1
|
Cardim Pires TR, Albanese JM, Schwab M, Marette A, Carvalho RS, Sola-Penna M, Zancan P. Phosphofructokinase-P Modulates P44/42 MAPK Levels in HeLa Cells. J Cell Biochem 2017; 118:1216-1226. [PMID: 27791266 DOI: 10.1002/jcb.25774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
It is known that interfering with glycolysis leads to profound modification of cancer cell proliferation. However, energy production is not the major reason for this correlation. Here, using HeLa cells as a model for cancer, we demonstrate that phosphofructokinase-P (PFK-P), which is overexpressed in diverse types of cancer including HeLa cells, modulates expression of P44/42 mitogen-activated protein kinase (MAPK). Silencing of PFK-P did not alter HeLa cell viability or energy production, including the glycolytic rate. On the other hand, silencing of PFK-P induced the downregulation of p44/42 MAPK, augmenting the sensitivity of HeLa cells to different drugs. Conversely, overexpression of PFK-P promotes the upregulation of p44/42 MAPK, making the cells more resistant to the drugs. These results indicate that overexpression of PFK-P by cancer cells is related to activation of survival pathways via upregulation of MAPK and suggest PFK-P as a promising target for cancer therapy. J. Cell. Biochem. 118: 1216-1226, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jamille Mansur Albanese
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Michael Schwab
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, G1V 4G5, Canada
| | - André Marette
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Room Y4308, 2705 Chemin Ste-Foy, Québec, G1V 4G5, Canada
| | - Renato Sampaio Carvalho
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
2
|
Ren CT, Li DM, Ou SW, Wang YJ, Lin Y, Zong ZH, Kameyama M, Kameyama A. Cloning and expression of the two new variants of Nav1.5/SCN5A in rat brain. Mol Cell Biochem 2012; 365:139-48. [PMID: 22331407 DOI: 10.1007/s11010-012-1253-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 01/13/2012] [Indexed: 12/19/2022]
Abstract
The α-subunit of tetrodotoxin-resistant (TTX-R) voltage-gated sodium channel (VSGC, Nav1.5/SCN5A) has been found from the rat heart and human neuroblastoma cell line NB-1, but its expression in rat brain has not been identified radically. In this study, a reverse transcriptase-polymerase chain reaction was used to clone the full sequence of Nav1.5 (designated as rN1) α-subunit in rat brain and compared the distribution in different lobe of brain in different developmental stages. The open reading frame of rN1 encodes 2,016 amino acid residues and sequence analysis indicated that rN1 is highly homologous with 96.53% amino acids identity to rat cardiac Nav1.5 (rH1) and 96.13% amino acids identity to human neuroblastoma Nav1.5 (hNbR1). It has all the structural features of a VSGC and the presence of a cysteine residue (C373) in the pore loop region of domain I suggests that this channel is resistant to TTX. A new exon (exon6A) that is distinct from rH1 was found in DI-S3-S4, meanwhile an isomer of alternative splicing that deleted 53 amino acids (exon18) was found for the first time in domain DII-III in rN1. (designated as rN1-2). Distribution results demonstrated that rN1 expressed discrepancy in different ages and lobe in brain. The expression level of rN1 was gradually more stable in adult than in neonatal; these results suggest that rN1 has a newly identified exon for alternative splicing that is differentfrom rat heart and is more widely expressed in rat brain than previously thought.
Collapse
Affiliation(s)
- Cheng-Tao Ren
- Department of Neurosurgery, The Affiliated Municipal Hospital, Medical College, Qingdao University, Qingdao, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Richard AMT, Webb DL, Goodman JM, Schultz V, Flanagan JN, Getty-Kaushik L, Deeney JT, Yaney GC, Dunaway GA, Berggren PO, Tornheim K. Tissue-dependent loss of phosphofructokinase-M in mice with interrupted activity of the distal promoter: impairment in insulin secretion. Am J Physiol Endocrinol Metab 2007; 293:E794-801. [PMID: 17595219 DOI: 10.1152/ajpendo.00168.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphofructokinase is a key enzyme of glycolysis that exists as homo- and heterotetramers of three subunit isoforms: muscle, liver, and C type. Mice with a disrupting tag inserted near the distal promoter of the phosphofructokinase-M gene showed tissue-dependent differences in loss of that isoform: 99% in brain and 95-98% in islets, but only 50-75% in skeletal muscle and little if any loss in heart. This correlated with the continued presence of proximal transcripts specifically in muscle tissues. These data strongly support the proposed two-promoter system of the gene, with ubiquitous use of the distal promoter and additional use of the proximal promoter selectively in muscle. Interestingly, the mice were glucose intolerant and had somewhat elevated fasting and fed blood glucose levels; however, they did not have an abnormal insulin tolerance test, consistent with the less pronounced loss of phosphofructokinase-M in muscle. Isolated perifused islets showed about 50% decreased glucose-stimulated insulin secretion and reduced amplitude and regularity of secretory oscillations. Oscillations in cytoplasmic free Ca(2+) and the rise in the ATP/ADP ratio appeared normal. Secretory oscillations still occurred in the presence of diazoxide and high KCl, indicating an oscillation mechanism not requiring dynamic Ca(2+) changes. The results suggest the importance of phosphofructokinase-M for insulin secretion, although glucokinase is the overall rate-limiting glucose sensor. Whether the Ca(2+) oscillations and residual insulin oscillations in this mouse model are due to the residual 2-5% phosphofructokinase-M or to other phosphofructokinase isoforms present in islets or involve another metabolic oscillator remains to be determined.
