1
|
Marín-Quílez A, Di Buduo CA, Benito R, Balduini A, Rivera J, Bastida JM. GALE variants associated with syndromic manifestations, macrothrombocytopenia, bleeding, and platelet dysfunction. Platelets 2023; 34:2176699. [PMID: 36846897 DOI: 10.1080/09537104.2023.2176699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
GALE gene encodes the uridine diphosphate [UDP]-galactose-4-epimerase, which catalyzes the bidirectional interconversion of UDP-glucose to UDP-galactose, and UDP-N-acetyl-glucosamine to UDP-N-acetyl-galactosamine. In that way, GALE balances, through reversible epimerization, the pool of four sugars that are essential during the biosynthesis of glycoproteins and glycolipids. GALE-related disorder presents an autosomal recessive inheritance pattern, and it is commonly associated with galactosemia. Peripheral galactosemia generally associates with non-generalized forms or even asymptomatic presentations, while classical galactosemia may be related to complications such as learning difficulties, developmental delay, cardiac failure, or dysmorphic features. Recently, GALE variants have been related to severe thrombocytopenia, pancytopenia, and in one patient, to myelodysplastic syndrome.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- IBSAL, CIC, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain.,Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, Murcia, Spain
| | | | - Rocío Benito
- IBSAL, CIC, IBMCC, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, Murcia, Spain
| | - Jose Maria Bastida
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
2
|
Kumar SU, Sankar S, Kumar DT, Younes S, Younes N, Siva R, Doss CGP, Zayed H. Molecular dynamics, residue network analysis, and cross-correlation matrix to characterize the deleterious missense mutations in GALE causing galactosemia III. Cell Biochem Biophys 2021; 79:201-219. [PMID: 33555556 DOI: 10.1007/s12013-020-00960-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2020] [Indexed: 01/17/2023]
Abstract
Epimerase-deficiency galactosemia (EDG) is caused by mutations in the UDP-galactose 4'-epimerase enzyme, encoded by gene GALE. Catalyzing the last reaction in the Leloir pathway, UDP-galactose-4-epimerase catalyzes the interconversion of UDP-galactose and UDP-glucose. This study aimed to use in-depth computational strategies to prioritize the pathogenic missense mutations in GALE protein and investigate the systemic behavior, conformational spaces, atomic motions, and cross-correlation matrix of the GALE protein. We searched four databases (dbSNP, ClinVar, UniProt, and HGMD) and major biological literature databases (PubMed, Science Direct, and Google Scholar), for missense mutations that are associated with EDG patients, our search yielded 190 missense mutations. We applied a systematic computational prediction pipeline, including pathogenicity, stability, biochemical, conservational, protein residue contacts, and structural analysis, to predict the pathogenicity of these mutations. We found three mutations (p.K161N, p.R239W, and p.G302D) with a severe phenotype in patients with EDG that correlated with our computational prediction analysis; thus, they were selected for further structural and simulation analyses to compute the flexibility and stability of the mutant GALE proteins. The three mutants were subjected to molecular dynamics simulation (MDS) with native protein for 200 ns using GROMACS. The MDS demonstrated that these mutations affected the beta-sheets and helical region that are responsible for the catalytic activity; subsequently, affects the stability and flexibility of the mutant proteins along with a decrease and more deviations in compactness when compared to that of a native. Also, three mutations created major variations in the combined atomic motions of the catalytic and C-terminal regions. The network analysis of the residues in the native and three mutant protein structures showed disturbed residue contacts occurred owing to the missense mutations. Our findings help to understand the structural behavior of a protein owing to mutation and are intended to serve as a platform for prioritizing mutations, which could be potential targets for drug discovery and development of targeted therapeutics.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Srivarshini Sankar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - D Thirumal Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Nadin Younes
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - R Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
3
|
Haskovic M, Coelho AI, Bierau J, Vanoevelen JM, Steinbusch LKM, Zimmermann LJI, Villamor‐Martinez E, Berry GT, Rubio‐Gozalbo ME. Pathophysiology and targets for treatment in hereditary galactosemia: A systematic review of animal and cellular models. J Inherit Metab Dis 2020; 43:392-408. [PMID: 31808946 PMCID: PMC7317974 DOI: 10.1002/jimd.12202] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Since the first description of galactosemia in 1908 and despite decades of research, the pathophysiology is complex and not yet fully elucidated. Galactosemia is an inborn error of carbohydrate metabolism caused by deficient activity of any of the galactose metabolising enzymes. The current standard of care, a galactose-restricted diet, fails to prevent long-term complications. Studies in cellular and animal models in the past decades have led to an enormous progress and advancement of knowledge. Summarising current evidence in the pathophysiology underlying hereditary galactosemia may contribute to the identification of treatment targets for alternative therapies that may successfully prevent long-term complications. A systematic review of cellular and animal studies reporting on disease complications (clinical signs and/or biochemical findings) and/or treatment targets in hereditary galactosemia was performed. PubMed/MEDLINE, EMBASE, and Web of Science were searched, 46 original articles were included. Results revealed that Gal-1-P is not the sole pathophysiological agent responsible for the phenotype observed in galactosemia. Other currently described contributing factors include accumulation of galactose metabolites, uridine diphosphate (UDP)-hexose alterations and subsequent impaired glycosylation, endoplasmic reticulum (ER) stress, altered signalling pathways, and oxidative stress. galactokinase (GALK) inhibitors, UDP-glucose pyrophosphorylase (UGP) up-regulation, uridine supplementation, ER stress reducers, antioxidants and pharmacological chaperones have been studied, showing rescue of biochemical and/or clinical symptoms in galactosemia. Promising co-adjuvant therapies include antioxidant therapy and UGP up-regulation. This systematic review provides an overview of the scattered information resulting from animal and cellular studies performed in the past decades, summarising the complex pathophysiological mechanisms underlying hereditary galactosemia and providing insights on potential treatment targets.
Collapse
Affiliation(s)
- Minela Haskovic
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Ana I. Coelho
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Jörgen Bierau
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jo M. Vanoevelen
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Laura K. M. Steinbusch
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Luc J. I. Zimmermann
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Eduardo Villamor‐Martinez
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| | - Gerard T. Berry
- The Manton Center for Orphan Disease Research, Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMassachusetts
| | - M. Estela Rubio‐Gozalbo
- Department of PediatricsMaastricht University Medical Center+MaastrichtThe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+MaastrichtThe Netherlands
- GROW‐School for Oncology and Developmental Biology, Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
4
|
Seo A, Gulsuner S, Pierce S, Ben-Harosh M, Shalev H, Walsh T, Krasnov T, Dgany O, Doulatov S, Tamary H, Shimamura A, King MC. Inherited thrombocytopenia associated with mutation of UDP-galactose-4-epimerase (GALE). Hum Mol Genet 2019; 28:133-142. [PMID: 30247636 DOI: 10.1093/hmg/ddy334] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Severe thrombocytopenia, characterized by dysplastic megakaryocytes and intracranial bleeding, was diagnosed in six individuals from a consanguineous kindred. Three of the individuals were successfully treated by bone marrow transplant. Whole-exome sequencing and homozygosity mapping of multiple family members, coupled with whole-genome sequencing to reveal shared non-coding variants, revealed one potentially functional variant segregating with thrombocytopenia under a recessive model: GALE p.R51W (c.C151T, NM_001127621). The mutation is extremely rare (allele frequency = 2.5 × 10-05), and the likelihood of the observed co-segregation occurring by chance is 1.2 × 10-06. GALE encodes UDP-galactose-4-epimerase, an enzyme of galactose metabolism and glycosylation responsible for two reversible reactions: interconversion of UDP-galactose with UDP-glucose and interconversion of UDP-N-acetylgalactosamine with UDP-N-acetylglucosamine. The mutation alters an amino acid residue that is conserved from yeast to humans. The variant protein has both significantly lower enzymatic activity for both interconversion reactions and highly significant thermal instability. Proper glycosylation is critical to normal hematopoiesis, in particular to megakaryocyte and platelet development, as reflected in the presence of thrombocytopenia in the context of congenital disorders of glycosylation. Mutations in GALE have not previously been associated with thrombocytopenia. Our results suggest that GALE p.R51W is inadequate for normal glycosylation and thereby may impair megakaryocyte and platelet development. If other mutations in GALE are shown to have similar consequences, this gene may be proven to play a critical role in hematopoiesis.
