1
|
Pinheiro BG, Hahn RC, de Camargo ZP, Rodrigues AM. Molecular Tools for Detection and Identification of Paracoccidioides Species: Current Status and Future Perspectives. J Fungi (Basel) 2020; 6:E293. [PMID: 33217898 PMCID: PMC7711936 DOI: 10.3390/jof6040293] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a mycotic disease caused by the Paracoccidioides species, a group of thermally dimorphic fungi that grow in mycelial form at 25 °C and as budding yeasts when cultured at 37 °C or when parasitizing the host tissues. PCM occurs in a large area of Latin America, and the most critical regions of endemicity are in Brazil, Colombia, and Venezuela. The clinical diagnosis of PCM needs to be confirmed through laboratory tests. Although classical laboratory techniques provide valuable information due to the presence of pathognomonic forms of Paracoccidioides spp., nucleic acid-based diagnostics gradually are replacing or complementing culture-based, biochemical, and immunological assays in routine microbiology laboratory practice. Recently, taxonomic changes driven by whole-genomic sequencing of Paracoccidioides have highlighted the need to recognize species boundaries, which could better ascertain Paracoccidioides taxonomy. In this scenario, classical laboratory techniques do not have significant discriminatory power over cryptic agents. On the other hand, several PCR-based methods can detect polymorphisms in Paracoccidioides DNA and thus support species identification. This review is focused on the recent achievements in molecular diagnostics of paracoccidioidomycosis, including the main advantages and pitfalls related to each technique. We discuss these breakthroughs in light of taxonomic changes in the Paracoccidioides genus.
Collapse
Affiliation(s)
- Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060900, Brazil;
- Federal University of Mato Grosso, Júlio Muller University Hospital, Mato Grosso 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
- Department of Medicine, Discipline of infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (Z.P.d.C.)
| |
Collapse
|
2
|
ARANTES TD, BAGAGLI E, NIÑO-VEGA G, SAN-BLAS G, THEODORO RC. Paracoccidioides brasiliensis AND Paracoccidioides lutzii, A SECRET LOVE AFFAIR. Rev Inst Med Trop Sao Paulo 2015; 57 Suppl 19:25-30. [PMID: 26465366 PMCID: PMC4711194 DOI: 10.1590/s0036-46652015000700006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To commemorate Prof. Carlos da Silva Lacaz's centennial anniversary, the authors have written a brief account of a few, out of hundreds, biological, ecological, molecular and phylogenetic studies that led to the arrival of Paracoccidioides lutzii, hidden for more than a century within Paracoccidioides brasiliensis. Lacaz's permanent interest in this fungus, and particularly his conviction on the benefits that research on paracoccidioidomycosis would bring to patients, were pivotal in the development of the field.
Collapse
Affiliation(s)
- Thales Domingos ARANTES
- Universidade Estadual Paulista, Instituto de Biociências/UNESP, Depto.
Microbiologia e Imunologia, Botucatu, SP, Brasil
- Instituto de Medicina Tropical/IMT, Laboratório de Virologia e
Micologia, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| | - Eduardo BAGAGLI
- Universidade Estadual Paulista, Instituto de Biociências/UNESP, Depto.
Microbiologia e Imunologia, Botucatu, SP, Brasil
| | - Gustavo NIÑO-VEGA
- Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio
de Micología, Centro de Microbiología y Biología Celular, Caracas, Venezuela
| | - Gioconda SAN-BLAS
- Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio
de Micología, Centro de Microbiología y Biología Celular, Caracas, Venezuela
| | - Raquel Cordeiro THEODORO
- Universidade Federal do Rio Grande do Norte, Depto. de Biologia Celular
e Genética, Campus Universitário Lagoa Nova, Natal, RN, Brasil
| |
Collapse
|
3
|
|
4
|
Batista Júnior J, Berzaghi R, Arnaud ADMDM, Fontes CJF, de Camargo ZP, Hahn RC. Simultaneous infection of human host with genetically distinct isolates of Paracoccidioides brasiliensis. Mem Inst Oswaldo Cruz 2010; 105:62-5. [PMID: 20209331 DOI: 10.1590/s0074-02762010000100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/19/2009] [Indexed: 11/22/2022] Open
Abstract
This study is the first report on genetic differences between isolates of Paracoccidioides brasiliensis from a single patient. We describe a simultaneous infection with genetically distinct isolates of P. brasiliensis in a patient with chronic paracoccidioidomycosis. The clinical isolates were obtained from lesions in different anatomical sites and were characterised by random amplified polymorphic DNA (RAPD) analysis. The RAPD technique can be helpful for distinguishing between clinical isolates. Different random primers were used to characterise these clinical isolates. The RAPD patterns allowed for differentiation between isolates and the construction of a phenetic tree, which showed more than 28% genetic variability in this fungal species, opening new possibilities for clinical studies of P. brasiliensis. Based on these results and preliminary clinical findings, we suggest that different genotypes of P. brasiliensis might infect the same patient, inducing the active form of the disease.
