end-stage HF, the complex formation between NDPK-C and Gαi2 was increased whereas the NDPK-C/Gαs interaction was decreased, producing a switch that may contribute to an NDPK-C-dependent cAMP reduction in HF. CONCLUSIONS Our findings identify NDPK-C as an essential requirement for both the interaction between NDPK isoforms and between NDPK isoforms and G proteins. NDPK-C is a novel critical regulator of β-adrenoceptor/cAMP signaling and cardiac contractility. By switching from Gαs to Gαi2 activation, NDPK-C may contribute to lower cAMP levels and the related contractile dysfunction in HF.
Collapse
Affiliation(s)
- Issam H Abu-Taha
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jordi Heijman
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hans-Jörg Hippe
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nadine M Wolf
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ali El-Armouche
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Viacheslav O Nikolaev
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marina Schäfer
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christina M Würtz
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Stefan Neef
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Niels Voigt
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - István Baczkó
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - András Varró
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marion Müller
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Benjamin Meder
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hugo A Katus
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Katharina Spiger
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christiane Vettel
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lorenz H Lehmann
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Johannes Backs
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Edward Y Skolnik
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Susanne Lutz
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dobromir Dobrev
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany.
| | - Thomas Wieland
- From Institute of Experimental and Clinical Pharmacology and Toxicology, Mannheim Medical Faculty (I.H.A.-T., N.M.W., K.S., C.V., S.L., T.W.), and Department of Internal Medicine III (H.-J.H., N.M.W., M.M., B.M., H.-A.K., L.H.L., J.B.), Heidelberg University, Heidelberg-Mannheim, Germany; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany (I.H.A.-T., J.H., M.S., N.V., D.D.); Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Germany (A.E.-A., C.M.W., S.L.); Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany (A.E.-A.); Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.); Department of Internal Medicine II, University of Regensburg, Germany (S.N.); Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Hungary (I.B., A.V.); Division of Nephrology, New York University Langone Medical Center, New York (E.Y.S.); and DZHK (German Center for Cardiovascular Research), Partner Site HD/MA, Heidelberg-Mannheim, Germany (B.M., H.A.K., C.V., J.B., T.W.). The current affiliation for H.-J.H. is the Department of Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
15
|
Petrukhin OV, Orlova TG, Nezvetsky AR, Orlov NY. The decrement in light sensitivity of the isolated frog retinal rod in the presence of a phosphorylation-resistant GDP analogue of guanosine-5′-O-(2-thiodiphosphate) as a confirmation of the hypothesis about transducin activation via the transphosphorylation mechanism. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Lopez-Zavala AA, Sotelo-Mundo RR, Hernandez-Flores JM, Lugo-Sanchez ME, Sugich-Miranda R, Garcia-Orozco KD. Arginine kinase shows nucleoside diphosphate kinase-like activity toward deoxythymidine diphosphate. J Bioenerg Biomembr 2016; 48:301-8. [PMID: 27072556 DOI: 10.1007/s10863-016-9660-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme.
Collapse
Affiliation(s)
- Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Rogerio R Sotelo-Mundo
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Jose M Hernandez-Flores
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Maria E Lugo-Sanchez
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México
| | - Rocio Sugich-Miranda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Calle Rosales y Blvd. Luis Encinas s/n, Col. Centro, Hermosillo, Sonora, 83000, México
| | - Karina D Garcia-Orozco
- Biomolecular Structure Laboratory, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, Sonora, 83304, México.
| |
Collapse
|
17
|
Qiu Y, Zhao D, Butenschön VM, Bauer AT, Schneider SW, Skolnik EY, Hammes HP, Wieland T, Feng Y. Nucleoside diphosphate kinase B deficiency causes a diabetes-like vascular pathology via up-regulation of endothelial angiopoietin-2 in the retina. Acta Diabetol 2016; 53:81-9. [PMID: 25900369 DOI: 10.1007/s00592-015-0752-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/30/2015] [Indexed: 11/25/2022]
Abstract
AIMS Nucleoside diphosphate kinase B (NDPKB) is capable of maintaining the cellular nucleotide triphosphate pools. It might therefore supply UTP for the formation of UDP-GlcNAc from glucose. As NDPKB contributes to vascular dysfunction, we speculate that NDPKB might play a role in microangiopathies, such as diabetic retinopathy (DR). Therefore, we investigated the impact of NDPKB on retinal vascular damage using NDPKB(-/-) mice during development of DR and its possible mechanisms. METHODS Pericyte loss and acellular capillary (AC) formation were assessed in streptozotocin-induced diabetic NDPKB(-/-) and wild-type (WT) mice. Expression of angiopoietin-2 (Ang2) and protein N-acetylglucosamine modification (GlcNAcylation) were assessed by western blot and/or immunofluorescence in the diabetic retinas as well as in endothelial cells depleted of NDPKB by siRNA and stimulated with high glucose. RESULTS Similar to diabetic WT retinas, non-diabetic NDPKB(-/-) retinas showed a significant decrease in pericyte coverage in comparison with non-diabetic WT retinas. Hyperglycemia further aggravates pericyte loss in diabetic NDPKB(-/-) retinas. AC formation was detected in the diabetic NDPKB(-/-) retinas. Similar to hyperglycemia, NDPKB deficiency induced Ang2 expression and protein GlcNAcylation that were not further altered in the diabetic retinas. In cultured endothelial cells, stimulation with high glucose and NDPKB depletion comparably increased Ang2 expression and protein GlcNAcylation. CONCLUSIONS Our data identify NDPKB as a protective factor in the retina, which controls Ang2 expression and the hexosamine pathway. NDPKB-deficient mice are a suitable model for studying mechanisms underlying diabetic retinal vascular damage.
Collapse
Affiliation(s)
- Yi Qiu
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Di Zhao
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Vicki-Marie Butenschön
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Alexander T Bauer
- Division of Experimental Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stefan W Schneider
- Division of Experimental Dermatology, Department of Dermatology, Venereology, and Allergology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Edward Y Skolnik
- Division of Nephrology, New York University Langone Medical Center, 560 1st Ave, New York, NY, 10016, USA
| | - Hans-Peter Hammes
- 5th Medical Clinic, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Wieland
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany
| | - Yuxi Feng
- Institute for Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, University of Heidelberg, Mybachstr. 14, 68169, Mannheim, Germany.