Collapse
Affiliation(s)
- Aaron Seo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Suleyman Gulsuner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Sarah Pierce
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Miri Ben-Harosh
- Department of Pediatric Hematology/Oncology, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, Beer Sheva, Israel
| | - Hanna Shalev
- Department of Pediatric Hematology/Oncology, Soroka Medical Center, Faculty of Medicine, Ben-Gurion University, Beer Sheva, Israel
| | - Tom Walsh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel
| | - Sergei Doulatov
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA
| | - Hannah Tamary
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel.,Hematology Unit, Schneider Children's Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Akiko Shimamura
- Department of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mary-Claire King
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Timson DJ. The molecular basis of galactosemia — Past, present and future. Gene 2016; 589:133-41. [DOI: 10.1016/j.gene.2015.06.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
|
6
|
Abstract
The galactosemias are a family of autosomal recessive genetic disorders resulting from impaired function of the Leloir pathway of galactose metabolism. Type I, or classic galactosemia, results from profound deficiency of galactose-1-phosphate uridylyltransferase, the second enzyme in the Leloir pathway. Type II galactosemia results from profound deficiency of galactokinase, the first enzyme in the Leloir pathway. Type III galactosemia results from partial deficiency of UDP galactose 4'-epimerase, the third enzyme in the Leloir pathway. Although at least classic galactosemia has been recognized clinically for more than 100 years, and detectable by newborn screening for more than 50 years, all three galactosemias remain poorly understood. Early detection and dietary restriction of galactose prevent neonatal lethality, but many affected infants grow to experience a broad range of developmental and other disabilities. To date, there is no intervention known that prevents or reverses these long-term complications. Drosophila melanogaster provides a genetically and biochemically facile model for these conditions, enabling studies that address mechanism and open the door for novel approaches to intervention.
Collapse
Affiliation(s)
- J M I Daenzer
- Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
7
|
Jumbo-Lucioni PP, Parkinson WM, Kopke DL, Broadie K. Coordinated movement, neuromuscular synaptogenesis and trans-synaptic signaling defects in Drosophila galactosemia models. Hum Mol Genet 2016; 25:3699-3714. [PMID: 27466186 DOI: 10.1093/hmg/ddw217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
Collapse
Affiliation(s)
| | | | | | - Kendal Broadie
- Department of Biological Sciences .,Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Paul S, McCorvie TJ, Zschocke J, Timson DJ. Disturbed cofactor binding by a novel mutation in UDP-galactose 4′-epimerase results in a type III galactosemia phenotype at birth. RSC Adv 2016. [DOI: 10.1039/c6ra00306k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The p.A89V variant of UDP-galactose 4′-epimerase (GALE) is less stable and has lower affinity for the NAD+cofactor than the wild-type enzyme.
Collapse
Affiliation(s)
- Stephanie Paul
- School of Biological Sciences
- Queen's University Belfast
- Medical Biology Centre
- Belfast
- UK
| | - Thomas J. McCorvie
- School of Biological Sciences
- Queen's University Belfast
- Medical Biology Centre
- Belfast
- UK
| | - Johannes Zschocke
- Division of Human Genetics
- Innsbruck Medical University
- Innsbruck 6020
- Austria
| | - David J. Timson
- School of Biological Sciences
- Queen's University Belfast
- Medical Biology Centre
- Belfast
- UK
| |
Collapse
|
9
|
Fuchs JE, Muñoz IG, Timson DJ, Pey AL. Experimental and computational evidence on conformational fluctuations as a source of catalytic defects in genetic diseases. RSC Adv 2016. [DOI: 10.1039/c6ra05499d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Catalytic mutants causing inherited type III galactosemia alter active site structural dynamics and shift the native conformational equilibrium towards inactive conformations.
Collapse
Affiliation(s)
- Julian E. Fuchs
- Institute of General, Inorganic and Theoretical Chemistry
- Faculty of Chemistry and Pharmacy
- University of Innsbruck
- Innsbruck
- Austria
| | - Inés G. Muñoz
- Crystallography and Protein Engineering Unit
- Structural Biology and Biocomputing Programme
- Spanish National Cancer Research Centre (CNIO)
- Madrid
- Spain
| | - David J. Timson
- School of Pharmacy and Biomolecular Sciences
- The University of Brighton
- Brighton
- UK
| | - Angel L. Pey
- Department of Physical Chemistry
- Faculty of Sciences
- University of Granada
- Granada
- Spain
| |
Collapse
|
10
|
Timson DJ. Value of predictive bioinformatics in inherited metabolic diseases. World J Med Genet 2015; 5:46-51. [DOI: 10.5496/wjmg.v5.i3.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
Typically, inherited metabolic diseases arise from point mutations in genes encoding metabolic enzymes. Although some of these mutations directly affect amino acid residues in the active sites of these enzymes, the majority do not. It is now well accepted that the majority of these disease-associated mutations exert their effects through alteration of protein stability, which causes a reduction in enzymatic activity. This finding suggests a way to predict the severity of newly discovered mutations. In silico prediction of the effects of amino acid sequence alterations on protein stability often correlates with disease severity. However, no stability prediction tool is perfect and, in general, better results are obtained if the predictions from a variety of tools are combined and then interpreted. In addition to predicted alterations to stability, the degree of conservation of a particular residue can also be a factor which needs to be taken into account: alterations to highly conserved residues are more likely to be associated with severe forms of the disease. The approach has been successfully applied in a variety of inherited metabolic diseases, but further improvements are necessary to enable robust translation into clinically useful tools.
Collapse
|
11
|
Pey AL, Padín-Gonzalez E, Mesa-Torres N, Timson DJ. The metastability of human UDP-galactose 4'-epimerase (GALE) is increased by variants associated with type III galactosemia but decreased by substrate and cofactor binding. Arch Biochem Biophys 2014; 562:103-14. [PMID: 25150110 DOI: 10.1016/j.abb.2014.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 01/30/2023]
Abstract
Type III galactosemia is an inherited disease caused by mutations which affect the activity of UDP-galactose 4'-epimerase (GALE). We evaluated the impact of four disease-associated variants (p.N34S, p.G90E, p.V94M and p.K161N) on the conformational stability and dynamics of GALE. Thermal denaturation studies showed that wild-type GALE denatures at temperatures close to physiological, and disease-associated mutations often reduce GALE's thermal stability. This denaturation is under kinetic control and results partly from dimer dissociation. The natural ligands, NAD(+) and UDP-glucose, stabilize GALE. Proteolysis studies showed that the natural ligands and disease-associated variations affect local dynamics in the N-terminal region of GALE. Proteolysis kinetics followed a two-step irreversible model in which the intact protein is cleaved at Ala38 forming a long-lived intermediate in the first step. NAD(+) reduces the rate of the first step, increasing the amount of undigested protein whereas UDP-glucose reduces the rate of the second step, increasing accumulation of the intermediate. Disease-associated variants affect these rates and the amounts of protein in each state. Our results also suggest communication between domains in GALE. We hypothesize that, in vivo, concentrations of natural ligands modulate GALE stability and that it should be possible to discover compounds which mimic the stabilising effects of the natural ligands overcoming mutation-induced destabilization.
