1
|
Hu CH, Wang PQ, Zhang PP, Nie XM, Li BB, Tai L, Liu WT, Li WQ, Chen KM. NADPH Oxidases: The Vital Performers and Center Hubs during Plant Growth and Signaling. Cells 2020; 9:E437. [PMID: 32069961 PMCID: PMC7072856 DOI: 10.3390/cells9020437] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
NADPH oxidases (NOXs), mostly known as respiratory burst oxidase homologs (RBOHs), are the key producers of reactive oxygen species (ROS) in plants. A lot of literature has addressed ROS signaling in plant development regulation and stress responses as well as on the enzyme's structure, evolution, function, regulation and associated mechanisms, manifesting the role of NOXs/RBOHs as the vital performers and center hubs during plant growth and signaling. This review focuses on recent advances of NOXs/RBOHs on cell growth, hormone interaction, calcium signaling, abiotic stress responses, and immunity. Several primary particles, including Ca2+, CDPKs, BIK1, ROPs/RACs, CERK, FER, ANX, SnRK and SIK1-mediated regulatory mechanisms, are fully summarized to illustrate the signaling behavior of NOXs/RBOHs and their sophisticated and dexterous crosstalks. Diverse expression and activation regulation models endow NOXs/RBOHs powerful and versatile functions in plants to maintain innate immune homeostasis and development integrity. NOXs/RBOHs and their related regulatory items are the ideal targets for crop improvement in both yield and quality during agricultural practices.
Collapse
Affiliation(s)
- Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, Henan, China
| | - Peng-Qi Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
2
|
Abstract
ME-143 (NV-143), a synthetic isoflavone under clinical evaluation for efficacy in the management of ovarian and other forms of human cancer, blocked the activity of a cancer-specific and growth-related cell surface ECTO-NOX protein with both oxidative (hydroquinone) and protein disulfide-thiol interchange activity designated ENOX2 (tNOX) and inhibited the growth of cultured cancer cells with EC50s in the range of 20–50 nM. Purified recombinant ENOX2 also bound ME-143 with a Kd of 43 (40–50) nM. Both the oxidative and protein disulfide-thiol interchange activities of ENOX proteins that alternate to generate a complex set of oscillations with a period length of 22 min compared to 24 min for the constitutive counterpart ENOX1 (CNOX) that characterizes ENOX proteins responded to ME-143. Oxidation of NADH or reduced coenzyme Q10 was rapidly blocked. In contrast, the protein disulfide-thiol interchange activity measured from the cleavage of dithiodipyridine (EC50 of ca. 50 nM) was inhibited progressively over an interval of 60 min that spanned three cycles of activity. Inhibition of the latter paralleled the inhibition of cell enlargement and the consequent inability of inhibited cells to initiate traverse of the cell cycle. Activities of constitutive ENOX1 (CNOX) forms of either cancer or noncancer cells were unaffected by ME-143 over the range of concentrations inhibiting ENOX2. Taken together, the findings show that ME-143 binds to ENOX2 with an affinity 4 to 10 times greater than that reported previously for the related anticancer isoflavone, phenoxodiol.
Collapse
|
3
|
Tang X, Parisi D, Spicer B, Morré DM, Morré DJ. Molecular cloning and characterization of human age-related NADH oxidase (arNOX) proteins as members of the TM9 superfamily of transmembrane proteins. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.32024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Tang X, Chueh PJ, Jiang Z, Layman S, Martin B, Kim C, Morré DM, Morré DJ. Essential role of copper in the activity and regular periodicity of a recombinant, tumor-associated, cell surface, growth-related and time-keeping hydroquinone (NADH) oxidase with protein disulfide-thiol interchange activity (ENOX2). J Bioenerg Biomembr 2010; 42:355-60. [PMID: 20922471 DOI: 10.1007/s10863-010-9305-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 07/08/2010] [Indexed: 01/16/2023]
Abstract
ECTO-NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit time-keeping and prion-like properties. A bacterially expressed truncated recombinant 46 kDa ENOX2 with full ENOX2 activity bound ca 2 moles copper and 2 moles of zinc per mole of protein. Unfolding of the protein in trifluoroacetic acid in the presence of the copper chelator bathocuproine resulted in reversible loss of both enzymatic activities and of a characteristic pattern in the Amide I to Amide II ratios determined by FTIR with restoration by added copper. The H546-V-H together with His 562 form one copper binding site and H582 represents a second copper site as determined from site-directed mutagenesis. Bound copper emerges as having an essential role in ENOX2 both for enzymatic activity and for the structural changes that underly the periodic alternations in activity that define the time-keeping cycle of the protein.