| |
Collapse
|
18
|
Mishra S, Jakkala K, Srinivasan R, Arumugam M, Ranjeri R, Gupta P, Rajeswari H, Ajitkumar P. NDK Interacts with FtsZ and Converts GDP to GTP to Trigger FtsZ Polymerisation--A Novel Role for NDK. PLoS One 2015; 10:e0143677. [PMID: 26630542 PMCID: PMC4668074 DOI: 10.1371/journal.pone.0143677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022] Open
Abstract
Introduction Nucleoside diphosphate kinase (NDK), conserved across bacteria to humans, synthesises NTP from NDP and ATP. The eukaryotic homologue, the NDPK, uses ATP to phosphorylate the tubulin-bound GDP to GTP for tubulin polymerisation. The bacterial cytokinetic protein FtsZ, which is the tubulin homologue, also uses GTP for polymerisation. Therefore, we examined whether NDK can interact with FtsZ to convert FtsZ-bound GDP and/or free GDP to GTP to trigger FtsZ polymerisation. Methods Recombinant and native NDK and FtsZ proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis were used as the experimental samples. FtsZ polymersation was monitored using 90° light scattering and FtsZ polymer pelleting assays. The γ32P-GTP synthesised by NDK from GDP and γ32P-ATP was detected using thin layer chromatography and quantitated using phosphorimager. The FtsZ bound 32P-GTP was quantitated using phosphorimager, after UV-crosslinking, followed by SDS-PAGE. The NDK-FtsZ interaction was determined using Ni2+-NTA-pulldown assay and co-immunoprecipitation of the recombinant and native proteins in vitro and ex vivo, respectively. Results NDK triggered instantaneous polymerisation of GDP-precharged recombinant FtsZ in the presence of ATP, similar to the polymerisation of recombinant FtsZ (not GDP-precharged) upon the direct addition of GTP. Similarly, NDK triggered polymerisation of recombinant FtsZ (not GDP-precharged) in the presence of free GDP and ATP as well. Mutant NDK, partially deficient in GTP synthesis from ATP and GDP, triggered low level of polymerisation of MsFtsZ, but not of MtFtsZ. As characteristic of NDK’s NTP substrate non-specificity, it used CTP, TTP, and UTP also to convert GDP to GTP, to trigger FtsZ polymerisation. The NDK of one mycobacterial species could trigger the polymerisation of the FtsZ of another mycobacterial species. Both the recombinant and the native NDK and FtsZ showed interaction with each other in vitro and ex vivo, alluding to the possibility of direct phosphorylation of FtsZ-bound GDP by NDK. Conclusion Irrespective of the bacterial species, NDK interacts with FtsZ in vitro and ex vivo and, through the synthesis of GTP from FtsZ-bound GDP and/or free GDP, and ATP (CTP/TTP/UTP), triggers FtsZ polymerisation. The possible biological context of this novel activity of NDK is presented.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ramanujam Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Muthu Arumugam
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Raghavendra Ranjeri
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prabuddha Gupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Haryadi Rajeswari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Parthasarathi Ajitkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
19
|
Costa Pessoa J, Garribba E, Santos MF, Santos-Silva T. Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Fujita Y, Fujiwara K, Zenitani S, Yamashita T. Acetylation of NDPK-D Regulates Its Subcellular Localization and Cell Survival. PLoS One 2015; 10:e0139616. [PMID: 26426123 PMCID: PMC4591271 DOI: 10.1371/journal.pone.0139616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPK) are ubiquitous enzymes that catalyze the reversible phosphotransfer of γ-phosphates between di- and triphosphonucleosides. NDPK-D (Nm23-H4) is the only member of the NDPK family with a mitochondrial targeting sequence. Despite the high expression of NDPK-D in the developing central nervous system, its function remains to be determined. In this study, we show that NDPK-D knockdown induces apoptosis in neuroblastoma cells as well as in mouse cortex, suggesting that NDPK-D is required for neuronal survival. We identified NDPK-D as a binding partner of NAD+-dependent histone deacetylase, SIRT1, by yeast two-hybrid screening. NDPK-D co-localized with SIRT1, and the association of these molecules was confirmed by co-immunoprecipitation. Inhibition of SIRT1 increases the acetylation of NDPK-D. Overexpression of NDPK-D along with SIRT1, or mutation in the acetylated lysine residues in NDPK-D, increases its nuclear accumulation. Furthermore, the NDPK-D acetylation-mimic mutant increased apoptosis in N1E-115 cells. Our data demonstrate that acetylation regulates the shuttling of NDPK-D between nucleus and cytoplasm, and increased acetylation of NDPK-D causes apoptosis.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Kei Fujiwara
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Shigetake Zenitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
21
|
Paul MLS, Kaur A, Geete A, Sobhia ME. Essential gene identification and drug target prioritization in Leishmania species. MOLECULAR BIOSYSTEMS 2014; 10:1184-95. [PMID: 24643243 DOI: 10.1039/c3mb70440h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leishmaniasis is one of the neglected tropical diseases (NTDs), mainly affecting impoverished communities and having varied ranges of pathogenicity according to the diverse spectrum of clinical manifestations. It is endemic in many countries and poses major challenges to healthcare systems in developing countries. Despite the fact that most of the current mono and combination therapies are found to be failures, clear perception of gene essentiality for parasite survival are now desideratum to identify potential biochemical targets through selection. Here we used the metabolic network of L. major, to perform a comprehensive set of in silico deletion mutants and have systematically recognized a clearly defined set of essential proteins by combining several essential criteria. In this paper we summarize the efforts to prioritize potential drug targets up to a five-fold enrichment compared with a random selection.
Collapse
Affiliation(s)
- M L Stanly Paul
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Mohali, India-160062.
| | | | | | | |
Collapse
|
22
|
Schlattner U, Tokarska-Schlattner M, Epand RM, Boissan M, Lacombe ML, Klein-Seetharaman J, Kagan VE. Mitochondrial NM23-H4/NDPK-D: a bifunctional nanoswitch for bioenergetics and lipid signaling. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:271-8. [PMID: 25231795 DOI: 10.1007/s00210-014-1047-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022]
Abstract
A novel paradigm for the function of the mitochondrial nucleoside diphosphate kinase NM23-H4/NDPK-D is proposed: acting as a bifunctional nanoswitch in bioenergetics and cardiolipin (CL) trafficking and signaling. Similar to some other mitochondrial proteins like cytochrome c or AIF, NM23-H4 seems to have dual functions in bioenergetics and apoptotic signaling. In its bioenergetic phosphotransfer mode, the kinase reversibly phosphorylates NDPs into NTPs, driven by mitochondrially generated ATP. Among others, this reaction can locally supply GTP to mitochondrial GTPases as shown for the dynamin-like GTPase OPA1, found in a complex together with NM23-H4. Further, NM23-H4 is functionally coupled to adenylate translocase (ANT) of the mitochondrial inner membrane (MIM), so generated ADP can stimulate respiration to rapidly regenerate ATP. The lipid transfer mode of NM23-H4 can support, dependent on the presence of CL, the transfer of anionic lipids between membranes in vitro and the sorting of CL from its mitochondrial sites of synthesis (MIM) to the mitochondrial outer membrane (MOM) in vivo. Such (partial) collapse of MIM/MOM CL asymmetry results in CL externalization on the mitochondrial surface, where CL can serve as pro-apoptotic or pro-mitophagic "eat me"-signal. The functional state of NM23-H4 depends on its degree of CL-membrane interaction. In vitro assays have shown that only NM23-H4 that fully cross-links two membranes is lipid transfer competent, but at the same time phosphotransfer (kinase) inactive. Thus, the two functions of NM23-H4 seem to be mutually exclusive. This novel mitochondrial regulatory circuit has potential for the development of interventions in various human pathologies.