Collapse
Affiliation(s)
- Angel L Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain.
| | - Esperanza Padín-Gonzalez
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain
| | - Noel Mesa-Torres
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, 18071, Spain
| | - David J Timson
- School of Biological Sciences, Queeńs University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
12
|
UDP-galactose 4'-epimerase from the liver fluke, Fasciola hepatica: biochemical characterization of the enzyme and identification of inhibitors. Parasitology 2014; 142:463-72. [PMID: 25124392 DOI: 10.1017/s003118201400136x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 μM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.
Collapse
|
13
|
Dalrymple SA, Ko J, Sheoran I, Kaminskyj SGW, Sanders DAR. Elucidation of substrate specificity in Aspergillus nidulans UDP-galactose-4-epimerase. PLoS One 2013; 8:e76803. [PMID: 24116166 PMCID: PMC3792076 DOI: 10.1371/journal.pone.0076803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
The frequency of invasive fungal infections has rapidly increased in recent years. Current clinical treatments are experiencing decreased potency due to severe host toxicity and the emergence of fungal drug resistance. As such, new targets and their corresponding synthetic pathways need to be explored for drug development purposes. In this context, galactofuranose residues, which are employed in fungal cell wall construction, but are notably absent in animals, represent an appealing target. Herein we present the structural and biochemical characterization of UDP-galactose-4-epimerase from Aspergillus nidulans which produces the precursor UDP-galactopyranose required for galactofuranose synthesis. Examination of the structural model revealed both NAD+ and UDP-glucopyranose were bound within the active site cleft in a near identical fashion to that found in the Human epimerase. Mutational studies on the conserved catalytic motif support a similar mechanism to that established for the Human counterpart is likely operational within the A. nidulans epimerase. While the Km and kcat for the enzyme were determined to be 0.11 mM and 12.8 s-1, respectively, a single point mutation, namely L320C, activated the enzyme towards larger N-acetylated substrates. Docking studies designed to probe active site affinity corroborate the experimentally determined activity profiles and support the kinetic inhibition results.
Collapse
Affiliation(s)
- Sean A. Dalrymple
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John Ko
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Inder Sheoran
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
14
|
Timson DJ, Lindert S. Comparison of dynamics of wildtype and V94M human UDP-galactose 4-epimerase-A computational perspective on severe epimerase-deficiency galactosemia. Gene 2013; 526:318-24. [PMID: 23732289 DOI: 10.1016/j.gene.2013.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/11/2013] [Accepted: 05/21/2013] [Indexed: 11/25/2022]
Abstract
UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD+ cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.
Collapse
Affiliation(s)
- David J Timson
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | |
Collapse
|
15
|
McCorvie TJ, Timson DJ. In silico prediction of the effects of mutations in the human UDP-galactose 4'-epimerase gene: towards a predictive framework for type III galactosemia. Gene 2013; 524:95-104. [PMID: 23644136 DOI: 10.1016/j.gene.2013.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/30/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
Abstract
The enzyme UDP-galactose 4'-epimerase (GALE) catalyses the reversible epimerisation of both UDP-galactose and UDP-N-acetyl-galactosamine. Deficiency of the human enzyme (hGALE) is associated with type III galactosemia. The majority of known mutations in hGALE are missense and private thus making clinical guidance difficult. In this study a bioinformatics approach was employed to analyse the structural effects due to each mutation using both the UDP-glucose and UDP-N-acetylglucosamine bound structures of the wild-type protein. Changes to the enzyme's overall stability, substrate/cofactor binding and propensity to aggregate were also predicted. These predictions were found to be in good agreement with previous in vitro and in vivo studies when data was available and allowed for the differentiation of those mutants that severely impair the enzyme's activity against UDP-galactose. Next this combination of techniques were applied to another twenty-six reported variants from the NCBI dbSNP database that have yet to be studied to predict their effects. This identified p.I14T, p.R184H and p.G302R as likely severely impairing mutations. Although severely impaired mutants were predicted to decrease the protein's stability, overall predicted stability changes only weakly correlated with residual activity against UDP-galactose. This suggests other protein functions such as changes in cofactor and substrate binding may also contribute to the mechanism of impairment. Finally this investigation shows that this combination of different in silico approaches is useful in predicting the effects of mutations and that it could be the basis of an initial prediction of likely clinical severity when new hGALE mutants are discovered.
Collapse
Affiliation(s)
- Thomas J McCorvie
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | |
Collapse
|
16
|
Liu Y, Bentler K, Coffee B, Chhay JS, Sarafoglou K, Fridovich-Keil JL. A Case Study of Monozygotic Twins Apparently Homozygous for a Novel Variant of UDP-Galactose 4'-epimerase (GALE) : A Complex Case of Variant GALE. JIMD Rep 2012; 7:89-98. [PMID: 23430501 DOI: 10.1007/8904_2012_153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 01/07/2023] Open
Abstract
Epimerase deficiency galactosemia is an autosomal recessive disorder that results from partial impairment of UDP-galactose 4'-epimerase (GALE), the third enzyme in the Leloir pathway of galactose metabolism. Clinical severity of epimerase deficiency ranges from potentially lethal to apparently benign, likely reflecting the extent of GALE enzyme impairment, among other factors. We report here a case study of monozygotic twins identified by newborn screening with elevated total galactose and normal galactose-1P uridylyltransferase (GALT). Follow-up testing revealed partial impairment of GALE in hemolysates but near-normal activity in lymphoblasts; molecular testing identified a missense substitution, R220W, apparently in the homozygous state. The twins were treated with dietary galactose restriction for the first 18 months of life. During this time, independent testing revealed concurrent diagnoses of Williams Syndrome in both twins, and cytomegalovirus (CMV) infection in one. Expression studies of R220W-hGALE in a null-background strain of Saccharomyces cerevisiae demonstrated a very limited impairment of V (max) for UDP-galactose (UDP-Gal) and K (m) for UDP-N-acetylgalactosamine (UDP-GalNAc), but a galactose challenge in vivo failed to uncover any evidence of impaired Leloir function. Similarly, both twins demonstrated normal hemolysate galactose-1-phosphate (Gal-1P) levels following normalization of their diets at 18 months of age. While these studies cannot rule out a negative consequence from some cryptic GALE impairment in a specific tissue or developmental stage, they suggest that the substitution, R220W, is mild to neutral, so that any GALE impairment in these twins is likely to be peripheral and therefore unlikely to be the cause of the negative outcomes observed.
