1
|
Xu C, Hao B, Sun G, Mei Y, Sun L, Sun Y, Wang Y, Zhang Y, Zhang W, Zhang M, Zhang Y, Wang D, Rao Z, Li X, Shen QJ, Wang NN. Dual activities of ACC synthase: Novel clues regarding the molecular evolution of ACS genes. SCIENCE ADVANCES 2021; 7:eabg8752. [PMID: 34757795 PMCID: PMC8580319 DOI: 10.1126/sciadv.abg8752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Ethylene plays profound roles in plant development. The rate-limiting enzyme of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), which is generally believed to be a single-activity enzyme evolving from aspartate aminotransferases. Here, we demonstrate that, in addition to catalyzing the conversion of S-adenosyl-methionine to the ethylene precursor ACC, genuine ACSs widely have Cβ-S lyase activity. Two N-terminal motifs, including a glutamine residue, are essential for conferring ACS activity to ACS-like proteins. Motif and activity analyses of ACS-like proteins from plants at different evolutionary stages suggest that the ACC-dependent pathway is uniquely developed in seed plants. A putative catalytic mechanism for the dual activities of ACSs is proposed on the basis of the crystal structure and biochemical data. These findings not only expand our current understanding of ACS functions but also provide novel insights into the evolutionary origin of ACS genes.
Collapse
Affiliation(s)
- Chang Xu
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bowei Hao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Gongling Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lifang Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunmei Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yibo Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengyuan Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yue Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Ning Ning Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Valdenegro M, Huidobro C, Monsalve L, Bernales M, Fuentes L, Simpson R. Effects of ethrel, 1-MCP and modified atmosphere packaging on the quality of 'Wonderful' pomegranates during cold storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4854-4865. [PMID: 29573436 DOI: 10.1002/jsfa.9015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pomegranate (Punica granatum) is a non-climacteric fruit susceptible to chilling injury (CI) at temperatures below 5 °C. To understand the influences of ethylene and modified atmosphere on CI physiological disorders of pomegranate, exogenous ethrel (0.5, 1 and 1.5 µg L-1 ) treatments, 1-methylcyclopropene (1-MCP) (1 µL L-1 ) exposure, packaging in a modified atmosphere (MAP) (XTend™ bags; StePac, São Paulo, Brazil), a MAP/1-MCP combination, and packaging in macro-perforated bags (MPB) were applied. The treated fruits were cold stored (2 ± 1 °C; 85% relative humidity) and sampled during 120 + 3 days at 20 °C. RESULTS During cold storage, CI symptoms started at 20 days in MPB and at 60 days for all exogenous ethylene treatments, and were delayed to 120 days in MAP, 1-MCP and MAP/1-MCP treatments. MPB and ethylene treatments induced significant electrolyte leakage, oxidative damage, lipid peroxidation, ethylene and CO2 production, and 1-aminocyclopropane-1-carboxylic acid oxidase activity, without any change in total soluble solids, titratable acidity or skin and aril colours. Conversely, MAP by itself, or in combination with 1-MCP application, effectively delayed CI symptoms. CONCLUSION During long-term cold storage of this non-climacteric fruit, ethrel application induced endogenous ethylene biosynthesis, accelerating the appearance of CI symptoms in contrast to the observations made for MAP and 1-MCP treatments. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mónika Valdenegro
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Casilla 4D, Quillota, Chile
| | - Camila Huidobro
- Instituto de Química, Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Liliam Monsalve
- Centro Regional de Estudios en Alimentos Saludables (CREAS), CONICYT-Regional GORE Valparaíso Project R17A10001. Avenida Universidad 330, Placilla, Curauma. Valparaíso, Chile
| | - Maricarmen Bernales
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Casilla 4D, Quillota, Chile
| | - Lida Fuentes
- Centro Regional de Estudios en Alimentos Saludables (CREAS), CONICYT-Regional GORE Valparaíso Project R17A10001. Avenida Universidad 330, Placilla, Curauma. Valparaíso, Chile
| | - Ricardo Simpson
- Centro Regional de Estudios en Alimentos Saludables (CREAS), CONICYT-Regional GORE Valparaíso Project R17A10001. Avenida Universidad 330, Placilla, Curauma. Valparaíso, Chile
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| |
Collapse
|
3
|
Lado J, Rodrigo MJ, Zacarías L. Analysis of ethylene biosynthesis and perception during postharvest cold storage of Marsh and Star Ruby grapefruits. FOOD SCI TECHNOL INT 2014; 21:537-46. [DOI: 10.1177/1082013214553810] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/08/2014] [Indexed: 01/13/2023]