Collapse
Affiliation(s)
- Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France,
| | | | | | | | | | | | | |
Collapse
|
23
|
López-Zavala AA, Quintero-Reyes IE, Carrasco-Miranda JS, Stojanoff V, Weichsel A, Rudiño-Piñera E, Sotelo-Mundo RR. Structure of nucleoside diphosphate kinase from pacific shrimp (Litopenaeus vannamei) in binary complexes with purine and pyrimidine nucleoside diphosphates. Acta Crystallogr F Struct Biol Commun 2014; 70:1150-4. [PMID: 25195883 PMCID: PMC4157410 DOI: 10.1107/s2053230x1401557x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/03/2014] [Indexed: 12/21/2022] Open
Abstract
Nucleoside diphosphate kinase (NDK; EC 2.7.4.6) is an enzyme that catalyzes the third phosphorylation of nucleoside diphosphates, leading to nucleoside triphosphates for DNA replication. Expression of the NDK from Litopenaeus vannamei (LvNDK) is known to be regulated under viral infection. Also, as determined by isothermal titration calorimetry, LvNDK binds both purine and pyrimidine deoxynucleoside diphosphates with high binding affinity for dGDP and dADP and with no heat of binding interaction for dCDP [Quintero-Reyes et al. (2012), J. Bioenerg. Biomembr. 44, 325-331]. In order to investigate the differences in selectivity, LvNDK was crystallized as binary complexes with both acceptor (dADP and dCDP) and donor (ADP) phosphate-group nucleoside diphosphate substrates and their structures were determined. The three structures with purine or pyrimidine nucleotide ligands are all hexameric. Also, the binding of deoxy or ribonucleotides is similar, as in the former a water molecule replaces the hydrogen bond made by Lys11 to the 2'-hydroxyl group of the ribose moiety. This allows Lys11 to maintain a catalytically favourable conformation independently of the kind of sugar found in the nucleotide. Because of this, shrimp NDK may phosphorylate nucleotide analogues to inhibit the viral infections that attack this organism.
Collapse
Affiliation(s)
- Alonso A. López-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, 83304 Sonora, Mexico
| | - Idania E. Quintero-Reyes
- Universidad de Sonora, Blvd Bordo Nuevo s/n, Ejido Providencia, 85039 Cd Obregón, Sonora, Mexico
| | - Jesús S. Carrasco-Miranda
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, 83304 Sonora, Mexico
| | - Vivian Stojanoff
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrzej Weichsel
- Macromolecular Crystallography Core, The University of Arizona, Biological Sciences West, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210 Morelos, Mexico
| | - Rogerio R. Sotelo-Mundo
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera a Ejido La Victoria Km 0.6, Apartado Postal 1735, Hermosillo, 83304 Sonora, Mexico
| |
Collapse
|
24
|
Cys139Ser mutation in dimeric nucleoside diphosphate kinase generates catalytically competent monomer. Int J Biol Macromol 2014; 66:66-73. [DOI: 10.1016/j.ijbiomac.2014.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/28/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
|
25
|
Pereira CA, Reigada C, Sayé M, Digirolamo FA, Miranda MR. Cytosolic Trypanosoma cruzi nucleoside diphosphate kinase generates large granules that depend on its quaternary structure. Exp Parasitol 2014; 142:43-50. [PMID: 24768953 DOI: 10.1016/j.exppara.2014.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Nucleoside diphosphate kinase (NDPK) is a key enzyme in the control of cellular concentrations of nucleoside triphosphates, and has been shown to play important roles in many cellular processes. In this work we investigated the subcellular localization of the canonical NDPK1 from Trypanosoma cruzi (TcNDPK1), the etiological agent Chagas's Disease, and evaluated the effect of adding an additional weak protein-protein interaction domain from the green fluorescent protein (GFP). Immunofluorescence microscopy revealed that the enzyme from wild-type and TcNDPK1 overexpressing parasites has a cytosolic distribution, being the signal more intense around the nucleus. However, when TcNDPK1 was fused with dimeric GFP it relocalizes in non-membrane bounded granules also located adjacent to the nucleus. In addition, these granular structures were dependent on the quaternary structure of TcNDPK1 and GFP since mutations in residues involved in their oligomerization dramatically decrease the amount of granules. This phenomenon seems to be specific for TcNDPK1 since other cytosolic hexameric enzyme from T. cruzi, such as the NADP(+)-linked glutamate dehydrogenase, was not affected by the fusion with GFP. In addition, in parasites without GFP fusions granules could be observed in a subpopulation of epimastigotes under metacyclogenesis and metacyclic trypomastigotes. Organization into higher protein arrangements appears to be a singular feature of canonical NDPKs; however the physiological function of such structures requires further investigation.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Chantal Reigada
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Melisa Sayé
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Fabio A Digirolamo
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Mariana R Miranda
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina.
| |
Collapse
|
26
|
Schlattner U, Tokarska-Schlattner M, Rousseau D, Boissan M, Mannella C, Epand R, Lacombe ML. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins. Chem Phys Lipids 2013; 179:32-41. [PMID: 24373850 DOI: 10.1016/j.chemphyslip.2013.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 11/18/2022]
Abstract
Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer.
Collapse
Affiliation(s)
- Uwe Schlattner
- Univ. Grenoble-Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France.
| | - Malgorzata Tokarska-Schlattner
- Univ. Grenoble-Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France
| | - Denis Rousseau
- Univ. Grenoble-Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France
| | - Mathieu Boissan
- UPMC Université Paris 06, Paris, France; Inserm, UMRS938, Paris, France; Hôpital Tenon, AP-HP, Service de Biochimie et Hormonologie, Paris, France
| | - Carmen Mannella
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Richard Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
27
|
Schwenzer H, Scheper GC, Zorn N, Moulinier L, Gaudry A, Leize E, Martin F, Florentz C, Poch O, Sissler M. Released selective pressure on a structural domain gives new insights on the functional relaxation of mitochondrial aspartyl-tRNA synthetase. Biochimie 2013; 100:18-26. [PMID: 24120687 DOI: 10.1016/j.biochi.2013.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
Mammalian mitochondrial aminoacyl-tRNA synthetases are nuclear-encoded enzymes that are essential for mitochondrial protein synthesis. Due to an endosymbiotic origin of the mitochondria, many of them share structural domains with homologous bacterial enzymes of same specificity. This is also the case for human mitochondrial aspartyl-tRNA synthetase (AspRS) that shares the so-called bacterial insertion domain with bacterial homologs. The function of this domain in the mitochondrial proteins is unclear. Here, we show by bioinformatic analyses that the sequences coding for the bacterial insertion domain are less conserved in opisthokont and protist than in bacteria and viridiplantae. The divergence suggests a loss of evolutionary pressure on this domain for non-plant mitochondrial AspRSs. This discovery is further connected with the herein described occurrence of alternatively spliced transcripts of the mRNAs coding for some mammalian mitochondrial AspRSs. Interestingly, the spliced transcripts alternately lack one of the four exons that code for the bacterial insertion domain. Although we showed that the human alternative transcript is present in all tested tissues; co-exists with the full-length form, possesses 5'- and 3'-UTRs, a poly-A tail and is bound to polysomes, we were unable to detect the corresponding protein. The relaxed selective pressure combined with the occurrence of alternative splicing, involving a single structural sub-domain, favors the hypothesis of the loss of function of this domain for AspRSs of mitochondrial location. This evolutionary divergence is in line with other characteristics, established for the human mt-AspRS, that indicate a functional relaxation of non-viridiplantae mt-AspRSs when compared to bacterial and plant ones, despite their common ancestry.