Collapse
Affiliation(s)
- Ying Liu
- Department of Human Genetics, Emory University, School of Medicine, Room 325.2 Whitehead Building, 615 Michael Street, Atlanta, GA, 30322, USA
| | | | | | | | | | | |
Collapse
|
17
|
Daenzer JMI, Sanders RD, Hang D, Fridovich-Keil JL. UDP-galactose 4'-epimerase activities toward UDP-Gal and UDP-GalNAc play different roles in the development of Drosophila melanogaster. PLoS Genet 2012; 8:e1002721. [PMID: 22654673 PMCID: PMC3359975 DOI: 10.1371/journal.pgen.1002721] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
In both humans and Drosophila melanogaster, UDP-galactose 4'-epimerase (GALE) catalyzes two distinct reactions, interconverting UDP-galactose (UDP-gal) and UDP-glucose (UDP-glc) in the final step of the Leloir pathway of galactose metabolism, and also interconverting UDP-N-acetylgalactosamine (UDP-galNAc) and UDP-N-acetylglucosamine (UDP-glcNAc). All four of these UDP-sugars serve as vital substrates for glycosylation in metazoans. Partial loss of GALE in humans results in the spectrum disorder epimerase deficiency galactosemia; partial loss of GALE in Drosophila melanogaster also results in galactose-sensitivity, and complete loss in Drosophila is embryonic lethal. However, whether these outcomes in both humans and flies result from loss of one GALE activity, the other, or both has remained unknown. To address this question, we uncoupled the two activities in a Drosophila model, effectively replacing the endogenous dGALE with prokaryotic transgenes, one of which (Escherichia coli GALE) efficiently interconverts only UDP-gal/UDP-glc, and the other of which (Plesiomonas shigelloides wbgU) efficiently interconverts only UDP-galNAc/UDP-glcNAc. Our results demonstrate that both UDP-gal and UDP-galNAc activities of dGALE are required for Drosophila survival, although distinct roles for each activity can be seen in specific windows of developmental time or in response to a galactose challenge. By extension, these data also suggest that both activities might play distinct and essential roles in humans.
Collapse
Affiliation(s)
- Jennifer M. I. Daenzer
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Rebecca D. Sanders
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, United States of America
| | - Darwin Hang
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
| | - Judith L. Fridovich-Keil
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
18
|
McCorvie TJ, Liu Y, Frazer A, Gleason TJ, Fridovich-Keil JL, Timson DJ. Altered cofactor binding affects stability and activity of human UDP-galactose 4'-epimerase: implications for type III galactosemia. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1516-26. [PMID: 22613355 DOI: 10.1016/j.bbadis.2012.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 02/04/2023]
Abstract
Deficiency of UDP-galactose 4'-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and no ability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD(+). p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two α-helices that contain residues that interact with NAD(+). These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation.
Collapse
Affiliation(s)
- Thomas J McCorvie
- School of Biological Sciences, Queen's University, Belfast, BT9 7BL, UK
| | | | | | | | | | | |
Collapse
|
19
|
McCorvie TJ, Wasilenko J, Liu Y, Fridovich-Keil JL, Timson DJ. In vivo and in vitro function of human UDP-galactose 4'-epimerase variants. Biochimie 2011; 93:1747-54. [PMID: 21703329 PMCID: PMC3168732 DOI: 10.1016/j.biochi.2011.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 06/09/2011] [Indexed: 12/03/2022]
Abstract
Type III galactosemia results from reduced activity of the enzyme UDP-galactose 4'-epimerase. Five disease-associated alleles (G90E, V94M, D103G, N34S and L183P) and three artificial alleles (Y105C, N268D, and M284K) were tested for their ability to alleviate galactose-induced growth arrest in a Saccharomyces cerevisiae strain which lacks endogenous UDP-galactose 4'-epimerase. For all of these alleles, except M284K, the ability to alleviate galactose sensitivity was correlated with the UDP-galactose 4'-epimerase activity detected in cell extracts. The M284K allele, however, was able to substantially alleviate galactose sensitivity, but demonstrated near-zero activity in cell extracts. Recombinant expression of the corresponding protein in Escherichia coli resulted in a protein with reduced enzymatic activity and reduced stability towards denaturants in vitro. This lack of stability may result from the introduction of an unpaired positive charge into a bundle of three α-helices near the surface of the protein. The disparities between the in vivo and in vitro data for M284K-hGALE further suggest that there are additional, stabilising factors present in the cell. Taken together, these results reinforce the need for care in the interpretation of in vitro, enzymatic diagnostic tests for type III galactosemia.
Collapse
Affiliation(s)
- Thomas J. McCorvie
- School of Biological Sciences, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jamie Wasilenko
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Ying Liu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - David J. Timson
- School of Biological Sciences, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
20
|
Sanders RD, Sefton JMI, Moberg KH, Fridovich-Keil JL. UDP-galactose 4' epimerase (GALE) is essential for development of Drosophila melanogaster. Dis Model Mech 2010; 3:628-38. [PMID: 20519568 DOI: 10.1242/dmm.005058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UDP-galactose 4' epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose in the final step of the Leloir pathway; human GALE (hGALE) also interconverts UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. GALE therefore plays key roles in the metabolism of dietary galactose, in the production of endogenous galactose, and in maintaining the ratios of key substrates for glycoprotein and glycolipid biosynthesis. Partial impairment of hGALE results in the potentially lethal disorder epimerase-deficiency galactosemia. We report here the generation and initial characterization of a first whole-animal model of GALE deficiency using the fruit fly Drosophila melanogaster. Our results confirm that GALE function is essential in developing animals; Drosophila lacking GALE die as embryos but are rescued by the expression of a human GALE transgene. Larvae in which GALE has been conditionally knocked down die within days of GALE loss. Conditional knockdown and transgene expression studies further demonstrate that GALE expression in the gut primordium and Malpighian tubules is both necessary and sufficient for survival. Finally, like patients with generalized epimerase deficiency galactosemia, Drosophila with partial GALE loss survive in the absence of galactose but succumb in development if exposed to dietary galactose. These data establish the utility of the fly model of GALE deficiency and set the stage for future studies to define the mechanism(s) and modifiers of outcome in epimerase deficiency galactosemia.
Collapse
Affiliation(s)
- Rebecca D Sanders
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
21
|
Chhay JS, Vargas CA, McCorvie TJ, Fridovich-Keil JL, Timson DJ. Analysis of UDP-galactose 4'-epimerase mutations associated with the intermediate form of type III galactosaemia. J Inherit Metab Dis 2008; 31:108-16. [PMID: 18188677 DOI: 10.1007/s10545-007-0790-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/20/2007] [Accepted: 12/04/2007] [Indexed: 11/29/2022]
Abstract
Type III galactosaemia is a hereditary disease caused by reduced activity in the Leloir pathway enzyme, UDP-galactose 4'-epimerase (GALE). Traditionally, the condition has been divided into two forms-a mild, or peripheral, form and a severe, or generalized, form. Recently it has become apparent that there are disease states which are intermediate between these two extremes. Three mutations associated with this intermediate form (S81R, T150M and P293L) were analysed for their kinetic and structural properties in vitro and their effects on galactose-sensitivity of Saccharomyces cerevisiae cells that were deleted for the yeast GALE homologue Gal10p. All three mutations result in impairment of the kinetic parameters (principally the turnover number, k (cat)) compared with the wild-type enzyme. However, the degree of impairment was mild compared with that seen with the mutation (V94M) associated with the generalized form of epimerase deficiency galactosaemia. None of the three mutations tested affected the ability of the protein to dimerize in solution or its susceptibility to limited proteolysis in vitro. Finally, in the yeast model, each of the mutated patient alleles was able to complement the galactose-sensitivity of gal10Delta cells as fully as was the wild-type human allele. Furthermore, there was no difference from control in metabolite profile following galactose exposure for any of these strains. Thus we conclude that the subtle biochemical and metabolic abnormalities detected in patients expressing these GALE alleles likely reflect, at least in part, the reduced enzymatic activity of the encoded GALE proteins.