Abstract
Grapefruits are among the citrus species more sensitive to cold and develop chilling injury symptoms during prolonged postharvest storage at temperatures lower than 8 ℃–10 ℃. The plant hormone ethylene has been described either to protect or potentiate chilling injury development in citrus whereas little is known about transcriptional regulation of ethylene biosynthesis, perception and response during cold storage and how the hormone is regulating its own perception and signaling cascade. Then, the objective of the present study was to explore the transcriptional changes in the expression of ethylene biosynthesis, receptors and response genes during cold storage of the white Marsh and the red Star Ruby grapefruits. The effect of the ethylene action inhibitor, 1-MCP, was evaluated to investigate the involvement of ethylene in the regulation of the genes of its own biosynthesis and perception pathway. Ethylene production was very low at the harvest time in fruits of both varieties and experienced only minor changes during storage. By contrast, inhibition of ethylene perception by 1-MCP markedly induced ethylene production, and this increase was highly stimulated during shelf-life at 20 ℃, as well as transcription of ACS and ACO. These results support the auto-inhibitory regulation of ethylene in grapefruits, which acts mainly at the transcriptional level of ACS and ACO genes. Moreover, ethylene receptor1 and ethylene receptor3 were induced by cold while no clear role of ethylene was observed in the induction of ethylene receptors. However, ethylene appears to be implicated in the transcriptional regulation of ERFs both under cold storage and shelf-life.
Collapse
Affiliation(s)
- Joanna Lado
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
- Instituto Nacional de Investigación Agropecuaria (INIA), Uruguay
| | - María Jesús Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| | - Lorenzo Zacarías
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Valencia, Spain
| |
Collapse
|
4
|
Serrat X, Esteban R, Guibourt N, Moysset L, Nogués S, Lalanne E. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. PLANT METHODS 2014; 10:5. [PMID: 24475756 PMCID: PMC3923009 DOI: 10.1186/1746-4811-10-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/24/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin. RESULTS Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes. Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations out of 15 point mutations were identified. CONCLUSIONS This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs and the total amount of mutagen needed thanks to the mutagenesis volume reduction.
Collapse
Affiliation(s)
- Xavier Serrat
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
- Departament de Biologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | | | | | - Luisa Moysset
- Departament de Biologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Eric Lalanne
- Oryzon Genomics, S.A., Cornellà de Llobregat, Spain
| |
Collapse
|
5
|
Zhu A, Li W, Ye J, Sun X, Ding Y, Cheng Y, Deng X. Microarray expression profiling of postharvest Ponkan mandarin (Citrus reticulata) fruit under cold storage reveals regulatory gene candidates and implications on soluble sugars metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:358-74. [PMID: 21348940 DOI: 10.1111/j.1744-7909.2011.01035.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Low temperature storage is widely applied to maintain citrus postharvest fruit quality. In this study, the transcriptional and metabolic changes in the pulp tissue of Citrus reticulata Blanco cv. "Ponkan" were studied for three successive months under cold storage by Affymetrix Citrus GeneChip and gas chromatography, respectively. As many as 2 161 differentially expressed transcripts were identified based on the bayesian hierarchical model. The statistical analysis of gene ontology revealed that defense/stress-related genes were induced quickly, while autophagy-related genes were overrepresented in the late sampling stages, suggesting that the functional shift may coincide with the subsequent steps of chilling development. We further classified the potential regulatory components and concluded that ethylene may play the crucial role in chilling development in this non-climacteric fruit. To cope with complex events, 53 upregulated transcription factors represented regulatory candidates. Within these, the AP2-EREBP, C2H2 and AS2 gene family were overrepresented. Cold storage also causes alterations in various metabolic pathways; a keen interest is paid in deciphering expression changes of soluble sugar genes as increased evidence that soluble sugars act as both osmolytes and metabolite signal molecules. Our results will likely facilitate further studies in this field with promising genetic candidates during chilling.