Collapse
Affiliation(s)
- Hagen Schwenzer
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC - 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Gert C Scheper
- Department of Pediatrics and Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Nathalie Zorn
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes, Chimie de la Matière Complexe, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex, France
| | - Luc Moulinier
- Laboratoire de Bioinformatique et de Génomique Intégratives, IGBMC, 1 rue Laurent Fries BP-10142, F-67404 Illkirch Cedex, France
| | - Agnès Gaudry
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC - 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Emmanuelle Leize
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes, Chimie de la Matière Complexe, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex, France
| | - Franck Martin
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC - 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Catherine Florentz
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC - 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Olivier Poch
- Laboratoire de Bioinformatique et de Génomique Intégratives, IGBMC, 1 rue Laurent Fries BP-10142, F-67404 Illkirch Cedex, France
| | - Marie Sissler
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC - 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| |
Collapse
|
28
|
Sikarwar J, Kaushik S, Sinha M, Kaur P, Sharma S, Singh TP. Cloning, Expression, and Purification of Nucleoside Diphosphate Kinase from Acinetobacter baumannii. Enzyme Res 2013; 2013:597028. [PMID: 23662205 PMCID: PMC3639647 DOI: 10.1155/2013/597028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/28/2013] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter baumannii is a multidrug resistant pathogenic bacteria associated with hospital acquired infections. This bacterium possesses a variety of resistance mechanisms which makes it more difficult to control the bacterium with conventional drugs, and, so far no effective drug treatment is available against it. Nucleoside diphosphate kinase is an important enzyme, which maintains the total nucleotide triphosphate pool inside the cell by the transfer of γ -phosphate from NTPs to NDPs. The role of nucleoside diphosphate kinase (Ndk) has also been observed in pathogenesis in other organisms. However, intensive studies are needed to decipher its other putative roles in Acinetobacter baumannii. In the present study, we have successfully cloned the gene encoding Ndk and achieved overexpression in bacterial host BL-21 (DE3). The overexpressed protein is further purified by nickel-nitrilotriacetic acid (Ni-NTA) chromatography.
Collapse
Affiliation(s)
- Juhi Sikarwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanket Kaushik
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mau Sinha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tej P. Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
29
|
Georgescauld F, Moynié L, Habersetzer J, Cervoni L, Mocan I, Borza T, Harris P, Dautant A, Lascu I. Intersubunit ionic interactions stabilize the nucleoside diphosphate kinase of Mycobacterium tuberculosis. PLoS One 2013; 8:e57867. [PMID: 23526954 PMCID: PMC3589492 DOI: 10.1371/journal.pone.0057867] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/27/2013] [Indexed: 01/10/2023] Open
Abstract
Most nucleoside diphosphate kinases (NDPKs) are hexamers. The C-terminal tail interacting with the neighboring subunits is crucial for hexamer stability. In the NDPK from Mycobacterium tuberculosis (Mt) this tail is missing. The quaternary structure of Mt-NDPK is essential for full enzymatic activity and for protein stability to thermal and chemical denaturation. We identified the intersubunit salt bridge Arg80-Asp93 as essential for hexamer stability, compensating for the decreased intersubunit contact area. Breaking the salt bridge by the mutation D93N dramatically decreased protein thermal stability. The mutation also decreased stability to denaturation by urea and guanidinium. The D93N mutant was still hexameric and retained full activity. When exposed to low concentrations of urea it dissociated into folded monomers followed by unfolding while dissociation and unfolding of the wild type simultaneously occur at higher urea concentrations. The dissociation step was not observed in guanidine hydrochloride, suggesting that low concentration of salt may stabilize the hexamer. Indeed, guanidinium and many other salts stabilized the hexamer with a half maximum effect of about 0.1 M, increasing protein thermostability. The crystal structure of the D93N mutant has been solved.
Collapse
Affiliation(s)
- Florian Georgescauld
- IBGC, University Bordeaux, Bordeaux, France
- IBGC, CNRS UMR 5095, Bordeaux, France
| | - Lucile Moynié
- IBGC, University Bordeaux, Bordeaux, France
- IBGC, CNRS UMR 5095, Bordeaux, France
| | - Johann Habersetzer
- IBGC, University Bordeaux, Bordeaux, France
- IBGC, CNRS UMR 5095, Bordeaux, France
| | - Laura Cervoni
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università degli Studi “La Sapienza”, Roma, Italy
| | - Iulia Mocan
- IBGC, University Bordeaux, Bordeaux, France
- IBGC, CNRS UMR 5095, Bordeaux, France
| | - Tudor Borza
- Laboratoire de Chimie Structurale des Macromolécules, CNRS URA 2185, Institut Pasteur, Paris, France
| | - Pernile Harris
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alain Dautant
- IBGC, University Bordeaux, Bordeaux, France
- IBGC, CNRS UMR 5095, Bordeaux, France
- * E-mail: (AD); (IL)
| | - Ioan Lascu
- IBGC, University Bordeaux, Bordeaux, France
- IBGC, CNRS UMR 5095, Bordeaux, France
- * E-mail: (AD); (IL)
| |
Collapse
|
30
|
Varga A, Gráczer E, Chaloin L, Liliom K, Závodszky P, Lionne C, Vas M. Selectivity of kinases on the activation of tenofovir, an anti-HIV agent. Eur J Pharm Sci 2012. [PMID: 23201309 DOI: 10.1016/j.ejps.2012.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleoside analogues, used in HIV-therapy, need to be phosphorylated by cellular enzymes in order to become potential substrates for HIV reverse transcriptase. After incorporation into the viral DNA chain, because of lacking of their 3'-hydroxyl groups, they stop the elongation process and lead to the death of the virus. Phosphorylation of the HIV-drug derivative, tenofovir monophosphate was tested with the recombinant mammalian nucleoside diphosphate kinase (NDPK), 3-phosphoglycerate kinase (PGK), creatine kinase (CK) and pyruvate kinase (PK). Among them, only CK was found to phosphorylate tenofovir monophosphate with a reasonable rate (about 45-fold lower than with its natural substrate, ADP), while PK exhibits even lower, but still detectable activity (about 1000-fold lower compared to the value with ADP). On the other hand, neither NDPK nor PGK has any detectable activity on tenofovir monophosphate. The absence of activity with PGK is surprising, since the drug tenofovir competitively inhibits both CK and PGK towards their nucleotide substrates, with similar inhibitory constants, K(I) of 2.9 and 4.8mM, respectively. Computer modelling (docking) of tenofovir mono- or diphosphate forms to these four kinases suggests that the requirement of large-scale domain closure for functioning (as for PGK) may largely restrict their applicability for phosphorylation/activation of pro-drugs having a structure similar to tenofovir monophosphate.