Collapse
Affiliation(s)
- J S Chhay
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
22
|
Mumma JO, Chhay JS, Ross KL, Eaton JS, Newell-Litwa KA, Fridovich-Keil JL. Distinct roles of galactose-1P in galactose-mediated growth arrest of yeast deficient in galactose-1P uridylyltransferase (GALT) and UDP-galactose 4'-epimerase (GALE). Mol Genet Metab 2008; 93:160-71. [PMID: 17981065 PMCID: PMC2253667 DOI: 10.1016/j.ymgme.2007.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
Galactose is metabolized in humans and other species by the three-enzyme Leloir pathway comprised of galactokinase (GALK), galactose 1-P uridylyltransferase (GALT), and UDP-galactose 4'-epimerase (GALE). Impairment of GALT or GALE in humans results in the potentially lethal disorder galactosemia, and loss of either enzyme in yeast results in galactose-dependent growth arrest of cultures despite the availability of an alternate carbon source. In contrast, loss of GALK in humans is not life-threatening, and in yeast has no impact on the growth of cultures challenged with galactose. Further, the growth of both GALT-null and GALE-null yeast challenged with galactose is rescued by loss of GALK, thereby implicating the GALK reaction product, gal-1P, for a role in the galactose-sensitivity of both strains. However, the nature of that relationship has remained unclear. Here we have developed and applied a doxycycline-repressible allele of galactokinase to define the quantitative relationship between galactokinase activity, gal-1P accumulation, and growth arrest of galactose-challenged GALT or GALE-deficient yeast. Our results demonstrate a clear threshold relationship between gal-1P accumulation and galactose-mediated growth arrest in both GALT-null and GALE-null yeast, however, the threshold for the two strains is distinct. Further, we tested the galactose-sensitivity of yeast double-null for GALT and GALE, and found that although loss of GALT barely changed accumulation of gal-1P, it significantly lowered the accumulation of UDP-gal, and also dramatically rescued growth of the GALE-null cells. Together, these data suggest that while gal-1P alone may account for the galactose-sensitivity of GALT-null cells, other factors, likely to include UDP-gal accumulation, must contribute to the galactose-sensitivity of GALE-null cells.
Collapse
Affiliation(s)
- Jane Odhiambo Mumma
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Juliet S. Chhay
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Kerry L. Ross
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Jana S. Eaton
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA
| | - Karen A. Newell-Litwa
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA
| | - Judith L. Fridovich-Keil
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
23
|
Cheng B, Sorokin EP, Tse-Dinh YC. Mutation adjacent to the active site tyrosine can enhance DNA cleavage and cell killing by the TOPRIM Gly to Ser mutant of bacterial topoisomerase I. Nucleic Acids Res 2007; 36:1017-25. [PMID: 18096618 PMCID: PMC2241903 DOI: 10.1093/nar/gkm1126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The TOPRIM DXDXXG residues of type IA and II topoisomerases are involved in Mg(II) binding and the cleavage-rejoining of DNA. Mutation of the strictly conserved glycine to serine in Yersinia pestis and Escherichia coli topoisomerase I results in bacterial cell killing due to inhibition of DNA religation after DNA cleavage. In this study, all other substitutions at the TOPRIM glycine of Y. pestis topoisomerase I were examined. While the Gly to Ala substitution allowed both DNA cleavage and religation, other mutations abolished DNA cleavage. DNA cleavage activity retained by the Gly to Ser mutant could be significantly enhanced by a second mutation of the methionine residue adjacent to the active site tyrosine. Induction of mutant topoisomerase with both the TOPRIM glycine and active site region methionine mutations resulted in up to 40-fold higher cell killing rate when compared with the single TOPRIM Gly to Ser mutant. Bacterial type IA topoisomerases are potential targets for discovery of novel antibiotics. These results suggest that compounds that interact simultaneously with the TOPRIM motif and the molecular surface around the active site tyrosine could be highly efficient topoisomerase poisons through both enhancement of DNA cleavage and inhibition of DNA rejoining.
Collapse
Affiliation(s)
| | | | - Yuk-Ching Tse-Dinh
- *To whom correspondence should be addressed. +1 914 594 4061+1 914 594 4058
| |
Collapse
|
24
|
Park HD, Park KU, Kim JQ, Shin CH, Yang SW, Lee DH, Song YH, Song J. The molecular basis of UDP-galactose-4-epimerase (GALE) deficiency galactosemia in Korean patients. Genet Med 2006; 7:646-9. [PMID: 16301867 DOI: 10.1097/01.gim.0000194023.27802.2d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE UDP-galactose-4-epimerase (GALE) deficiency galactosemia is an autosomal recessive disorder and the prevalence of the disease varies among ethnic groups. We aimed to investigate molecular characteristics of the Korean patients with attenuated GALE activity and elevated galactose-1-phosphate levels in blood. METHODS In order to characterize the molecular defects underlying GALE deficiency, the GALE gene of 7 patients showing severe activity decreases was sequenced. PCR-RFLP was performed to confirm the presence of the mutations identified by sequencing. RESULTS Nine mutations were identified: 8 missense mutations (p.A25V, p.R40C, p.D69E, p.E165K, p.R169W, p.R239W, p.G302D, and p.R335H) and one nonsense mutation (p.W336X). Except for p.R335H, all of these mutations are novel. Six patients were compound heterozygotes (p.D69E/p.G302D, p.R40C/p.R169W, p.D69E/p.E165K, p.R239W/p.R335H, p.A25V/p.R169W, and p.G302D/p.R335H) and the remaining patient had only one mutation (p.W336X/not detected). Thirty patients with moderately reduced GALE activity were also tested by PCR-RFLP for the presence of the above mutation, and mutations were detected in 17 of these 30 patients. The frequency of p.G302D (9/30), p.R239W (6/30) and p.R169W (5/30) in our Korean patients with GALE deficiency galactosemia was relatively high. CONCLUSIONS We detected 9 mutations of the GALE gene in Korean galactosemia patients, and confirmed allelic heterogeneity in this disease.
Collapse
Affiliation(s)
- Hyung-Doo Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wasilenko J, Fridovich-Keil JL. Relationship between UDP-Galactose 4′-Epimerase Activity and Galactose Sensitivity in Yeast. J Biol Chem 2006; 281:8443-9. [PMID: 16452467 DOI: 10.1074/jbc.m600778200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UDP-galactose 4'-epimerase (GALE) catalyzes the final step of the highly conserved Leloir pathway of galactose metabolism. Loss of GALE in humans results in a variant form of the metabolic disorder, galactosemia. Loss of GALE in yeast results in galactose-dependent growth arrest. Although the role of GALE in galactose metabolism has been recognized for decades, the precise relationship between GALE activity and galactose sensitivity has remained unclear. Here we have explored this relationship by asking the following. 1) Is GALE rate-limiting for galactose metabolism in yeast? 2) What is the relationship between GALE activity and galactose-dependent growth arrest in yeast? 3) What is the relationship between GALE activity and the abnormal accumulation of galactose metabolites in yeast? To answer these questions we engineered a strain of yeast in which GALE was doxycycline-repressible and studied these cells under conditions of intermediate GALE expression. Our results demonstrated a smooth linear relationship between galactose metabolism and GALE activity over a range from 0 to approximately 5% but a steep threshold relationship between growth rate in galactose and GALE activity over the same range. The relationship between abnormal accumulation of metabolites and GALE activity was also linear over the range from 0 to approximately 5%, suggesting that if the abnormal accumulation of metabolites underlies galactose-dependent growth-arrest in GALE-impaired yeast, either the impact of individual metabolites must be synergistic and/or the threshold of sensitivity must be very steep. Together these data reveal important points of similarity and contrast between the roles of GALE and galactose-1-phosphate uridylyltransferase in galactose metabolism in yeast and provide a framework for future studies in mammalian systems.