Collapse
Affiliation(s)
- Xiaoyu Tang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Hansen Life Sciences Research Building, 201 S. University Street, West Lafayette, IN 47907-2064, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jiang Z, Gorenstein NM, Morré DM, Morré DJ. Molecular cloning and characterization of a candidate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase. Biochemistry 2009; 47:14028-38. [PMID: 19055324 DOI: 10.1021/bi801073p] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ENOX (ECTO-NOX) proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide-thiol interchange and exhibit both prion-like and time-keeping (clock) properties. The two enzymatic activities they catalyze alternate to generate a regular period of 24 min in length. Here we report the cloning, expression, and characterization of a human candidate constitutive ENOX (CNOX or ENOX1) protein. The gene encoding this 643 amino acid long protein is located on chromosome 13 (13q 14.11). Functional motifs previously identified by site-directed mutagenesis in a cancer-associated ENOX (tNOX or ENOX2) as adenine nucleotide or copper binding along with essential cysteines are present, but the drug-binding motif (EEMTE) sequence of ENOX2 is absent. The activities of the recombinant protein expressed in Escherichia coli were not affected by capsaicin, EGCg, and other ENOX2-inhibiting substances. The purified recombinant protein bound ca. 2 mol of copper/mol of protein. Bound copper was necessary for activity. H260 and H579 were required for copper binding as confirmed by site-directed mutagenesis, loss of copper-binding capacity, and resultant loss of enzymatic activity. Addition of melatonin phased the 24 min period such that the next complete period began exactly 24 min after the melatonin addition as appears to be characteristic of ENOX1 activities in general. Oxidative activity was exhibited with both NAD(P)H and reduced coenzyme Q as substrate. Concentrated solutions of the purified candidate ENOX1 protein irreversibly formed insoluble aggregates, devoid of enzymatic activity, resembling amyloid.
Collapse
Affiliation(s)
- Ziying Jiang
- Departments of Foods and Nutrition, Biological Sciences, and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
6
|
Phenoxodiol treatment alters the subsequent response of ENOX2 (tNOX) and growth of hela cells to paclitaxel and cisplatin. Mol Biotechnol 2009; 42:100-9. [PMID: 19156549 DOI: 10.1007/s12033-008-9132-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Phenoxodiol is an experimental anticancer drug under development as a chemosensitizer intended to reverse multidrug resistance mechanisms in ovarian and prostate cancer cells to most standard cytotoxics. The putative molecular target of phenoxodiol is a cell-surface, tumor-specific NADH oxidase, ENOX2 (tNOX), with phenoxodiol having no apparent effect on the constitutive form of this enzyme ENOX1 (CNOX). Using ENOX2 as the target, this study was conducted to explore the temporal relationship between phenoxodiol and paclitaxel or cisplatin in achieving chemosensitization in HeLa cells which are relatively resistant to both paclitaxel and cisplatin. Sequential addition of phenoxodiol and paclitaxel or phenoxodiol and cisplatin showed greater inhibition of HeLa cell ENOX1 activity and growth compared to adding the drugs simultaneously or individually. In parallel, a similar chemosensitizing response of phenoxodiol for cisplatin was observed. ENOX1 was not affected and trans-platinum had no effect. With spent media from phenoxodiol-treated cells sensitivity was enhanced to both paclitaxel and cisplatin if the cells were first pretreated with phenoxodiol. Similar results were obtained with ENOX2-enriched preparations stripped from the surfaces of phenoxodiol-treated cells. In keeping with a speculative prion model, it seems as though the ENOX2 "remembers" the phenoxodiol and "teaches" other ENOX2 molecules to respond to paclitaxel and cisplatin as if phenoxodiol were still present.