Collapse
Affiliation(s)
- Andrea Varga
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
31
|
Arakawa T, Tokunaga H, Ishibashi M, Tokunaga M. Halophilic Properties and their Manipulation and Application. Extremophiles 2012. [DOI: 10.1002/9781118394144.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Prabu G, Thirugnanasambantham K, Mandal AKA. Structural and Docking Studies of a Nucleoside Diphosphate Kinase 1 (CsNDPK1) from Tea [Camellia sinensis (L.) O. Kuntze]. Appl Biochem Biotechnol 2012; 168:1907-16. [DOI: 10.1007/s12010-012-9906-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
|
33
|
Quintero-Reyes IE, Garcia-Orozco KD, Sugich-Miranda R, Arvizu-Flores AA, Velazquez-Contreras EF, Castillo-Yañez FJ, Sotelo-Mundo RR. Shrimp oncoprotein nm23 is a functional nucleoside diphosphate kinase. J Bioenerg Biomembr 2012; 44:325-31. [PMID: 22528393 DOI: 10.1007/s10863-012-9436-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/19/2012] [Indexed: 11/27/2022]
Abstract
Biosynthesis of nucleoside triphosphates is critical for bioenergetics and nucleic acid replication, and this is achieved by nucleoside diphosphate kinase (NDK). As an emerging biological model and the global importance of shrimp culture, we have addressed the study of the Pacific whiteleg shrimp (Litopenaeus vannamei) NDK. We demonstrated its activity and affinity towards deoxynucleoside diphosphates. Also, the quaternary structure obtained by gel filtration chromatography showed that shrimp NDK is a trimer. Affinity was in the micro-molar range for dADP, dGDP, dTDP and except for dCDP, which presented no detectable interaction by isothermal titration calorimetry, as described previously for Plasmodium falciparum NDK. This information is particularly important, as this enzyme could be used to test nucleotide analogs that can block white spot syndrome virus (WSSV) viral replication and to study its bioenergetics role during hypoxia and fasting.
Collapse
Affiliation(s)
- Idania E Quintero-Reyes
- Aquatic Molecular Biology Lab, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera a Ejido la Victoria Km 0.6, Hermosillo, Sonora 83304, Mexico
| | | | | | | | | | | | | |
Collapse
|
34
|
Boissier F, Georgescauld F, Moynié L, Dupuy JW, Sarger C, Podar M, Lascu I, Giraud MF, Dautant A. An intersubunit disulfide bridge stabilizes the tetrameric nucleoside diphosphate kinase of Aquifex aeolicus. Proteins 2012; 80:1658-68. [DOI: 10.1002/prot.24062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/23/2012] [Accepted: 02/06/2012] [Indexed: 12/19/2022]
|
35
|
Arai S, Yonezawa Y, Okazaki N, Matsumoto F, Tamada T, Tokunaga H, Ishibashi M, Blaber M, Tokunaga M, Kuroki R. A structural mechanism for dimeric to tetrameric oligomer conversion in Halomonas sp. nucleoside diphosphate kinase. Protein Sci 2012; 21:498-510. [PMID: 22275000 DOI: 10.1002/pro.2032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/19/2012] [Indexed: 11/11/2022]
Abstract
Nucleoside diphosphate kinase (NDK) is known to form homotetramers or homohexamers. To clarify the oligomer state of NDK from moderately halophilic Halomonas sp. 593 (HaNDK), the oligomeric state of HaNDK was characterized by light scattering followed by X-ray crystallography. The molecular weight of HaNDK is 33,660, and the X-ray crystal structure determination to 2.3 and 2.7 Å resolution showed a dimer form which was confirmed in the different space groups of R3 and C2 with an independent packing arrangement. This is the first structural evidence that HaNDK forms a dimeric assembly. Moreover, the inferred molecular mass of a mutant HaNDK (E134A) indicated 62.1-65.3 kDa, and the oligomerization state was investigated by X-ray crystallography to 2.3 and 2.5 Å resolution with space groups of P2(1) and C2. The assembly form of the E134A mutant HaNDK was identified as a Type I tetramer as found in Myxococcus NDK. The structural comparison between the wild-type and E134A mutant HaNDKs suggests that the change from dimer to tetramer is due to the removal of negative charge repulsion caused by the E134 in the wild-type HaNDK. The higher ordered association of proteins usually contributes to an increase in thermal stability and substrate affinity. The change in the assembly form by a minimum mutation may be an effective way for NDK to acquire molecular characteristics suited to various circumstances.
Collapse
Affiliation(s)
- Shigeki Arai
- Molecular Structural Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Srivastava SK, Rajasree K, Gopal B. Conformational basis for substrate recognition and regulation of catalytic activity in Staphylococcus aureus nucleoside di-phosphate kinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1349-57. [PMID: 21745603 DOI: 10.1016/j.bbapap.2011.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 06/05/2011] [Accepted: 06/14/2011] [Indexed: 11/29/2022]
Abstract
Nucleoside diphosphate kinases (NDK) are characterized by high catalytic turnover rates and diverse substrate specificity. These features make this enzyme an effective activator of a pro-drug-an application that has been actively pursued for a variety of therapeutic strategies. The catalytic mechanism of this enzyme is governed by a conserved histidine that coordinates a magnesium ion at the active site. Despite substantial structural and biochemical information on NDK, the mechanistic feature of the phospho-transfer that leads to auto-phosphorylation remains unclear. While the role of the histidine residue is well documented, the other active site residues, in particular the conserved serine remains poorly characterized. Studies on some homologues suggest no role for the serine residue at the active site, while others suggest a crucial role for this serine in the regulation and quaternary association of this enzyme in some species. Here we report the biochemical features of the Staphylococcus aureus NDK and the mutant enzymes. We also describe the crystal structures of the apo-NDK, as a transition state mimic with vanadate and in complex with different nucleotide substrates. These structures formed the basis for molecular dynamics simulations to understand the broad substrate specificity of this enzyme and the role of active site residues in the phospho-transfer mechanism and oligomerization. Put together, these data suggest that concerted changes in the conformation of specific residues facilitate the stabilization of nucleotide complexes thereby enabling the steps involved in the ping-pong reaction mechanism without large changes to the overall structure of this enzyme.
Collapse
|
37
|
Souza TACB, Trindade DM, Tonoli CCC, Santos CR, Ward RJ, Arni RK, Oliveira AHC, Murakami MT. Molecular adaptability of nucleoside diphosphate kinase b from trypanosomatid parasites: stability, oligomerization and structural determinants of nucleotide binding. MOLECULAR BIOSYSTEMS 2011; 7:2189-95. [PMID: 21528129 DOI: 10.1039/c0mb00307g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleoside diphosphate kinases play a crucial role in the purine-salvage pathway of trypanosomatid protozoa and have been found in the secretome of Leishmania sp., suggesting a function related to host-cell integrity for the benefit of the parasite. Due to their importance for housekeeping functions in the parasite and by prolonging the life of host cells in infection, they become an attractive target for drug discovery and design. In this work, we describe the first structural characterization of nucleoside diphosphate kinases b from trypanosomatid parasites (tNDKbs) providing insights into their oligomerization, stability and structural determinants for nucleotide binding. Crystallographic studies of LmNDKb when complexed with phosphate, AMP and ADP showed that the crucial hydrogen-bonding residues involved in the nucleotide interaction are fully conserved in tNDKbs. Depending on the nature of the ligand, the nucleotide-binding pocket undergoes conformational changes, which leads to different cavity volumes. SAXS experiments showed that tNDKbs, like other eukaryotic NDKs, form a hexamer in solution and their oligomeric state does not rely on the presence of nucleotides or mimetics. Fluorescence-based thermal-shift assays demonstrated slightly higher stability of tNDKbs compared to human NDKb (HsNDKb), which is in agreement with the fact that tNDKbs are secreted and subjected to variations of temperature in the host cells during infection and disease development. Moreover, tNDKbs were stabilized upon nucleotide binding, whereas HsNDKb was not influenced. Contrasts on the surface electrostatic potential around the nucleotide-binding pocket might be a determinant for nucleotide affinity and protein stability differentiation. All these together demonstrated the molecular adaptation of parasite NDKbs in order to exert their biological functions intra-parasite and when secreted by regulating ATP levels of host cells.