Collapse
Affiliation(s)
- Jamie Wasilenko
- Graduate Program in Genetics and Molecular Biology, Emory University and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
26
|
Openo KK, Schulz JM, Vargas CA, Orton CS, Epstein MP, Schnur RE, Scaglia F, Berry GT, Gottesman GS, Ficicioglu C, Slonim AE, Schroer RJ, Yu C, Rangel VE, Keenan J, Lamance K, Fridovich-Keil JL. Epimerase-deficiency galactosemia is not a binary condition. Am J Hum Genet 2006; 78:89-102. [PMID: 16385452 PMCID: PMC1380226 DOI: 10.1086/498985] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 10/11/2005] [Indexed: 11/03/2022] Open
Abstract
Epimerase-deficiency galactosemia results from the impairment of UDP-galactose 4'-epimerase (GALE), the third enzyme in the Leloir pathway of galactose metabolism. Originally identified as a clinically benign "peripheral" condition with enzyme impairment restricted to circulating blood cells, GALE deficiency was later demonstrated also to exist in a rare but clinically severe "generalized" form, with enzyme impairment affecting a range of tissues. Isolated cases of clinically and/or biochemically intermediate cases of epimerase deficiency have also been reported. We report here studies of 10 patients who, in the neonatal period, received the diagnosis of hemolysate epimerase deficiency. We have characterized these patients with regard to three parameters: (1) GALE activity in transformed lymphoblasts, representing a "nonperipheral" tissue, (2) metabolic sensitivity of those lymphoblasts to galactose challenge in culture, and (3) evidence of normal versus abnormal galactose metabolism in the patients themselves. Our results demonstrate two important points. First, whereas some of the patients studied exhibited near-normal levels of GALE activity in lymphoblasts, consistent with a diagnosis of peripheral epimerase deficiency, many did not. We detected a spectrum of GALE activity levels ranging from 15%-64% of control levels, demonstrating that epimerase deficiency is not a binary condition; it is a continuum disorder. Second, lymphoblasts demonstrating the most severe reduction in GALE activity also demonstrated abnormal metabolite levels in the presence of external galactose and, in some cases, also in the absence of galactose. These abnormalities included elevated galactose-1P, elevated UDP-galactose, and deficient UDP-glucose. Moreover, some of the patients themselves also demonstrated metabolic abnormalities, both on and off galactose-restricted diet. Long-term follow-up studies of these and other patients will be required to elucidate the clinical significance of these biochemical abnormalities and the potential impact of dietary intervention on outcome.
Collapse
Affiliation(s)
- Kimberly K. Openo
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Jenny M. Schulz
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Claudia A. Vargas
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Corey S. Orton
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Michael P. Epstein
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Rhonda E. Schnur
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Fernando Scaglia
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Gerard T. Berry
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Gary S. Gottesman
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Can Ficicioglu
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Alfred E. Slonim
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Richard J. Schroer
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Chunli Yu
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Vanessa E. Rangel
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Jennifer Keenan
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Kerri Lamance
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| | - Judith L. Fridovich-Keil
- Department of Human Genetics, Emory University School of Medicine, Graduate Program in Nutrition Health Sciences, Emory University, and Emory College, Atlanta; Division of Genetics, Department of Pediatrics, Cooper University Hospital/Robert Wood Johnson Medical School, Camden, NJ; Department of Molecular and Human Genetics, Texas Children’s Hospital and Baylor College of Medicine, Houston; Jefferson Medical College and Division of Metabolism, Children’s Hospital of Philadelphia, Philadelphia; SSM Cardinal Glennon Children’s Hospital, St. Louis, MO; Columbia University Medical School, New York; and Greenwood Genetics Center, Greenwood, SC
| |
Collapse
|
27
|
Demendi M, Ishiyama N, Lam J, Berghuis A, Creuzenet C. Towards a better understanding of the substrate specificity of the UDP-N-acetylglucosamine C4 epimerase WbpP. Biochem J 2005; 389:173-80. [PMID: 15752069 PMCID: PMC1184549 DOI: 10.1042/bj20050263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
WbpP is the only genuine UDP-GlcNAc (UDP-N-acetylglucosamine) C4 epimerase for which both biochemical and structural data are available. This represents a golden opportunity to elucidate the molecular basis for its specificity for N-acetylated substrates. Based on the comparison of the substrate binding site of WbpP with that of other C4 epimerases that convert preferentially non-acetylated substrates, or that are able to convert both acetylated and non-acetylated substrates equally well, specific residues of WbpP were mutated, and the substrate specificity of the mutants was determined by direct biochemical assays and kinetic analyses. Most of the mutations tested were anticipated to trigger a significant switch in substrate specificity, mostly towards a preference for non-acetylated substrates. However, only one of the mutations (A209H) had the expected effect, and most others resulted in enhanced specificity of WbpP for N-acetylated substrates (Q201E, G102K, Q201E/G102K, A209N and S143A). One mutation (S144K) totally abolished enzyme activity. These data indicate that, although all residues targeted in the present study turned out to be important for catalysis, determinants of substrate specificity are not confined to the substrate-binding pocket and that longer range interactions are essential in allowing proper positioning of various ligands in the binding pocket. Hence prediction or engineering of substrate specificity solely based on sequence analysis, or even on modelling of the binding pocket, might lead to incorrect functional assignments.
Collapse
Affiliation(s)
- Melinda Demendi
- *Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Noboru Ishiyama
- †Department of Biochemistry, McGill University, Montréal, QC, Canada, H3A 1A4
| | - Joseph S. Lam
- ‡Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Albert M. Berghuis
- †Department of Biochemistry, McGill University, Montréal, QC, Canada, H3A 1A4
- §Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada, H3A 1A4
| | - Carole Creuzenet
- *Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
- To whom correspondence should be addressed (email )
| |
Collapse
|
28
|
Abstract
UDP-galactose 4-epimerase (GALE, EC 5.1.3.2) catalyses the interconversion of UDP-glucose and UDP-galactose. Point mutations in this enzyme are associated with the genetic disease, type III galactosemia, which exists in two forms - a milder, or peripheral, form and a more severe, or generalized, form. Recombinant wild-type GALE, and nine disease-causing mutations, have all been expressed in, and purified from, Escherichia coli in soluble, active forms. Two of the mutations (N34S and G319E) display essentially wild-type kinetics. The remainder (G90E, V94M, D103G, L183P, K257R, L313M and R335H) are all impaired in turnover number (k cat) and specificity constant (k cat/Km), with G90E and V94M (which is associated with the generalized form of galactosemia) being the most affected. None of the mutations results in a greater than threefold change in the Michaelis constant (Km). Protein-protein crosslinking suggests that none of the mutants are impaired in homodimer formation. The L183P mutation suffers from severe proteolytic degradation during expression and purification. N34S, G90E and D103G all show increased susceptibility to digestion in limited proteolysis experiments. Therefore, it is suggested that reduced catalytic efficiency and increased proteolytic susceptibility of GALE are causative factors in type III galactosemia. Furthermore, there is an approximate correlation between the severity of these defects in the protein structure and function, and the symptoms observed in patients.