Collapse
Affiliation(s)
- Ann-Marie T Richard
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Saeedi R, Wambolt RB, Parsons H, Antler C, Leong HS, Keller A, Dunaway GA, Popov KM, Allard MF. Gender and post-ischemic recovery of hypertrophied rat hearts. BMC Cardiovasc Disord 2006; 6:8. [PMID: 16509993 PMCID: PMC1413556 DOI: 10.1186/1471-2261-6-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 03/01/2006] [Indexed: 11/17/2022] Open
Abstract
Background Gender influences the cardiac response to prolonged increases in workload, with differences at structural, functional, and molecular levels. However, it is unknown if post-ischemic function or metabolism of female hypertrophied hearts differ from male hypertrophied hearts. Thus, we tested the hypothesis that gender influences post-ischemic function of pressure-overload hypertrophied hearts and determined if the effect of gender on post-ischemic outcome could be explained by differences in metabolism, especially the catabolic fate of glucose. Methods Function and metabolism of isolated working hearts from sham-operated and aortic-constricted male and female Sprague-Dawley rats before and after 20 min of no-flow ischemia (N = 17 to 27 per group) were compared. Parallel series of hearts were perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/L insulin to measure glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in the second. Statistical analysis was performed using two-way analysis of variance. The sequential rejective Bonferroni procedure was used to correct for multiple comparisons and tests. Results Female gender negatively influenced post-ischemic function of non-hypertrophied hearts, but did not significantly influence function of hypertrophied hearts after ischemia such that mass-corrected hypertrophied heart function did not differ between genders. Before ischemia, glycolysis was accelerated in hypertrophied hearts, but to a greater extent in males, and did not differ between male and female non-hypertrophied hearts. Glycolysis fell in all groups after ischemia, except in non-hypertrophied female hearts, with the reduction in glycolysis after ischemia being greatest in males. Post-ischemic glycolytic rates were, therefore, similarly accelerated in hypertrophied male and female hearts and higher in female than male non-hypertrophied hearts. Glucose oxidation was lower in female than male hearts and was unaffected by hypertrophy or ischemia. Consequently, non-oxidative catabolism of glucose after ischemia was lowest in male non-hypertrophied hearts and comparably elevated in hypertrophied hearts of both sexes. These differences in non-oxidative glucose catabolism were inversely related to post-ischemic functional recovery. Conclusion Gender does not significantly influence post-ischemic function of hypertrophied hearts, even though female sex is detrimental to post-ischemic function in non-hypertrophied hearts. Differences in glucose catabolism may contribute to hypertrophy-induced and gender-related differences in post-ischemic function.
Collapse
Affiliation(s)
- Ramesh Saeedi
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Pathology and Laboratory Medicine, University of British Columbia-St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Richard B Wambolt
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Pathology and Laboratory Medicine, University of British Columbia-St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Hannah Parsons
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Pathology and Laboratory Medicine, University of British Columbia-St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Christine Antler
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Pathology and Laboratory Medicine, University of British Columbia-St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Hon S Leong
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Pathology and Laboratory Medicine, University of British Columbia-St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Angelica Keller
- Labatoire CRRET, Faculté des Sciences, Université de Paris XII, Creteil Cedex, 94010, France
| | - George A Dunaway
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| | - Kirill M Popov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael F Allard
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Pathology and Laboratory Medicine, University of British Columbia-St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| |
Collapse
|