Collapse
Affiliation(s)
- Andan Zhu
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
6
|
An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5'-phosphate and aminoethoxyvinylglycine. J Biosci 2011; 35:281-94. [PMID: 20689184 DOI: 10.1007/s12038-010-0032-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In banana, ethylene production for ripening is accompanied by a dramatic increase in 1-aminocyclopropane-1-carboxylate (ACC) content, transcript level of Musa acuminata ACC synthase 1 (MA-ACS1) and the enzymatic activity of ACC synthase 1 at the onset of the climacteric period. MA-ACS1 catalyses the conversion of S-adenosyl-L-methionine (SAM) to ACC, the key regulatory step in ethylene biosynthesis. Multiple sequence alignments of 1-aminocyclopropane-1-carboxylate synthase (ACS) amino acid sequences based on database searches have indicated that MA-ACS1 is a highly conserved protein across the plant kingdom. This report describes an in silico analysis to provide the first important insightful information about the sequential, structural and phylogenetic characteristics of MA-ACS1. The three-dimensional structure of MA-ACS1, constructed based on homology modelling, in combination with the available data enabled a comparative mechanistic analysis of MA-ACS1 to explain the catalytic roles of the conserved and non-conserved active site residues. We have further demonstrated that, as in apple and tomato, banana- ACS1 (MA-ACS1) forms a homodimer and a complex with cofactor pyridoxal-5'-phosphate (PLP) and inhibitor aminoethoxyvinylglycine (AVG). We have also predicted that the residues from the PLP-binding pocket, essential for ligand binding, are mostly conserved across the MA-ACS1 structure and the competitive inhibitor AVG binds at a location adjacent to PLP.
Collapse
|
7
|
Wang X, Zhang Y, Zhang J, Cheng C, Guo X. Molecular characterization of a transient expression gene encoding for 1-aminocyclopropane-1-carboxylate synthase in cotton (Gossypium hirsutum L.). BMB Rep 2008; 40:791-800. [PMID: 17927914 DOI: 10.5483/bmbrep.2007.40.5.791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ethylene performs an important function in plant growth and development. 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), the key enzyme involved in ethylene biosynthesis, has been the focus of most ethylene studies. Here, a cotton ACS gene referred to as Gossypium hirsutum ACS1 (GhACS1), was isolated. The full-length cDNA of GhACS1 encodes for a 476-amino acid protein which harbors seven conserved regions, 11 invariant amino acid residues, and the PLP binding active site, all of which characterize ACC synthases. Alignment analysis showed that GhACS1 shared a high degree of identity with other known ACC synthases from different species. Two introns were detected in the genomic DNA sequence, and the results of Southern blot analysis suggested that there might be a multi-gene family encoding for ACC synthase in cotton. From the phylogenetic tree constructed with 24 different kinds of ACC synthases, we determined that GhACS1 falls into group II, and was closely associated with the wound-inducible ACS of citrus. The analysis of the 5' flanking region of GhACS1 revealed a group of putative cis-acting elements. The results of expression analysis showed that GhACS1 displayed its transient expression nature after wounding, abscisic acid (ABA), and CuCl(2) treatments. These results indicate that GhACS1, which was transiently expressed in response to certain stimuli, may be involved in the production of ethylene for the transmission of stress signals.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, P R China