Collapse
Affiliation(s)
- Tatiana A C B Souza
- Laboratório Nacional de Biociências, Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pereira CA, Bouvier LA, Cámara MDLM, Miranda MR. Singular features of trypanosomatids' phosphotransferases involved in cell energy management. Enzyme Res 2011; 2011:576483. [PMID: 21603267 PMCID: PMC3092577 DOI: 10.4061/2011/576483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 01/23/2011] [Accepted: 02/08/2011] [Indexed: 01/15/2023] Open
Abstract
Trypanosomatids are responsible for economically important veterinary affections and severe human diseases. In Africa, Trypanosoma brucei causes sleeping sickness or African trypanosomiasis, while in America, Trypanosoma cruzi is the etiological agent of Chagas disease. These parasites have complex life cycles which involve a wide variety of environments with very different compositions, physicochemical properties, and availability of metabolites. As the environment changes there is a need to maintain the nucleoside homeostasis, requiring a quick and regulated response. Most of the enzymes required for energy management are phosphotransferases. These enzymes present a nitrogenous group or a phosphate as acceptors, and the most clear examples are arginine kinase, nucleoside diphosphate kinase, and adenylate kinase. Trypanosoma and Leishmania have the largest number of phosphotransferase isoforms ever found in a single cell; some of them are absent in mammals, suggesting that these enzymes are required in many cellular compartments associated to different biological processes. The presence of such number of phosphotransferases support the hypothesis of the existence of an intracellular enzymatic phosphotransfer network that communicates the spatially separated intracellular ATP consumption and production processes. All these unique features make phosphotransferases a promising start point for rational drug design for the treatment of human trypanosomiasis.
Collapse
Affiliation(s)
- Claudio A Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas "Alfredo Lanari", Universidad de Buenos Aires and CONICET, Combatientes de Malvinas 3150, 1427 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
39
|
Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J. Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antiviral Res 2010; 86:101-20. [PMID: 20417378 DOI: 10.1016/j.antiviral.2010.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/31/2010] [Accepted: 02/01/2010] [Indexed: 12/11/2022]
Abstract
Antiviral nucleoside and nucleotide analogs, essential for the treatment of viral infections in the absence of efficient vaccines, are prodrug forms of the active compounds that target the viral DNA polymerase or reverse transcriptase. The activation process requires several successive phosphorylation steps catalyzed by different kinases, which are present in the host cell or encoded by some of the viruses. These activation reactions often are rate-limiting steps and are thus open to improvement. We review here the structural and enzymatic properties of the enzymes that carry out the activation of analogs used in therapy against human immunodeficiency virus and against DNA viruses such as hepatitis B, herpes and poxviruses. Four major classes of drugs are considered: thymidine analogs, non-natural L-nucleosides, acyclic nucleoside analogs and acyclic nucleoside phosphonate analogs. Their efficiency as drugs depends both on the low specificity of the viral polymerase that allows their incorporation into DNA, but also on the ability of human/viral kinases to provide the activated triphosphate active forms at a high concentration at the right place. Two distinct modes of action are considered, depending on the origin of the kinase (human or viral). If the human kinases are house-keeping enzymes that belong to the metabolic salvage pathway, herpes and poxviruses encode for related enzymes. The structures, substrate specificities and catalytic properties of each of these kinases are discussed in relation to drug activation.
Collapse
Affiliation(s)
- Dominique Deville-Bonne
- Enzymologie Moléculaire et Fonctionnelle, UR4 Université Pierre et Marie Curie, 7 quai St Bernard, 75252 Paris Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
In this review, the authors describe a novel mechanism for control of MYC expression that involves a four-stranded DNA structure, termed a G-quadruplex, amenable to small molecule targeting. The DNA element involved in this mechanism, the nuclease hypersensitive element III(1) (NHE III(1)), is just upstream of the P1 promoter and is subjected to dynamic stress (negative superhelicity) resulting from transcription. This is sufficient to convert the duplex DNA to a G-quadruplex on the purine-rich strand and an i-motif of the pyrimidine-rich strand, which displaces the activating transcription factors to silence gene expression. Specific proteins have been identified, NM23-H2 and nucleolin, that resolve and fold the G-quadruplex to activate and silence MYC expression, respectively. Inhibition of the activity of NM23-H2 molecules that bind to the G-quadruplex silences gene expression, and redistribution of nucleolin from the nucleolus to the nucleoplasm is expected to inhibit MYC. The authors also describe the mechanism of action of Quarfloxin, a first-in-class G-quadruplex-interactive compound that involves the redistribution of nucleolin from the nucleolus to the nucleoplasm. G-quadruplexes have been best known as test-tube oddities for more than four decades. However, during the past decade, they have emerged as likely players in a number of important biological processes, including transcriptional control. Only time will tell if these odd DNA structures will assume the role of an established receptor class, but it is clear from the scientific literature that there is a dramatic increase in interest in this little-known area in the past few years.
Collapse
Affiliation(s)
- Tracy A Brooks
- College of Pharmacy, BIO5 Institute, and Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
41
|
Gómez Barroso JA, Pereira H, Miranda M, Pereira C, Garratt RC, Aguilar CF. Protein preparation, crystallization and preliminary X-ray analysis of Trypanosoma cruzi nucleoside diphosphate kinase 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:862-5. [PMID: 20606293 PMCID: PMC2898481 DOI: 10.1107/s1744309110013886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/15/2010] [Indexed: 11/11/2022]
Abstract
The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 A resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 A. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.
