1
|
Lim S, Shin S, Sung Y, Lee HE, Kim KH, Song JY, Lee GH, Aziz H, Lukianenko N, Kang DM, Boesen N, Jeong H, Abdildinova A, Lee J, Yu BY, Lim SM, Lee JS, Ryu H, Pae AN, Kim YK. Levosimendan inhibits disulfide tau oligomerization and ameliorates tau pathology in Tau P301L-BiFC mice. Exp Mol Med 2023; 55:612-627. [PMID: 36914856 PMCID: PMC10073126 DOI: 10.1038/s12276-023-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 03/14/2023] Open
Abstract
Tau oligomers play critical roles in tau pathology and are responsible for neuronal cell death and transmitting the disease in the brain. Accordingly, preventing tau oligomerization has become an important therapeutic strategy to treat tauopathies, including Alzheimer's disease. However, progress has been slow because detecting tau oligomers in the cellular context is difficult. Working toward tau-targeted drug discovery, our group has developed a tau-BiFC platform to monitor and quantify tau oligomerization. By using the tau-BiFC platform, we screened libraries with FDA-approved and passed phase I drugs and identified levosimendan as a potent anti-tau agent that inhibits tau oligomerization. 14C-isotope labeling of levosimendan revealed that levosimendan covalently bound to tau cysteines, directly inhibiting disulfide-linked tau oligomerization. In addition, levosimendan disassembles tau oligomers into monomers, rescuing neurons from aggregation states. In comparison, the well-known anti-tau agents methylene blue and LMTM failed to protect neurons from tau-mediated toxicity, generating high-molecular-weight tau oligomers. Levosimendan displayed robust potency against tau oligomerization and rescued cognitive declines induced by tauopathy in the TauP301L-BiFC mouse model. Our data present the potential of levosimendan as a disease-modifying drug for tauopathies.
Collapse
Affiliation(s)
- Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seulgi Shin
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoonsik Sung
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ha Eun Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyu Hyeon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ji Yeon Song
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hira Aziz
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Nataliia Lukianenko
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dong Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Nicolette Boesen
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hyeanjeong Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Aizhan Abdildinova
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's disease Research Center and VA Boston Health care System, Boston, MA, 02130, USA
| | - Byung-Yong Yu
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sang Min Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Boston University Alzheimer's disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
2
|
Jeong YE, Rajbhandari L, Kim BW, Venkatesan A, Hoke A. Downregulation of SF3B2 protects CNS neurons in models of multiple sclerosis. Ann Clin Transl Neurol 2023; 10:246-265. [PMID: 36574260 PMCID: PMC9930435 DOI: 10.1002/acn3.51717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Neurodegeneration induced by inflammatory stress in multiple sclerosis (MS) leads to long-term neurological disabilities that are not amenable to current immunomodulatory therapies. METHODS AND RESULTS Here, we report that neuronal downregulation of Splicing factor 3b subunit 2 (SF3B2), a component of U2 small nuclear ribonucleoprotein (snRNP), preserves retinal ganglion cell (RGC) survival and axonal integrity in experimental autoimmune encephalomyelitis (EAE)-induced mice. By employing an in vitro system recapitulating the inflammatory environment of MS lesion, we show that when SF3B2 levels are downregulated, cell viability and axon integrity are preserved in cortical neurons against inflammatory toxicity. Notably, knockdown of SF3B2 suppresses the expression of injury-response and necroptosis genes and prevents activation of Sterile Alpha and TIR Motif Containing 1 (Sarm1), a key enzyme that mediates programmed axon degeneration. INTERPRETATION Together, these findings suggest that the downregulation of SF3B2 is a novel potential therapeutic target to prevent secondary neurodegeneration in MS.