| | | | | | | | | |
Collapse
|
8
|
Zhu HL, Zhu BZ, Shao Y, Lin XJ, Wang XG, Gao HY, Xie YH, Li YC, Luo YB. Molecular cloning and characterization of ETHYLENE OVERPRODUCER 1-LIKE 1 gene, LeEOL1, from tomato (Lycopersicon esculentum Mill.) fruit. ACTA ACUST UNITED AC 2007; 18:131-7. [PMID: 17364824 DOI: 10.1080/10425170601060921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recently, ETHYLENE OVERPRODUCER 1 (ETO1) had been cloned and identified as a negative post-transcriptional regulator in the ethylene biosynthesis in Arabidopsis. However, little was known about the role of ETO1 in other species, especially in tomato, which was an ideal model for studying the biosynthesis of ethylene during tomato fruit ripening. In this study, a tomato ETHYLENE OVERPRODUCER 1-LIKE 1 (LeEOL1) was cloned. The LeEOL1 cDNA was 3,515 bp long and carried an ORF that putatively encoded a polypeptide of 886 amino acids with a predicted molecular mass of 95 kDa. It shared 74% identity in amino acid sequence with Arabidopsis EOL1 and had one BTB (Broad-complex, Tramtrack, Bric-à-brac) domain and two TPR (tetratricopeptide repeat) domains, which were also conserved domains in AtEOL1. RT-PCR analysis of the temporal expression of LeEOL1 showed that its transcript decreased companied with increase of ethylene production in tomato ripening. The level of LeEOL1 transcripts in wild type tomato fruit at mature green stage did not distinctively change when treated with exogenous ethylene.
Collapse
Affiliation(s)
- Hong-Liang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Marcos JF, González-Candelas L, Zacarías L. Involvement of ethylene biosynthesis and perception in the susceptibility of citrus fruits to Penicillium digitatum infection and the accumulation of defence-related mRNAs. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2183-93. [PMID: 15983011 DOI: 10.1093/jxb/eri218] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Citrus fruits infected with the fungus Penicillium digitatum substantially increase the production of the plant hormone ethylene. In this study, the regulation of ethylene biosynthesis in Citrus sinensis-infected fruits and its putative involvement in an active defence response against P. digitatum infection is examined. Ethylene production is demonstrated as being the result of the co-ordinated and differential up-regulation of at least three ethylene biosynthetic genes: ACS1, ACS2, and ACO. Blocking ethylene perception by 1-MCP resulted in an increased ethylene production and ACS2 expression during infection and mechanical wounding, suggesting that this gene is negatively regulated by ethylene. ACO expression was induced by ethylene in the absence of wounding or infection, although further results indicate that its induction during the course of infection may not be primarily mediated by ethylene. Treatment with 1-MCP also increased susceptibility to Penicillium decay, showing an involvement of ethylene perception in promoting defence responses in citrus fruits. The changes in the expression of two defence-related genes up-regulated during infection were also studied: the ones coding for phenylalanine ammonia-lyase (PAL) and an acidic class II chitinase (ACR311). The onset of PAL expression after mechanical wounding or inoculation was not changed in 1-MCP-pretreated fruits, while its later increase during the course of infection was abolished. Chitinase gene induction was more related to mechanical damage and was partially repressed by ethylene. These studies indicate distinct possible regulatory mechanisms of plant fruit defence genes in the context of fungal infection and ethylene perception.