Collapse
Affiliation(s)
- João Batista Júnior
- Laboratório de Micologia, Faculdade de Ciências Médicas, Universidade Federal de Mato Grosso, Cuiabá, MT, Brasil
| | | | | | | | | | | |
Collapse
|
5
|
Richini-Pereira VB, Bosco SDMG, Theodoro RC, Macoris SADG, Bagagli E. Molecular approaches for eco-epidemiological studies of Paracoccidioides brasiliensis. Mem Inst Oswaldo Cruz 2010; 104:636-43. [PMID: 19722090 DOI: 10.1590/s0074-02762009000400018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 04/15/2009] [Indexed: 11/22/2022] Open
Abstract
Medical mycology has greatly benefited from the introduction of molecular techniques. New knowledge on molecular genetics has provided both theoretical and practical frameworks, permitting important advances in our understanding of several aspects of pathogenic fungi. Considering Paracoccidioides brasiliensis in particular, important eco-epidemiological aspects, such as environmental distribution and new hosts were clarified through molecular approaches. These methodologies also contributed to a better understanding about the genetic variability of this pathogen; thus, P. brasiliensis is now assumed to represent a species complex. The present review focuses on some recent findings about the current taxonomic status of P. brasiliensis, its phylogenetic and speciation processes, as well as on some practical applications for the molecular detection of this pathogen in environmental and clinical materials.
Collapse
Affiliation(s)
- Virgínia Bodelão Richini-Pereira
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP 18618-000, Brasil
| | | | | | | | | |
Collapse
|
6
|
Abstract
Paracoccidioides brasiliensis is a temperature-dependent dimorphic fungus and the agent of paracoccidioidomycosis (PCM), which is prevalent in rural workers of Latin American countries. Until a decade ago, most of the studies involving P. brasiliensis used clinical isolates, since environmental samples from soil are difficult to obtain. More recently, P. brasiliensis has been isolated from infected wild and domestic animals, especially from the nine-banded armadillo Dasypus novemcinctus in Brazil. Over the years, diversity within the species has been observed at several phenotypic levels. The present review will discuss the reports focusing on genetic polymorphism, which culminated with the detection of P. brasiliensis phylogenetic species as a result of a multilocus study. Polymorphism in the PbGP43 gene is detailed. This gene encodes fungal glycoprotein gp43, a dominant P. brasiliensis antigen largely studied in the last two decades for its importance in diagnosis, immune protection, and adhesive properties to extracellular matrix-associated proteins. Fungal traits associated with genetic groups are discussed.
Collapse
|
7
|
Bagagli E, Theodoro RC, Bosco SMG, McEwen JG. Paracoccidioides brasiliensis: phylogenetic and ecological aspects. Mycopathologia 2008; 165:197-207. [PMID: 18777629 DOI: 10.1007/s11046-007-9050-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The knowledge on the biological aspects of Paracoccidioides brasiliensis has evolved greatly since the first description of the disease in 1908. From the pioneers, who were able to clearly demonstrate the fungal nature of the agent, to the recent genomic era, important advances have been achieved. P. brasiliensis is a true fungus, belonging to the Ascomycetous Division, although its sexual phase has not been demonstrated morphologically. A better understanding of the fundamental aspects of the agent, especially its phylogeny and evolutionary history, will provide us with valuable insights allowing a better comprehension of the disease and our capacity to deal with the problem. Concerning the fungus's ecology, although some progress had been observed, the ecological niche of the pathogen has not been determined yet. The aim of the present review is to focus on the biological aspects of P. brasiliensis from an evolutionary point of view, addressing the fungus's phylogenetic aspects, in those special points that might be relevant for the pathogen/host interactions, the biological forces that have been acting on its origin and maintenance of virulence, as well as in determining the fungus's ecology and epidemiology.