Collapse
Affiliation(s)
- J. A. Gómez Barroso
- Laboratorio de Biología Molecular Estructural, Instituto Multidisciplinarlo de Investigación en Biología (IMIBIO), Universidad Nacional de San Luis and CONICET, Avenida Ejército de los Andes 950, Bloque 1, San Luis, Argentina
| | - H. Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Saocarlense 400, São Carlos-SP 13560-970, Brazil
| | - M. Miranda
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires and CONICET, Avenida Combatientes de Malvinas 3150, 1427 Capital Federal, Buenos Aires, Argentina
| | - C. Pereira
- Laboratorio de Biología Molecular de Trypanosoma cruzi (LBMTC), Instituto de Investigaciones Médicas A. Lanari, Universidad de Buenos Aires and CONICET, Avenida Combatientes de Malvinas 3150, 1427 Capital Federal, Buenos Aires, Argentina
| | - R. C. Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador Saocarlense 400, São Carlos-SP 13560-970, Brazil
| | - C. F. Aguilar
- Laboratorio de Biología Molecular Estructural, Instituto Multidisciplinarlo de Investigación en Biología (IMIBIO), Universidad Nacional de San Luis and CONICET, Avenida Ejército de los Andes 950, Bloque 1, San Luis, Argentina
| |
Collapse
|
42
|
Siskos A, Yupsani A, Symeonidis L, Yupsanis T. Similarities and differences in the properties of multiple NDP-kinase isoforms of Alyssum murale, Ni2+-accumulator species. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:675-682. [PMID: 20188440 DOI: 10.1016/j.jplph.2010.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 05/28/2023]
Abstract
Two isoforms of NDPKs (diphosphonucleoside kinases: E.C. 2.7.4.6.) named S-NDPK-A and S-NDPK-B were separated and purified from shoots of Alyssum murale (19th day of growth), a nickel accumulator plant, by a four-step procedure involving ammonium sulphate precipitation and DEAE-sepharose and hydroxyapatite column chromatography. Shoot NDPKs underwent autophosphorylation, proved thermostable, displayed similar molecular mass of 105,000, and consisted of six catalytic subunits. The size of subunits of S-NDPK-A and S-NDPK-B were 18 and 16kDa, respectively. The autophosphorylated S-NDPK-A and S-NDPK-B displayed isoelectric points (pI) of 5.8 and 6.6, respectively. The shoot NDPKs using NDPs (diphosphonucleosides) as substrates were metal dependent, while these underwent autophosphorylation in the absence of metal. The specificity of S-NDPK-A, S-NDPK-B and root NDPK-B (R-NDPK-B); towards mixtures of purino- and pyrimidino-NDPs were tested by TLC (thin layer chromatography). UDP and CDP (pyrimidino-NDPs) and GDP (purino-NDP) were exclusively phosphorylated, using (gamma-(32)P) ATP as phosphate donor, by S-NDPK-A and R-NDPK-B, respectively. Both purino- and pyrimidino-NDPs were phosphorylated by S-NDPK-B. The above isoforms also displayed differences in preference towards a mixture of ADP, GDP, dGDP, TDP, dCDP, CDP and UDP in the presence of Cu(2+), Zn(2+), Mg(2+), Mn(2+), Ni(2+), Ca(2+), Hg(2+) or Co(2+). For example, GDP was mainly phosphorylated by R-NDPK-B independently of the metal used, TDP was mainly phosphorylated by S-NDPK-A in the presence of Mg(2+), Mn(2+), Ca(2+) or Co(2+) and S-NDPK-B was capable of phosphorylating more or less independently of the metal used. The purified and characterized NDPK isoforms may play different biological roles according to their preference towards NDPs.
Collapse
Affiliation(s)
- Argirios Siskos
- School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | |
Collapse
|
43
|
Koch K, Chen Y, Feng JY, Borroto-Esoda K, Deville-Bonne D, Gallois-Montbrun S, Janin J, Moréra S. Nucleoside diphosphate kinase and the activation of antiviral phosphonate analogs of nucleotides: binding mode and phosphorylation of tenofovir derivatives. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:776-92. [PMID: 20183617 DOI: 10.1080/15257770903155899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Tenofovir is an acyclic phosphonate analog of deoxyadenylate used in AIDS and hepatitis B therapy. We find that tenofovir diphosphate, its active form, can be produced by human nucleoside diphosphate kinase (NDPK), but with low efficiency, and that creatine kinase is significantly more active. The 1.65 A x-ray structure of NDPK in complex with tenofovir mono- and diphosphate shows that the analogs bind at the same site as natural nucleotides, but in a different conformation, and make only a subset of the Van der Waals and polar interactions made by natural substrates, consistent with their comparatively low affinity for the enzyme.
Collapse
Affiliation(s)
- Kerstin Koch
- Yeast Structural Genomics, IBBMC UMR 8619 CNRS, Universite Paris-Sud, Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
The interaction of nucleoside diphosphate kinase B with Gbetagamma dimers controls heterotrimeric G protein function. Proc Natl Acad Sci U S A 2009; 106:16269-74. [PMID: 19805292 DOI: 10.1073/pnas.0901679106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Heterotrimeric G proteins in physiological and pathological processes have been extensively studied so far. However, little is known about mechanisms regulating the cellular content and compartmentalization of G proteins. Here, we show that the association of nucleoside diphosphate kinase B (NDPK B) with the G protein betagamma dimer (Gbetagamma) is required for G protein function in vivo. In zebrafish embryos, morpholino-mediated knockdown of zebrafish NDPK B, but not NDPK A, results in a severe decrease in cardiac contractility. The depletion of NDPK B is associated with a drastic reduction in Gbeta(1)gamma(2) dimer expression. Moreover, the protein levels of the adenylyl cyclase (AC)-regulating Galpha(s) and Galpha(i) subunits as well as the caveolae scaffold proteins caveolin-1 and -3 are strongly reduced. In addition, the knockdown of the zebrafish Gbeta(1) orthologs, Gbeta(1) and Gbeta(1like), causes a cardiac phenotype very similar to that of NDPK B morphants. The loss of Gbeta(1)/Gbeta(1like) is associated with a down-regulation in caveolins, AC-regulating Galpha-subunits, and most important, NDPK B. A comparison of embryonic fibroblasts from wild-type and NDPK A/B knockout mice demonstrate a similar reduction of G protein, caveolin-1 and basal cAMP content in mammalian cells that can be rescued by re-expression of human NDPK B. Thus, our results suggest a role for the interaction of NDPK B with Gbetagamma dimers and caveolins in regulating membranous G protein content and maintaining normal G protein function in vivo.
Collapse
|
45
|
Yamamura A, Ichimura T, Kamekura M, Mizuki T, Usami R, Makino T, Ohtsuka J, Miyazono KI, Okai M, Nagata K, Tanokura M. Molecular mechanism of distinct salt-dependent enzyme activity of two halophilic nucleoside diphosphate kinases. Biophys J 2009; 96:4692-700. [PMID: 19486691 DOI: 10.1016/j.bpj.2009.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 10/20/2022] Open
Abstract
Nucleoside diphosphate kinases from haloarchaea Haloarcula quadrata (NDK-q) and H. sinaiiensis (NDK-s) are identical except for one out of 154 residues, i.e., Arg(31) in NDK-q and Cys(31) in NDK-s. However, the salt-dependent activity profiles of NDK-q and NDK-s are quite different: the optimal NaCl concentrations of NDK-q and NDK-s are 1 M and 2 M, respectively. We analyzed the relationships of the secondary, tertiary, and quaternary structures and NDK activity of these NDKs at various salt concentrations, and revealed that 1), NDK-q is present as a hexamer under a wide range of salt concentrations (0.2-4 M NaCl), whereas NDK-s is present as a hexamer at an NaCl concentration above 2 M and as a dimer at NaCl concentrations below 1 M; 2), dimeric NDK-s has lower activity than hexameric NDK-s; and 3), dimeric NDK-s has higher helicity than hexameric NDK-s. We also determined the crystal structure of hexameric NDK-q, and revealed that Arg(31) plays an important role in stabilizing the hexamer. Thus the substitution of Arg (as in NDK-q) to Cys (as in NDK-s) at position 31 destabilizes the hexameric assembly, and causes dissociation to less active dimers at low salt concentrations.