Collapse
Affiliation(s)
- Jose F Marcos
- Departamento de Ciencia de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apartado de Correos 73, Burjassot, E-46100 Valencia, Spain.
| | | | | |
Collapse
|
10
|
Yuan R, Wu Z, Kostenyuk IA, Burns JK. G-protein-coupled alpha2A-adrenoreceptor agonists differentially alter citrus leaf and fruit abscission by affecting expression of ACC synthase and ACC oxidase. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:1867-75. [PMID: 15928018 DOI: 10.1093/jxb/eri176] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Temporal and spatial expression patterns of genes encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS1 and ACS2) and ACC oxidase (ACO), ACC concentration, and ethylene production in leaves and fruit of 'Valencia' orange (Citrus sinensis [L.] Osbeck) were examined in relation to differential abscission after treatment with 2-chloroethylphosphonic acid (ethephon) alone or in combination with guanfacine or clonidine, two G-protein-coupled alpha(2A)-adrenoreceptor selective agonists. Guanfacine and clonidine markedly reduced ethephon-enhanced leaf abscission, but had little effect on ethephon-enhanced fruit loosening. Ethephon-enhanced fruit and leaf ethylene production, and ACC concentration in fruit abscission zones, fruit peel, leaf abscission zones, and leaf blades were decreased by guanfacine. Guanfacine reduced ethephon-enhanced expression of ACS1 and ACO genes in leaf abscission zones and blades, but to a lesser extent in fruit abscission zones. The expression pattern of the ACS2 gene, however, was not associated with abscission. The results demonstrate that differential expression of ACS1 and ACO genes is associated with reduction of ethephon-enhanced leaf abscission by guanfacine, and suggest a link between G-protein-related signalling and abscission.
Collapse
Affiliation(s)
- Rongcai Yuan
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850-2299, USA
| | | | | | | |
Collapse
|
11
|
Lahey KA, Yuan R, Burns JK, Ueng PP, Timmer LW, Kuang-Ren C. Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1394-401. [PMID: 15597745 DOI: 10.1094/mpmi.2004.17.12.1394] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Colletotrichum acutatum infects citrus petals and induces premature fruit drop and the formation of persistent calyces. The accumulation of hormones and other growth regulators, and differential gene expression in affected flowers and young fruit, was examined following fungal infection. Ethylene evolution increased threefold and indole-3-acetic acid (IAA) accumulation was as much as 140 times. Abscisic acid (ABA) levels showed no significant response. After infection, both trans- and cis-12-oxo-phytodienoic acid increased 8- to 10-fold. No significant difference of transjasmonic acid (JA) was observed in citrus flower petals or pistils. However, a fivefold increase of cis-JA was detected. The amount of salicylic acid (SA) was elevated twofold in affected petals, but not in pistils. Northern blot analyses revealed that the genes encoding ACC oxidase or ACC synthase, and 12-oxo-phytodienoic acid (12-oxo-PDA) reductase, were highly expressed in affected flowers. The genes encoding auxin-related proteins also were upregulated. Application of 2-(4-chlorophenoxy)-2-methyl-propionic acid (clofibrate; a putative auxin inhibitor), 2,3,5-triiodobenzolic acid (an auxin transport inhibitor), or SA after inoculation significantly decreased the accumulation of the gene transcripts of auxin-responsive, GH3-like protein and 12-oxo-PDA reductase, but resulted in higher percentages of young fruit retention. The results indicate that imbalance of IAA, ethylene, and JA in C. acutatum-infected flowers may be involved in symptom development and young fruit drop.
Collapse
Affiliation(s)
- Katherine A Lahey
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA
| | | | | | | | | | | |
Collapse
|
12
|
Nakano R, Ogura E, Kubo Y, Inaba A. Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the fruit. PLANT PHYSIOLOGY 2003; 131:276-86. [PMID: 12529535 PMCID: PMC166807 DOI: 10.1104/pp.010462] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2002] [Revised: 08/13/2002] [Accepted: 10/10/2002] [Indexed: 05/18/2023]
Abstract
Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production.
Collapse
Affiliation(s)
- Ryohei Nakano
- Laboratory of Postharvest Agriculture, Faculty of Agriculture, Okayama University, Tsushima, Okayama 700-8530, Japan.
| | | | | | | |
Collapse
|