Collapse
Affiliation(s)
- David J Timson
- School of Biology & Biochemistry, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| |
Collapse
|
29
|
Schulz JM, Ross KL, Malmstrom K, Krieger M, Fridovich-Keil JL. Mediators of galactose sensitivity in UDP-galactose 4'-epimerase-impaired mammalian cells. J Biol Chem 2005; 280:13493-502. [PMID: 15701638 DOI: 10.1074/jbc.m414045200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-galactose 4'-epimerase (GALE) catalyzes the final step in the Leloir pathway of galactose metabolism, interconverting UDP-galactose and UDP-glucose. Unlike its Escherichia coli counterpart, mammalian GALE also interconverts UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. Considering the key roles played by all four of these UDP-sugars in glycosylation, human GALE therefore not only contributes to the Leloir pathway, but also functions as a gatekeeper overseeing the ratios of important substrate pools required for the synthesis of glycosylated macromolecules. Defects in human GALE result in the disorder epimerase-deficiency galactosemia. To explore the relationship among GALE activity, substrate specificity, metabolic balance, and galactose sensitivity in mammalian cells, we employed a previously described GALE-null line of Chinese hamster ovary cells, ldlD. Using a transfection protocol, we generated ldlD derivative cell lines that expressed different levels of wild-type human GALE or E. coli GALE and compared the phenotypes and metabolic profiles of these lines cultured in the presence versus absence of galactose. We found that GALE-null cells accumulated abnormally high levels of Gal-1-P and UDP-Gal and abnormally low levels of UDP-Glc and UDP-GlcNAc in the presence of galactose and that human GALE expression corrected each of these defects. Comparing the human GALE- and E. coli GALE-expressing cells, we found that although GALE activity toward both substrates was required to restore metabolic balance, UDP-GalNAc activity was not required for cell proliferation in the presence of otherwise cytostatic concentrations of galactose. Finally, we found that uridine supplementation, which essentially corrected UDP-Glc and, to a lesser extent UDP-GlcNAc depletion, enabled ldlD cells to proliferate in the presence of galactose despite the continued accumulation of Gal-1-P and UDP-Gal. These data offer important insights into the mechanism of galactose sensitivity in epimerase-impaired cells and suggest a potential novel therapy for patients with epimerase-deficiency galactosemia.
Collapse
Affiliation(s)
- Jenny M Schulz
- Graduate Program in Nutrition and Health Sciences, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
30
|
Bernatchez S, Szymanski CM, Ishiyama N, Li J, Jarrell HC, Lau PC, Berghuis AM, Young NM, Wakarchuk WW. A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem 2004; 280:4792-802. [PMID: 15509570 DOI: 10.1074/jbc.m407767200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major cell-surface carbohydrates (lipooligosaccharide, capsule, and glycoprotein N-linked heptasaccharide) of Campylobacter jejuni NCTC 11168 contain Gal and/or GalNAc residues. GalE is the sole annotated UDP-glucose 4-epimerase in this bacterium. The presence of GalNAc residues in these carbohydrates suggested that GalE might be a UDP-GlcNAc 4-epimerase. GalE was shown to epimerize UDP-Glc and UDP-GlcNAc in coupled assays with C. jejuni glycosyltransferases and in sugar nucleotide epimerization equilibria studies. Thus, GalE possesses UDP-GlcNAc 4-epimerase activity and was renamed Gne. The Km(app) values of a purified MalE-Gne fusion protein for UDP-GlcNAc and UDP-GalNAc are 1087 and 1070 microm, whereas those for UDP-Glc and UDP-Gal are 780 and 784 microm. The kcat and kcat/Km(app) values were three to four times higher for UDP-GalNAc and UDP-Gal than for UDP-GlcNAc and UDP-Glc. The comparison of the kinetic parameters of MalE-Gne to those of other characterized bacterial UDP-GlcNAc 4-epimerases indicated that Gne is a bifunctional UDP-GlcNAc/Glc 4-epimerase. The UDP sugar-binding site of Gne was modeled by using the structure of the UDP-GlcNAc 4-epimerase WbpP from Pseudomonas aeruginosa. Small differences were noted, and these may explain the bifunctional character of the C. jejuni Gne. In a gne mutant of C. jejuni, the lipooligosaccharide was shown by capillary electrophoresis-mass spectrometry to be truncated by at least five sugars. Furthermore, both the glycoprotein N-linked heptasaccharide and capsule were no longer detectable by high resolution magic angle spinning NMR. These data indicate that Gne is the enzyme providing Gal and GalNAc residues with the synthesis of all three cell-surface carbohydrates in C. jejuni NCTC 11168.
Collapse
Affiliation(s)
- Stéphane Bernatchez
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ross KL, Davis CN, Fridovich-Keil JL. Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast. Mol Genet Metab 2004; 83:103-16. [PMID: 15464425 DOI: 10.1016/j.ymgme.2004.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/04/2004] [Accepted: 07/07/2004] [Indexed: 11/25/2022]
Abstract
The metabolism of galactose via enzymes of the Leloir pathway: galactokinase, galactose-1-P uridylyltransferase, and UDP galactose-4'-epimerase, is a process that has been conserved from Escherichia coli through humans. Impairment of this pathway in patients results in the disease galactosemia. Despite decades of study, the underlying pathophysiology in galactosemia remains unknown. Here we have defined the functional and metabolic implications of impaired galactose metabolism in yeast, by asking two questions: (1) What is the impact of loss of each of the three Leloir enzymes on the ability of cells to metabolize galactose, and on their sensitivity to galactose, and (2) what is the relationship between gal-1P and galactose-sensitivity in yeast? Our results demonstrate that only transferase-null cells are able to deplete their medium of galactose; deletion of kinase or epimerase halts this process. In contrast, only kinase-null cultures grow well in glycerol/ethanol medium despite the addition of galactose; both transferase and epimerase-null yeast arrest growth under these conditions. Indeed, epimerase-null yeast arrest growth at galactose concentrations 10-fold lower than do their transferase-null counterparts. Secondary deletion of kinase relieves growth arrest in both strains. Finally, rather than a continuous relationship between gal-1P and growth arrest, we observed a threshold level of gal-1P (approximately 10 nmol/mg cell DM) above which both transferase-null and epimerase-null cultures could not grow. These results both confirm and significantly extend prior knowledge of galactose metabolism in yeast, and set the stage for future studies into the mediators and mechanism of Leloir-impaired galactose sensitivity in eukaryotes.
Collapse
Affiliation(s)
- Kerry L Ross
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
32
|
Schulz JM, Watson AL, Sanders R, Ross KL, Thoden JB, Holden HM, Fridovich-Keil JL. Determinants of function and substrate specificity in human UDP-galactose 4'-epimerase. J Biol Chem 2004; 279:32796-803. [PMID: 15175331 DOI: 10.1074/jbc.m405005200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-galactose 4'-epimerase (GALE) interconverts UDP-galactose and UDP-glucose in the final step of the Leloir pathway. Unlike the Escherichia coli enzyme, human GALE (hGALE) also efficiently interconverts a larger pair of substrates: UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. The basis of this differential substrate specificity has remained obscure. Recently, however, x-ray crystallographic data have both predicted essential active site residues and suggested that differential active site cleft volume may be a key factor in determining GALE substrate selectivity. We report here a direct test of this hypothesis. In brief, we have created four substituted alleles: S132A, Y157F, S132A/Y157F, and C307Y-hGALE. While the first three substitutions were predicted to disrupt catalytic activity, the fourth was predicted to reduce active site cleft volume, thereby limiting entry or rotation of the larger but not the smaller substrate. All four alleles were expressed in a null-background strain of Saccharomyces cerevisiae and characterized in terms of activity with regard to both UDP-galactose and UDP-N-acetylgalactosamine. The S132A/Y157F and C307Y-hGALE proteins were also overexpressed in Pichia pastoris and purified for analysis. In all forms tested, the Y157F, S132A, and Y157F/S132A-hGALE proteins each demonstrated a complete loss of activity with respect to both substrates. In contrast, the C307Y-hGALE demonstrated normal activity with respect to UDP-galactose but complete loss of activity with respect to UDP-N-acetylgalactosamine. Together, these results serve to validate the wild-type hGALE crystal structure and fully support the hypothesis that residue 307 acts as a gatekeeper mediating substrate access to the hGALE active site.