Collapse
Affiliation(s)
- Akihiro Yamamura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Crystal structure of theBacillus anthracisnucleoside diphosphate kinase and its characterization reveals an enzyme adapted to perform under stress conditions. Proteins 2009; 76:496-506. [DOI: 10.1002/prot.22364] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Lipskaya TY, Voinova VV. Reversibility of nucleoside diphosphate kinase solubilization from the surface of the outer mitochondrial membrane. BIOCHEMISTRY (MOSCOW) 2009; 74:578-87. [PMID: 19538133 DOI: 10.1134/s0006297909050149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It was found that in medium with low ionic strength nucleoside diphosphate kinase (NDPK) solubilization from the outer membrane of liver mitochondria could be partially reversed by the addition of 3.3 mM MgCl2. Complete rebinding of the enzyme after the addition of MgCl2 was observed when the mitochondrial washing and storage medium contained leupeptin, an inhibitor of cathepsins. It was demonstrated that leupeptin and another inhibitor of cysteine proteinases, E-64, do not influence the rate of NDPK solubilization as well as its solubilized and membrane-associated activity. We conclude that NDPK becomes sensitive to proteolysis only after its solubilization; proteolysis does not affect the part of the enzyme molecule that is responsible for catalysis. After solubilization of NDPK in the absence of leupeptin, cathepsins damage sites of its binding on the membranes. The rate of the enzyme solubilization is dependent on the pH of the storage medium (pH 6.0-8.0); it decreases with increase in pH. It was shown that in the medium with high ionic strength, MgCl2 does not reverse pH-dependent NDPK solubilization, but solubilization could be reversed by increase in medium pH in the presence of E-64 and BSA. The physiological importance of these results is discussed.
Collapse
Affiliation(s)
- T Yu Lipskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | |
Collapse
|
48
|
Dissecting the unique nucleotide specificity of mimivirus nucleoside diphosphate kinase. J Virol 2009; 83:7142-50. [PMID: 19439473 DOI: 10.1128/jvi.00511-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The analysis of the Acanthamoeba polyphaga mimivirus genome revealed the first virus-encoded nucleoside diphosphate kinase (NDK), an enzyme that is central to the synthesis of RNA and DNA, ubiquitous in cellular organisms, and well conserved among the three domains of life. In contrast with the broad specificity of cellular NDKs for all types of ribo- and deoxyribonucleotides, the mimivirus enzyme exhibits a strongly preferential affinity for deoxypyrimidines. In order to elucidate the molecular basis of this unique substrate specificity, we determined the three-dimensional (3D) structure of the Acanthamoeba polyphaga mimivirus NDK alone and in complex with various nucleotides. As predicted from a sequence comparison with cellular NDKs, the 3D structure of the mimivirus enzyme exhibits a shorter Kpn loop, previously recognized as a main feature of the NDK active site. The structure of the viral enzyme in complex with various nucleotides also pinpointed two residue changes, both located near the active site and specific to the viral NDK, which could explain its stronger affinity for deoxynucleotides and pyrimidine nucleotides. The role of these residues was explored by building a set of viral NDK variants, assaying their enzymatic activities, and determining their 3D structures in complex with various nucleotides. A total of 26 crystallographic structures were determined at resolutions ranging from 2.8 A to 1.5 A. Our results suggest that the mimivirus enzyme progressively evolved from an ancestral NDK under the constraints of optimizing its efficiency for the replication of an AT-rich (73%) viral genome in a thymidine-limited host environment.
Collapse
|
49
|
Dexheimer TS, Carey SS, Zuohe S, Gokhale VM, Hu X, Murata LB, Maes EM, Weichsel A, Sun D, Meuillet EJ, Montfort WR, Hurley LH. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III(1). Mol Cancer Ther 2009; 8:1363-77. [PMID: 19435876 DOI: 10.1158/1535-7163.mct-08-1093] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The formation of G-quadruplex structures within the nuclease hypersensitive element (NHE) III(1) region of the c-myc promoter and the ability of these structures to repress c-myc transcription have been well established. However, just how these extremely stable DNA secondary structures are transformed to activate c-myc transcription is still unknown. NM23-H2/nucleoside diphosphate kinase B has been recognized as an activator of c-myc transcription via interactions with the NHE III(1) region of the c-myc gene promoter. Through the use of RNA interference, we confirmed the transcriptional regulatory role of NM23-H2. In addition, we find that further purification of NM23-H2 results in loss of the previously identified DNA strand cleavage activity, but retention of its DNA binding activity. NM23-H2 binds to both single-stranded guanine- and cytosine-rich strands of the c-myc NHE III(1) and, to a lesser extent, to a random single-stranded DNA template. However, it does not bind to or cleave the NHE III(1) in duplex form. Significantly, potassium ions and compounds that stabilize the G-quadruplex and i-motif structures have an inhibitory effect on NM23-H2 DNA-binding activity. Mutation of Arg(88) to Ala(88) (R88A) reduced both DNA and nucleotide binding but had minimal effect on the NM23-H2 crystal structure. On the basis of these data and molecular modeling studies, we have proposed a stepwise trapping-out of the NHE III(1) region in a single-stranded form, thus allowing single-stranded transcription factors to bind and activate c-myc transcription. Furthermore, this model provides a rationale for how the stabilization of the G-quadruplex or i-motif structures formed within the c-myc gene promoter region can inhibit NM23-H2 from activating c-myc gene expression.
Collapse
|
50
|
Mitochondrial kinases and their molecular interaction with cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2032-47. [PMID: 19409873 DOI: 10.1016/j.bbamem.2009.04.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/24/2009] [Indexed: 11/22/2022]
Abstract
Mitochondrial isoforms of creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D) are not phylogenetically related but share functionally important properties. They both use mitochondrially generated ATP with the ultimate goal of maintaining proper nucleotide pools, are located in the intermembrane/cristae space, have symmetrical oligomeric structures, and show high affinity binding to anionic phospholipids, in particular cardiolipin. The structural basis and functional consequences of the cardiolipin interaction have been studied and are discussed in detail in this review. They mainly result in a functional interaction of MtCK and NDPK-D with inner membrane adenylate translocator, probably by forming proteolipid complexes. These interactions allow for privileged exchange of metabolites (channeling) that ultimately regulate mitochondrial respiration. Further functions of the MtCK/membrane interaction include formation of cardiolipin membrane patches, stabilization of mitochondria and a role in apoptotic signaling, as well as in case of both kinases, a role in facilitating lipid transfer between two membranes. Finally, disturbed cardiolipin interactions of MtCK, NDPK-D and other proteins like cytochrome c and truncated Bid are discussed more generally in the context of apoptosis and necrosis.
Collapse
|