Collapse
Affiliation(s)
- Eduardo Bagagli
- Universidade Estadual Paulista, Campus de Botucatu-UNESP, Botucatu, SP, Brazil.
| | | | | | | |
Collapse
|
8
|
Macoris SAG, Sugizaki MF, Peraçoli MTS, Bosco SMG, Hebeler-Barbosa F, Simões LB, Theodoro RC, Trinca LA, Bagagli E. Virulence attenuation and phenotypic variation of Paracoccidioides brasiliensis isolates obtained from armadillos and patients. Mem Inst Oswaldo Cruz 2006; 101:331-4. [PMID: 16862332 DOI: 10.1590/s0074-02762006000300019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 03/29/2006] [Indexed: 11/22/2022] Open
Abstract
Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis, the most important systemic mycosis in Latin America. The virulence profiles of five isolates of P. brasiliensis were studied in two different moments and correlated with some colonial phenotypic aspects. We observed a significant decrease in the virulence and an intense phenotypic variation in the mycelial colony. The recognition of all ranges of phenotypic and virulence variation of P. brasiliensis, as well as its physiological and genetic basis, will be important for a better comprehension of its pathogenic and epidemiological features.
Collapse
Affiliation(s)
- S A G Macoris
- Departamento de Microbiologia e Imunologia, Instituto de Biociêncas, SP, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bagagli E, Bosco SMG, Theodoro RC, Franco M. Phylogenetic and evolutionary aspects of Paracoccidioides brasiliensis reveal a long coexistence with animal hosts that explain several biological features of the pathogen. INFECTION GENETICS AND EVOLUTION 2006; 6:344-51. [PMID: 16473563 DOI: 10.1016/j.meegid.2005.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 10/25/2022]
Abstract
The habitat of the mycelial saprobic form of Paracoccidioides brasiliensis, which produces the infectious propagula, has not been determined and has proven difficult for mycologists to describe. The fungus has been rarely isolated from the environment, the disease has a prolonged latency period and no outbreaks have been reported. These facts have precluded the adoption of preventive measures to avoid infection. The confirmation of natural infections in nine-banded armadillos (Dasypus novemcinctus) with P. brasiliensis, in high frequency and wide geographic distribution, has opened new avenues for the study and understanding of its ecology. Armadillos belong to the order Xenarthra, which has existed in South America ever since the Paleocene Era (65 million years ago), when the South American subcontinent was still a detached land, before the consolidation of what is now known as the American continent. On the other hand, strong molecular evidence suggests that P. brasiliensis and other dimorphic pathogenic fungi--such as Blastomyces dermatitidis, Coccidioides immitis and Histoplasma capsulatum--belong to the family Onygenaceae sensu lato (order Onygenales, Ascomycota), which appeared around 150 million years ago. P. brasiliensis ecology and relation to its human host are probably linked to the fungal evolutionary past, especially its long coexistence with and adaptation to animal hosts other than Homo sapiens, of earlier origin. Instead of being a blind alley, the meaning of parasitism for dimorphic pathogenic fungi should be considered as an open two-way avenue, in which the fungus may return to the environment, therefore contributing to preserve its teleomorphic (sexual) and anamorphic (asexual) forms in a defined and protected natural habitat.
Collapse
Affiliation(s)
- Eduardo Bagagli
- Departmento de Microbiologia e Imunologia, Instituto de Biociências, UNESP, Botucatu 18618-000, São Paulo, Brazil.