Collapse
|
7
|
Morré DJ, Morré DM. Aging-Related Cell Surface ECTO-NOX Protein, arNOX, a Preventive Target to Reduce Atherogenic Risk in the Elderly. Rejuvenation Res 2006; 9:231-6. [PMID: 16706650 DOI: 10.1089/rej.2006.9.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A family of constitutive cell surface ECTO-NOX proteins capable of oxidizing reduced quinones, initially described as NADH oxidases, has offered an opportunity to formulate, for the first time, a complete electron transport chain from the cytosol to oxygen at the cell surface with the ECTO-NOX proteins acting as the terminal oxidases. The ECTO-NOX proteins of the cell surface have been postulated as well to link the accumulation of lesions in mitochondrial DNA to cell surface accumulations of reactive oxygen species as one consequence of their role as a terminal oxidase in a plasma membrane electron transport chain. Of the several ECTO-NOX proteins now known, one is a novel cell surface form (arNOX) associated with lymphocytes, sera, saliva and perspiration of patients of age 50 or older and is capable of directly reducing ferric cytochrome c through the generation of superoxide. Because of their cell surface location, ECTO-NOX proteins capable of superoxide generation in response to aging would serve to propagate the aging cascade both to adjacent cells and to oxidize circulating lipoproteins. The generation of superoxide associated with aging is inhibited by coenzyme Q10. As such, the findings provide a rational basis for the antiaging activity of circulating coenzyme Q10 in the prevention of atherosclerosis and other aging-related oxidative changes in cell membranes and circulating lipoproteins.
Collapse
Affiliation(s)
- D James Morré
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
8
|
Kim C, Layman S, Morré DM, Morré DJ. Structural changes revealed by Fourier transform infrared and circular dichroism spectroscopic analyses underlie tNOX periodic oscillations. Dose Response 2006; 3:391-413. [PMID: 18648622 PMCID: PMC2475952 DOI: 10.2203/dose-response.003.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A recurring pattern of spectral changes indicative of periodic changes in the proportion of beta-structure and a-helix of a recombinant ECTO-NOX fusion protein of tNOX, with a cellulose binding domain peptide, was demonstrated by Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopic analyses. The pattern of structural changes correlated with oscillatory patterns of enzymatic activities exhibited by the protein previously interpreted as indicative of a clock function. The pattern consisted of a repeating pattern of oscillations with a period length of 21 min with five maxima (two separated by 5 min and 3 separated by 4 to 4.5 min) within each 21 min repeat. Oscillatory patterns were not obvious in comparable FTIR or CD spectra of albumin, ribonuclease or concanavalin A. The period length was constant at 5, 15, 25, 35 and 45 degrees C (temperature compensated) and oscillations occurred independently of substrate presence. Spectra obtained in deuterium oxide yielded a longer period length of 26 min both for oscillations in enzymatic activity and absorbance ratios determined by FTIR. Taken together the findings suggest that the regular patterns of oscillations exhibited by the ECTO-NOX proteins are accompanied by recurrent global changes in the conformation of the protein backbone that directly modulate enzymatic activity.
Collapse
Affiliation(s)
- Chinpal Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 South University Street, West Lafayette, IN 47907-2064, USA
| | | | | | | |
Collapse
|
9
|
Kim C, Morré DJ. Prion proteins and ECTO-NOX proteins exhibit similar oscillating redox activities. Biochem Biophys Res Commun 2004; 315:1140-6. [PMID: 14985132 DOI: 10.1016/j.bbrc.2004.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Indexed: 01/09/2023]
Abstract
Both recombinant full-length mouse prion protein expressed in Escherichia coli and native prion protein (PrPsc) from mouse brain exhibited NADH oxidase and protein disulfide-thiol interchange activities similar to those formerly thought to be properties exclusive to the growth-related, cell surface ECTO-NOX proteins. The two activities exhibited the complex 2+3 pattern of oscillations characteristic of ECTO-NOX proteins where the two activities alternate to generate a period length of 24 min. The oscillations were augmented by copper and diminished by addition of the copper chelator bathocuproene. That the activity might be attributable to a contaminating protein was ruled out by experiments where the purified recombinant prion-containing extracts were resolved by SDS-PAGE and the activity was restricted to a single band corresponding to the predicted Mr of the recombinant prion as verified by Western blot analyses.