Collapse
Affiliation(s)
- Jenny M Schulz
- Graduate Program in Nutrition and Health Sciences, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Thoden JB, Henderson JM, Fridovich-Keil JL, Holden HM. Structural analysis of the Y299C mutant of Escherichia coli UDP-galactose 4-epimerase. Teaching an old dog new tricks. J Biol Chem 2002; 277:27528-34. [PMID: 12019271 DOI: 10.1074/jbc.m204413200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-galactose 4-epimerase catalyzes the interconversion of UDP-Gal and UDP-Glc during normal galactose metabolism. The mammalian form of the enzyme, unlike its Escherichia coli counterpart, can also interconvert UDP-GalNAc and UDP-GlcNAc. One key feature of the epimerase reaction mechanism is the rotation of a 4-ketopyranose intermediate in the active site. By comparing the high resolution x-ray structures of both the bacterial and human forms of the enzyme, it was previously postulated that the additional activity in the human epimerase was due to replacement of the structural equivalent of Tyr-299 in the E. coli enzyme with a cysteine residue, thereby leading to a larger active site volume. To test this hypothesis, the Y299C mutant form of the E. coli enzyme was prepared and its three-dimensional structure solved as described here. Additionally, the Y299C mutant protein was assayed for activity against both UDP-Gal and UDP-GalNAc. These studies have revealed that, indeed, this simple mutation did confer UDP-GalNAc/UDP-GlcNAc converting activity to the bacterial enzyme with minimal changes in its three-dimensional structure. Specifically, although the Y299C mutation in the bacterial enzyme resulted in a loss of epimerase activity with regard to UDP-Gal by almost 5-fold, it resulted in a gain of activity against UDP-GalNAc by more than 230-fold.
Collapse
Affiliation(s)
- James B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544, USA
| | | | | | | |
Collapse
|
34
|
Henderson JM, Huguenin SM, Cowan TM, Fridovich-Keil JL. A PCR-based method for detecting known mutations in the human UDP galactose-4'-epimerase gene associated with epimerase-deficiency galactosemia. Clin Genet 2001; 60:350-5. [PMID: 11903335 DOI: 10.1034/j.1399-0004.2001.600505.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epimerase-deficiency galactosemia results from impairment of the human enzyme UDP galactose-4'-epimerase (GALE). We report a rapid, internally controlled PCR-based method for detection of nine naturally occurring point mutations in human GALE associated with epimerase deficiency. These mutations were derived from patients whose clinical presentations ranged from mild to severe; all but one of these mutations have been reported previously. The tests described here work well on both cDNA and genomic samples and require no specialized equipment beyond a thermal cycler and an agarose gel electrophoresis system. Finally, although these tests in no way replace the need for biochemical diagnosis in epimerase-deficiency galactosemia, they do provide the possibility of additional molecular information to support a biochemical diagnosis and facilitate the possibility of more accurate carrier testing, should that option be desired.
Collapse
Affiliation(s)
- J M Henderson
- Graduate Program in Nutrition Health Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
35
|
Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM. Molecular basis for severe epimerase deficiency galactosemia. X-ray structure of the human V94m-substituted UDP-galactose 4-epimerase. J Biol Chem 2001; 276:20617-23. [PMID: 11279193 DOI: 10.1074/jbc.m101304200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galactosemia is an inherited disorder characterized by an inability to metabolize galactose. Although classical galactosemia results from impairment of the second enzyme of the Leloir pathway, namely galactose-1-phosphate uridylyltransferase, alternate forms of the disorder can occur due to either galactokinase or UDP-galactose 4-epimerase deficiencies. One of the more severe cases of epimerase deficiency galactosemia arises from an amino acid substitution at position 94. It has been previously demonstrated that the V94M protein is impaired relative to the wild-type enzyme predominantly at the level of V(max) rather than K(m). To address the molecular consequences the mutation imparts on the three-dimensional architecture of the enzyme, we have solved the structures of the V94M-substituted human epimerase complexed with NADH and UDP-glucose, UDP-galactose, UDP-GlcNAc, or UDP-GalNAc. In the wild-type enzyme, the hydrophobic side chain of Val(94) packs near the aromatic group of the catalytic Tyr(157) and serves as a molecular "fence" to limit the rotation of the glycosyl portions of the UDP-sugar substrates within the active site. The net effect of the V94M substitution is an opening up of the Ala(93) to Glu(96) surface loop, which allows free rotation of the sugars into nonproductive binding modes.
Collapse
Affiliation(s)
- J B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, 53706, USA
| | | | | | | |
Collapse
|
36
|
Thoden JB, Wohlers TM, Fridovich-Keil JL, Holden HM. Human UDP-galactose 4-epimerase. Accommodation of UDP-N-acetylglucosamine within the active site. J Biol Chem 2001; 276:15131-6. [PMID: 11279032 DOI: 10.1074/jbc.m100220200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-galactose 4-epimerase catalyzes the interconversion of UDP-galactose and UDP-glucose during normal galactose metabolism. One of the key structural features in the proposed reaction mechanism for the enzyme is the rotation of a 4'-ketopyranose intermediate within the active site pocket. Recently, the three-dimensional structure of the human enzyme with bound NADH and UDP-glucose was determined. Unlike that observed for the protein isolated from Escherichia coli, the human enzyme can also turn over UDP-GlcNAc to UDP-GalNAc and vice versa. Here we describe the three-dimensional structure of human epimerase complexed with NADH and UDP-GlcNAc. To accommodate the additional N-acetyl group at the C2 position of the sugar, the side chain of Asn-207 rotates toward the interior of the protein and interacts with Glu-199. Strikingly, in the human enzyme, the structural equivalent of Tyr-299 in the E. coli protein is replaced with a cysteine residue (Cys-307) and the active site volume for the human protein is calculated to be approximately 15% larger than that observed for the bacterial epimerase. This combination of a larger active site cavity and amino acid residue replacement most likely accounts for the inability of the E. coli enzyme to interconvert UDP-GlcNAc and UDP-GalNAc.
Collapse
Affiliation(s)
- J B Thoden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | |
Collapse
|
37
|
Riehman K, Crews C, Fridovich-Keil JL. Relationship between genotype, activity, and galactose sensitivity in yeast expressing patient alleles of human galactose-1-phosphate uridylyltransferase. J Biol Chem 2001; 276:10634-40. [PMID: 11152465 DOI: 10.1074/jbc.m009583200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Impairment of the human enzyme galactose-1-phosphate uridylyltransferase (GALT) results in the potentially lethal disorder galactosemia; the biochemical basis of pathophysiology in galactosemia remains unknown. We have applied a yeast expression system for human GALT to test the hypothesis that genotype will correlate with GALT activity measured in vitro and with metabolite levels and galactose sensitivity measured in vivo. In particular, we have determined the relative degree of functional impairment associated with each of 16 patient-derived hGALT alleles; activities ranged from null to essentially normal. Next, we utilized strains expressing these alleles to demonstrate a clear inverse relationship between GALT activity and galactose sensitivity. Finally, we monitored accumulation of galactose-1-P, UDP-gal, and UDP-glc in yeast expressing a subset of these alleles. As reported for humans, yeast deficient in GALT, but not their wild type counterparts, demonstrated elevated levels of galactose 1-phosphate and diminished UDP-gal upon exposure to galactose. These results present the first clear evidence in a genetically and biochemically amenable model system of a relationship between GALT genotype, enzyme activity, sensitivity to galactose, and aberrant metabolite accumulation. As such, these data lay a foundation for future studies into the underlying mechanism(s) of galactose sensitivity in yeast and perhaps other eukaryotes, including humans.
Collapse
Affiliation(s)
- K Riehman
- Department of Genetics and Graduate Program in Genetics and Molecular Biology, Emory University, School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|