| | | | | | | |
Collapse
|
10
|
Kurokawa CS, Lopes CR, Sugizaki MF, Kuramae EE, Franco MF, Peraçoli MTS. Virulence profile of ten Paracoccidioides brasiliensis isolates: association with morphologic and genetic patterns. Rev Inst Med Trop Sao Paulo 2005; 47:257-62. [PMID: 16302108 DOI: 10.1590/s0036-46652005000500004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ten isolates of Paracoccidioides brasiliensis were examined for differences in virulence in outbred mice intravenously inoculated with the fungus, associated with mycelial morphology, and genetic patterns measured by random amplified polymorphic DNA (RAPD). Virulence was evaluated by viable yeast cell recovery from lungs and demonstration of histopathologic lesions in different organs. The results showed that the isolates presented four virulence degrees: high virulence, intermediate, low and non-virulence. RAPD clustered the isolates studied in two main groups with 56% of genetic similarity. Strains with low virulence, Pb265 or the non-virulent, Pb192, showed glabrous/cerebriform morphology and high genetic similarity (98.7%) when compared to the other isolates studied. The same was observed with Bt79 and Bt83 that shared 96% genetic similarity, cottony colonies and high virulence. The RAPD technique could only discriminate P. brasiliensis isolates according to glabrous/cerebriform or cottony colonies, and also high from low virulence strains. Isolates with intermediate virulence such as Pb18, Pb18B6, Bt32 and Bt56 showed variability in their similarity coefficient suggesting that RAPD was able to detect genetic variability in this fungal specie. Virulence profile of P. brasiliensis demonstrated that both mycelial morphologic extreme phenotypes may be associated with fungal virulence and their in vitro subculture time. Thus, RAPD technique analysis employed in association with virulence, morphologic and immunologic aspects might prove adequate to detect differences between P. brasiliensis isolates.
Collapse
Affiliation(s)
- Cilmery S Kurokawa
- Departamento de Pediatria, Faculdade de Medicina, UNESP, Botucatu, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
11
|
Carvalho KC, Ganiko L, Batista WL, Morais FV, Marques ER, Goldman GH, Franco MF, Puccia R. Virulence of Paracoccidioides brasiliensis and gp43 expression in isolates bearing known PbGP43 genotype. Microbes Infect 2004; 7:55-65. [PMID: 15716071 DOI: 10.1016/j.micinf.2004.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/10/2004] [Accepted: 09/15/2004] [Indexed: 11/23/2022]
Abstract
Paracoccidioides brasiliensis is the dimorphic fungus responsible for human paracoccidioidomycosis (PCM). We previously observed that P. brasiliensis isolates bearing highly polymorphic PbGP43 of genotype A (Pb2, Pb3 and Pb4) were phylogenetically distant from the others. The PbGP43 gene encodes an immune dominant diagnostic antigen (gp43), and its polymorphism reflects broader genetic diversity in the species. In the present study, we observed that isolates with PbGP43 of genotype A showed low virulence when inoculated in B10.A mice by the intraperitoneal, intratracheal and intravenous routes. In vitro studies detected sharp and prolonged down-regulation of PbGP43 in Pb3 (and not in Pb18 or Pb339) as a result of heat shock at 42 degrees C and temperature shift to prompt mycelium to yeast transition, which was, however, not disturbed. Differences in transcriptional regulation are possibly a consequence of mutations in the PbGP43 promoter region, which we here show to be more polymorphic in genotype A isolates. As opposed to Pb3's rapid adaptation to in vitro culture conditions after isolation from the lung, Pb12, the most aggressive isolate tested here, showed slow growth and phase transition in vitro. Interestingly, animals that were highly infected by Pb12 produced small amounts of anti-gp43 antibodies. That was apparently due to down-regulation in PbGP43 expression. We present the first evidence of transcriptional regulation of gp43 expression, but our results suggest that gene expression is also regulated at the protein and/or secretion levels.
Collapse
Affiliation(s)
- Kátia C Carvalho
- Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, UNIFESP, Rua Botucatu, 862, oitavo andar, São Paulo, SP 04023-062, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hebeler-Barbosa F, Morais FV, Montenegro MR, Kuramae EE, Montes B, McEwen JG, Bagagli E, Puccia R. Comparison of the sequences of the internal transcribed spacer regions and PbGP43 genes of Paracoccidioides brasiliensis from patients and armadillos (Dasypus novemcinctus). J Clin Microbiol 2003; 41:5735-7. [PMID: 14662970 PMCID: PMC309012 DOI: 10.1128/jcm.41.12.5735-5737.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Revised: 08/07/2003] [Accepted: 09/13/2003] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioides brasiliensis isolates from 10 nine-banded armadillos (Dasypus novemcinctus) were comparable with 19 clinical isolates by sequence analysis of the PbGP43 gene and ribosomal internal transcribed spacer 1 (ITS1) and ITS2 and by random amplified polymorphic DNA. In this original ITS study, eight isolates differed by one or three sites among five total substitution sites.