Collapse
Affiliation(s)
- Chinpal Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2064, USA
| | | |
Collapse
|
10
|
Markert C, Morré DM, Morré DJ. Human amyloid peptides Abeta1-40 and Abeta1-42 exhibit NADH oxidase activity with copper-induced oscillations and a period length of 24 min. Biofactors 2004; 20:207-21. [PMID: 15706058 DOI: 10.1002/biof.5520200405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human amyloid beta peptides Abeta1-40 and Abeta1-42 exhibit NADH oxidase activity with regular oscillations at intervals of ca 6 min. In the presence of copper, the oscillations in Abeta1-40 and Abeta1-42 become more pronounced and now assume a period length of 24 min. In the presence of copper, the oscillations are similar to those observed with NADH oxidase activities of cell surface ECTO-NOX proteins in general including a period length of 24 min. Solutions of copper sulphate in the presence of all the reagents except for the peptides did not exhibit the oscillatory behavior. NOX proteins have been reported previously to have properties of prions and to form amyloid rods of indeterminant length similar to those formed by the 39-43 residue amyloid beta proteins (Abeta). In this report, we demonstrate a second similarity between ECTO-NOX proteins and amyloid beta, that of an oscillating NADH oxidase activity with a period length of 24 min when assayed in the presence of copper.
Collapse
Affiliation(s)
- Claudia Markert
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
11
|
Affiliation(s)
- D James Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Lafayette, Indiana 47907, USA
| |
Collapse
|
12
|
Morre DJ, Morre DM, Ternes P. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2003; 39:368-76. [PMID: 14503486 DOI: 10.1079/ivp2003417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.
Collapse
Affiliation(s)
- D James Morre
- Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
13
|
Morré DM, Morré DJ. Specificity of coenzyme Q inhibition of an aging-related cell surface NADH oxidase (ECTO-NOX) that generates superoxide. Biofactors 2003; 18:33-43. [PMID: 14695918 DOI: 10.1002/biof.5520180205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our laboratories have described a novel class of ectoproteins at the cell surface with both NADH or hydroquinone oxidase (NOX) and protein disulfide-thiol interchange activities (ECTO-NOX proteins). The two activities exhibited by these proteins alternate to generate characteristic patterns of oscillations where the period length is independent of temperature. The period length for the constitutive ECTO-NOX is 24 min. Here we describe a distinctive age-related ECTO-NOX (arNOX) whose activity is blocked by coenzyme Q10. arNOX occurs exclusively in aged cells and tissues. The period length of the oscillations is 26 min. Rather than reducing 1/2 O2 to H2O, electrons are transferred to O2 to form superoxide. Superoxide formation was demonstrated by superoxide dismutase-sensitive reduction of ferricytochrome c and by reduction of a superoxide-specific tetrazolium salt. Quinone inhibition was given by coenzymes Q8, 9 and Q10 but not by Q0, Q2, Q4, Q6 or 7. The arNOX provides a mechanism to propagate reactive oxygen species generated at the cell surface to surrounding cells and circulating lipoproteins of importance to atherogenesis. Inhibition of arNOX by dietary coenzyme Q10 provides a rational basis for dietary coenzyme 10 use to retard aging-related arterial lesions.
Collapse
Affiliation(s)
- Dorothy M Morré
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
14
|
Morre DJ, Penel C, Greppin H, Morre DM. The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light. INTERNATIONAL JOURNAL OF PLANT SCIENCES 2002; 163:543-547. [PMID: 12448422 DOI: 10.1086/340543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The plasma membrane-associated NADH oxidase (NOX) of spinach leaf disks is characterized by oscillations in activity with a regular period length of ca. 24 min. Within a single population of plants exposed to light at the same time, NOX activities of all plants function synchronously. Exposure of plants transferred from darkness to blue light (495 nm, 2 min, 50 micromoles m-2 s-1) resulted in a complex response pattern but with a new maximum in the rate of NOX activity 36 (24+12) min after illumination and then with maxima in the rate of NOX activity every 24 min thereafter. Transient maxima in NOX activity were observed as well after 9.3 + /- 1.4 and 20.7 +/- 2.1 min. The blue light response differed from the response to red (650 nm, 10 min, 50 micromoles m-2 s-1) or white light where activity maxima were initiated 12 min after the light exposure followed by maxima every 24 min thereafter. Green or yellow light was ineffective. The light response was independent of the time in the 24-min NOX cycle when the light was given. The net effects of blue and red light were ultimately the same with a new maximum in the rate of NOX activity at 12+24=36 min (and every 24 min thereafter), but the mechanisms appear to be distinct.