Collapse
Affiliation(s)
- Flavia Hebeler-Barbosa
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hahn RC, Macedo AM, Fontes CJF, Batista RD, Santos NL, Hamdan JS. Randomly amplified polymorphic DNA as a valuable tool for epidemiological studies of Paracoccidioides brasiliensis. J Clin Microbiol 2003; 41:2849-54. [PMID: 12843011 PMCID: PMC165335 DOI: 10.1128/jcm.41.7.2849-2854.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Randomly amplified polymorphic DNA (RAPD) has been successfully used to detect genetic variations among isolates of Paracoccidioides brasiliensis. However, the usefulness of this technique for assessing important parasitic properties is still unconfirmed. In the present work we further investigated the applicability of RAPD in revealing important intrinsic and extrinsic features of this fungus associated with geographical origin, time of isolation, source of clinical specimen, clinical forms of human disease and also in vitro and in vivo susceptibility to antimicrobial and antifungal drugs. The RAPD patterns allowed us to distinguish all of the analyzed strains, which included 26 clinical isolates, 2 animal isolates, and 1 environmental isolate of P. brasiliensis obtained from different geographic regions, confirming the strong discriminating power of this technique. A phenetic tree, build from the RAPD data, showed that although the two nonclinical Brazilian strains were set together the majority of the clinical Brazilian strains were randomly distributed through different sub-branches of a major cluster without any correlation to any of the parameters analyzed. A second major cluster, however, has grouped isolates from Mato Grosso and Roraima (Brazil) that not only were susceptible in vitro to trimethoprim-sulfamethoxazole but also produced a good in vivo response. These results open new vistas for epidemiological and clinical studies of P. brasiliensis.
Collapse
Affiliation(s)
- Rosane Christine Hahn
- Departamento de Microbiologia, Instituto de Ciências Biológicas Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Motta TR, Moreira-Filho CA, Mendes RP, Souza LR, Sugizak MF, Baueb S, Calich VLG, Vaz CAC. Evaluation of DNA polymorphisms amplified by arbitrary primers (RAPD) as genetically associated elements to differentiate virulent and non-virulent Paracoccidioides brasiliensis isolates. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2002; 33:151-7. [PMID: 12110476 DOI: 10.1111/j.1574-695x.2002.tb00585.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Randomly amplified polymorphic DNA (RAPD) analysis of 35 Paracoccidioides brasiliensis isolates was carried out to evaluate the correlation of RAPD profiles with the virulence degree or the type of the clinical manifestations of human paracoccidioidomycosis. The dendrogram presented two main groups sharing 64% genetic similarity. Group A included two isolates from patients with chronic paracoccidioidomycosis; group B comprised the following isolates showing 65% similarity: two non-virulent, six attenuated, five virulent, eight from patients with chronic paracoccidioidomycosis and two from patients with acute paracoccidioidomycosis. The virulent Pb18 isolate and six attenuated or non-virulent samples derived from it were genetically indistinguishable (100% of similarity). Thus, in our study, RAPD patterns could not discriminate among 35 P. brasiliensis isolates according to their differences either in the degree of virulence or in the type of the clinical manifestation of this fungal infection.
Collapse
Affiliation(s)
- Teresa R Motta
- Departamento de Imunologia, Instituto de Ciências Biomédicas, USP, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
San-Blas G, Niño-Vega G, Iturriaga T. Paracoccidioides brasiliensis and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics. Med Mycol 2002; 40:225-42. [PMID: 12146752 DOI: 10.1080/mmy.40.3.225.242] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Paracoccidioides brasiliensis is an amenable model to study the molecular and biochemical events that lead to morphological transition in fungi, because temperature seems to be the only factor regulating this process. It is the causative agent of paracoccidioidomycosis, a systemic mycosis that affects humans and that is geographically confined to Latin America, where it constitutes one of the most prevalent deep mycoses. With the help of molecular tools, events leading to the morphological transition have been traced to genes that control cell wall glucan and chitin syntheses, and other metabolic processes such as production of heat shock proteins and ornithine decarboxylase activity. Molecular diagnosis and epidemiology of paracoccidioidomycosis are also the focus of intensive research, with several primers being proposed as specific probes for clinical and field uses. Although P. brasiliensis is refractory to cytogenetic analysis, electrophoretic methods have allowed an approximation of its genomic organization and ploidy. Finally, the recognition of P. brasiliensis as an anamorph in the phylum Ascomycota, order Onygenales, family Onygenaceae, has been accomplished by means of molecular tools. This phylogenetic placement has revised the taxonomic position of this fungus, which was traditionally included within now-abandoned higher anamorph taxa, the phylum Deuteromycota and the class Hyphomycetes.
Collapse
Affiliation(s)
- Gioconda San-Blas
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas, Venezuela.
| | | | | |
Collapse
|
16
|
Restrepo A, McEwen JG, Castañeda E. The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Med Mycol 2001; 39:233-41. [PMID: 11446526 DOI: 10.1080/mmy.39.3.233.241] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
When trying to understand the pathophysiology of any infectious agent, one key piece of information is the determination of its habitat. In the case of Paracoccidioides brasiliensis, the precise location of the fungus' environmental niche remains undefined despite the efforts of various research groups. This review summarizes recent studies on the ecology of P. brasiliensis and certain facets of paracoccidioidomycosis. Studies on the juvenile form of paracoccidioidomycosis in children less than 13 years of age, the characterization of the ecological factors in the 'reservarea' where the infection is acquired and the presence of P. brasiliensis in the nine-banded armadillo (Dasypus novemcinctus), are all helping to pinpoint the microniche of this pathogen. The application of molecular biology techniques based on the amplification of nucleic acids will also hopefully help in establishing the precise habitat of P. brasiliensis.
Collapse
Affiliation(s)
- A Restrepo
- Coporación para Investigaciones Biológicas, Medelliń, Colombia.
| | | | | |
Collapse
|
17
|
Morais FV, Barros TF, Fukada MK, Cisalpino PS, Puccia R. Polymorphism in the gene coding for the immunodominant antigen gp43 from the pathogenic fungus Paracoccidioides brasiliensis. J Clin Microbiol 2000; 38:3960-6. [PMID: 11060052 PMCID: PMC87525 DOI: 10.1128/jcm.38.11.3960-3966.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2000] [Accepted: 08/20/2000] [Indexed: 11/20/2022] Open
Abstract
The gp43 glycoprotein is an immune-dominant antigen in patients with paracoccidioidomycosis (PCM). It is protective against murine PCM and is a putative virulence factor. The gp43 gene of Paracoccidioides brasiliensis B-339 is located in a 1,329-bp DNA fragment that includes two exons, a 78-bp intron, and a leader peptide-coding region of 105 bp. Polymorphism in gp43 has been suggested by the occurrence, in the same isolate or among different fungal samples, of isoforms with distinct isoelectric points. In the present study we aligned and compared with a consensus sequence the gp43 precursor genes of 17 P. brasiliensis isolates after sequencing two PCR products from each fungal sample. The genotypic types detected showed 1 to 4 or 14 to 15 informative substitution sites, preferentially localized between 578 and 1166 bp. Some nucleotide differences within individual isolates (noninformative sites) resulted in a second isoelectric point for the deduced protein. The most polymorphic sequences were also phylogenetically distant from the others and encoded basic gp43 isoforms. The three isolates in this group were from patients with chronic PCM, and their DNA restriction patterns were distinct in Southern blots. The nucleotides encoding the inner core of the murine T-cell-protective epitope of gp43 were conserved, offering hope for the development of a universal vaccine.
Collapse
Affiliation(s)
- F V Morais
- Departamento de Microbiologia, Imunologia e Parasitologia da Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
18
|
Sano A, Defaveri J, Tanaka R, Yokoyama K, Kurita N, Franco M, Coelho KI, Bagagli E, Montenegro MR, Miyaji M, Nishimura K. Pathogenicities and GP43kDa gene of three Paracoccidioides brasiliensis isolates originated from a nine-banded armadillo (Dasypus novemcinctus). Mycopathologia 1999; 144:61-5. [PMID: 10481285 DOI: 10.1023/a:1007024923042] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We studied three different isolates of Paracoccidioides brasiliensis obtained from the mesenteric lymph node (D3LY1), the spleen (D3S1) and the liver (D3LIV1) of the same armadillo (Dasypus novemcinctus). Pulmonal inflammatory area was evaluated by intravenous inoculation of 10(6) yeast cells of each isolates in young, male, ddY mice. Moreover, the partial sequence of GP43kDa gene of P. brasiliensis was analyzed. The lung inflammatory area was greater in animals inoculated with isolate D3S1. The partial sequence of GP43kDa gene indicated that isolate D3S1 is different from isolates D3LY1 and D3LIV1. This study suggested that the same armadillo might be susceptible to multiple P. brasiliensis isolates simultaneously.
Collapse
Affiliation(s)
- A Sano
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|