Collapse
Affiliation(s)
- D James Morre
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA.
| | | | | | | |
Collapse
|
15
|
Chueh PJ, Morré DM, Morré DJ. A site-directed mutagenesis analysis of tNOX functional domains. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:74-83. [PMID: 11825610 DOI: 10.1016/s0167-4838(01)00286-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Constitutive NADH oxidase proteins of the mammalian cell surface exhibit two different activities, oxidation of hydroquinones (or NADH) and protein disulfide-thiol interchange which alternate to yield oscillatory patterns with period lengths of 24 min. A drug-responsive tNOX (tumor-associated NADH oxidase) has a period length of about 22 min. The tNOX cDNA has been cloned and expressed. These two proteins are representative of cycling oxidase proteins of the plant and animal cell surface. In this report, we describe a series of eight amino acid replacements in tNOX which, when expressed in Escherichia coli, were analyzed for enzymatic activity, drug response and period length. Replacement sites selected include six cysteines that lie within the processed plasma membrane (34 kDa) form of the protein, and amino acids located in putative drug and adenine nucleotide (NADH) binding domains. The latter, plus two of the cysteine replacements, resulted in a loss of enzymatic activity. The recombinant tNOX with the modified drug binding site retained activity but the activity was no longer drug-responsive. The four remaining cysteine replacements were of interest in that both activity and drug response were retained but the period length for both NADH oxidation and protein disulfide-thiol interchange was increased from 22 min to 36 or 42 min. The findings confirm the correctness of the drug and adenine nucleotide binding motifs within the tNOX protein and imply a potential critical role of cysteine residues in determining the period length.
Collapse
Affiliation(s)
- Pin-Ju Chueh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
16
|
Morre DJ, Ternes P, Morre DM. Cell enlargement of plant tissue explants oscillates with a temperature-compensated period of ca. 24 min. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2002; 38:18-28. [PMID: 12033221 DOI: 10.1079/ivp2001249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rate of plant cell enlargement, measured at intervals of 3 min using a sensitive linear transducer, oscillates with a minimum period of about 24 min that parallels the 24-min periodicity observed with the oxidation of NADH by the external plasma membrane NADH oxidase and of single cells measured previously by video-enhanced light microscopy. Also exhibiting 24-min oscillations is the steady-state rate of cell enlargement induced by the addition of the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges. The length of the 24-min period is temperature compensated and remains constant at 24 min when measured at 15, 25 or 35 degrees C, despite the fact that the rate of cell enlargement approximately doubles for each 10 degree C rise over this same range of temperatures.
Collapse
Affiliation(s)
- D James Morre
- Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907-1333, USA.
| | | | | |
Collapse
|
17
|
Wang S, Pogue R, Morré DM, Morré DJ. NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1539:192-204. [PMID: 11420117 DOI: 10.1016/s0167-4889(01)00107-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
NOX proteins are cell surface-associated and growth-related hydroquinone (NADH) oxidases with protein disulfide-thiol interchange activity. A defining characteristic of NOX proteins is that the two enzymatic activities alternate to generate a regular period length of about 24 min. HeLa cells exhibit at least two forms of NOX. One is tumor-associated (tNOX) and is inhibited by putative quinone site inhibitors (e.g., capsaicin or the antitumor sulfonylurea, LY181984). Another is constitutive (CNOX) and refractory to inhibition. The periodic alternation of activities and drug sensitivity of the NADH oxidase activity observed with intact HeLa cells was retained in isolated plasma membranes and with the solubilized and partially purified enzyme. At least two activities were present. One had a period length of 24 min and the other had a period length of 22 min. The lengths of both the 22 and the 24 min periods were temperature compensated (approximately the same when measured at 17, 27 or 37 degrees C) whereas the rate of NADH oxidation approximately doubled with each 10 degrees C rise in temperature. The rate of increase in cell area of HeLa cells when measured by video-enhanced light microscopy also exhibited a complex period of oscillations reflective of both 22 and 24 min period lengths. The findings demonstrate the presence of a novel oscillating NOX activity at the surface of cancer cells with a period length of 22 min in addition to the constitutive NOX of non-cancer cells and tissues with a period length of 24 min.
Collapse
Affiliation(s)
- S Wang
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN, USA
| | | | | | | |
Collapse
|
18
|
Sedlak D, Mooré DM, Mooré DJ. A Drug-Unresponsive and Protease-Resistant CNOX Protein from Human Sera. Arch Biochem Biophys 2001; 386:106-16. [PMID: 11360993 DOI: 10.1006/abbi.2000.2180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and ammonium sulfate fractionation were employed in series to purify and concentrate a 12.5-kDa protein fragment with a periodic (24-min period) proteinase K-resistant and drug-unresponsive NADH oxidase (CNOX) activity from pooled sera from healthy volunteers. The activity was unresponsive to capsaicin to distinguish it from the previously isolated cancer-associated NOX form (tNOX). Polyclonal antisera generated to the CNOX fragment cross-reacted with 20.5- to 24-kDa proteins of human sera, human lymphocytes, and plasma membranes from Escherichia coli with the molecular weight depending on source and conditions of treatment with proteinase K.
Collapse
Affiliation(s)
- D Sedlak
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907-1333, USA
| | | | | |
Collapse
|
19
|
Morre DJ, Pogue R, Morre DM. Soybean cell enlargement oscillates with a temperature-compensated period length of ca. 24 min. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2001; 37:19-23. [PMID: 12026936 DOI: 10.1007/s11627-001-0004-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rate of enlargement of epidermal cells from soybean, when measured at intervals of 1 min using a light microscope equipped with a video measurement system, oscillated with a period length of about 24 min. This oscillation parallels the 24-min periodicity observed for the oxidation of NADH by the external plasma membrane NADH oxidase. The increase in length was not only non-linear, but intervals of rapid increase in area alternated with intervals of rapid decrease in area. The length of the period was temperature compensated, and was approximately the same when measured at 14, 24 and 34 degrees C even though the rate of cell enlargement varied over this same range of temperatures. These observations represent the first demonstration of an oscillatory growth behavior correlated with a biochemical activity where the period length of both is independent of temperature (temperature compensated) as is the hallmark of clock-related biological phenomena.
Collapse
Affiliation(s)
- D J Morre
- Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907-1333, USA.
| | | | | |
Collapse
|
20
|
Pogue R, Morré DM, Morré DJ. CHO cell enlargement oscillates with a temperature-compensated period of 24 min. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:44-51. [PMID: 11042349 DOI: 10.1016/s0167-4889(00)00076-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The rate of increase in cell area of CHO cells when measured at intervals of 1 min using a light microscope equipped with a video measurement system, oscillated with a minimum period of about 24 min. The pattern of oscillations paralleled those of the 24 min period observed with the oxidation of NADH by an external cell surface or plasma membrane NADH oxidase. The increase in cell area was non-linear. Intervals of rapid increase in area alternated with intervals of rapid decrease in area. The length of the 24 min period was temperature-compensated (approximately the same when measured at 14 degrees C, 24 degrees C or 34 degrees C) while the rate of cell enlargement increased with temperature over this same range of temperatures.
Collapse
Affiliation(s)
- R Pogue
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|
21
|
Sun P, Morré DJ, Morré DM. Periodic NADH oxidase activity associated with an endoplasmic reticulum fraction from pig liver. Response to micromolar concentrations of retinol. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:52-63. [PMID: 11042350 DOI: 10.1016/s0167-4889(00)00079-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An endoplasmic reticulum fraction from pig liver enriched in transitional endoplasmic reticulum vesicles capable of forming 50-60 nm buds in the presence of ATP and retinol was assayed for retinol-responsive oxidation of NADH and cleavage of a dithiodipyridine (DTDP) protein disulfide-thiol interchange substrate. Maxima for the two activities alternated giving rise to a 24 min period. The NADH oxidase activity was inhibited by micromolar and submicromolar concentrations of retinol. Retinol at 0.1 mM stimulated the activity. The inhibition was confined to two activity maxima separated in time by about 5 min. In contrast, with the DTDP substrate, the activity was stimulated by retinol and the stimulations were in the part of the oscillatory pattern where retinol inhibition of NADH oxidation was observed. The findings support an earlier proposed mechanism whereby retinol exerted opposing effects on NADH oxidation and protein disulfide reductions.
Collapse
Affiliation(s)
- P Sun
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|