Collapse
Affiliation(s)
- Ye Eun Jeong
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Byung Woo Kim
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
3
|
Bouillet T, Ciba M, Alves CL, Rodrigues FA, Thielemann C, Colin M, Buée L, Halliez S. Revisiting the involvement of tau in complex neural network remodeling: analysis of the extracellular neuronal activity in organotypic brain slice co-cultures. J Neural Eng 2022; 19. [PMID: 36374001 DOI: 10.1088/1741-2552/aca261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Objective.Tau ablation has a protective effect in epilepsy due to inhibition of the hyperexcitability/hypersynchrony. Protection may also occur in transgenic models of Alzheimer's disease by reducing the epileptic activity and normalizing the excitation/inhibition imbalance. However, it is difficult to determine the exact functions of tau, because tau knockout (tauKO) brain networks exhibit elusive phenotypes. In this study, we aimed to further explore the physiological role of tau using brain network remodeling.Approach.The effect of tau ablation was investigated in hippocampal-entorhinal slice co-cultures during network remodeling. We recorded the spontaneous extracellular neuronal activity over 2 weeks in single-slice cultures and co-cultures from control andtauKOmice. We compared the burst activity and applied concepts and analytical tools intended for the analysis of the network synchrony and connectivity.Main results.Comparison of the control andtauKOco-cultures revealed that tau ablation had an anti-synchrony effect on the hippocampal-entorhinal two-slice networks at late stages of culture, in line with the literature. Differences were also found between the single-slice and co-culture conditions, which indicated that tau ablation had differential effects at the sub-network scale. For instance, tau ablation was found to have an anti-synchrony effect on the co-cultured hippocampal slices throughout the culture, possibly due to a reduction in the excitation/inhibition ratio. Conversely, tau ablation led to increased synchrony in the entorhinal slices at early stages of the co-culture, possibly due to homogenization of the connectivity distribution.Significance.The new methodology presented here proved useful for investigating the role of tau in the remodeling of complex brain-derived neural networks. The results confirm previous findings and hypotheses concerning the effects of tau ablation on neural networks. Moreover, the results suggest, for the first time, that tau has multifaceted roles that vary in different brain sub-networks.
Collapse
Affiliation(s)
- Thomas Bouillet
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Manuel Ciba
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Aschaffenburg 63743, Germany
| | - Caroline Lourenço Alves
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Aschaffenburg 63743, Germany.,Institute of Mathematics and Computer Science, University of São Paulo, São Carlos SP 13566-590, Brazil
| | | | - Christiane Thielemann
- BioMEMS Lab, University of Applied Sciences Aschaffenburg, Aschaffenburg 63743, Germany
| | - Morvane Colin
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Luc Buée
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| | - Sophie Halliez
- University Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille F-59000, France
| |
Collapse
|
4
|
Lilienberg J, Apáti Á, Réthelyi JM, Homolya L. Microglia modulate proliferation, neurite generation and differentiation of human neural progenitor cells. Front Cell Dev Biol 2022; 10:997028. [PMID: 36313581 PMCID: PMC9606406 DOI: 10.3389/fcell.2022.997028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 10/10/2024] Open
Abstract
Microglia, the primary immune cells of the brain, significantly influence the fate of neurons after neural damage. Depending on the local environment, they exhibit a wide range of phenotypes, including patrolling (naïve), proinflammatory, and anti-inflammatory characteristics, which greatly affects neurotoxicity. Despite the fact that neural progenitor cells (NPCs) and hippocampal neurons represent cell populations, which play pivotal role in neural regeneration, interaction between microglia and these cell types is poorly studied. In the present work, we investigated how microglial cells affect the proliferation and neurite outgrowth of human stem cell-derived NPCs, and how microglia stimulation with proinflammatory or anti-inflammatory agents modulates this interaction. We found that naïve microglia slightly diminish NPC proliferation and have no effect on neurite outgrowth. In contrast, proinflammatory stimulated microglia promote both proliferation and neurite generation, whereas microglia stimulated with anti-inflammatory cytokines augment neurite outgrowth leaving NPC proliferation unaffected. We also studied how microglia influence neurite development and differentiation of hippocampal dentate gyrus granule cells differentiated from NPCs. We found that proinflammatory stimulated microglia inhibit axonal development but facilitate dendrite generation in these differentiating neurons. Our results elucidate a fine-tuned modulatory effect of microglial cells on cell types crucial for neural regeneration, opening perspectives for novel regenerative therapeutic interventions.
Collapse
Affiliation(s)
- Julianna Lilienberg
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - János M. Réthelyi
- Molecular Psychiatry and in vitro Disease Modelling Research Group, National Brain Research Project, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
5
|
Torres AK, Jara C, Park-Kang HS, Polanco CM, Tapia D, Alarcón F, de la Peña A, Llanquinao J, Vargas-Mardones G, Indo JA, Inestrosa NC, Tapia-Rojas C. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1391-1414. [PMID: 34719499 DOI: 10.3233/jad-215139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-β (Aβ) peptide. The amyloid hypothesis proposes that Aβ accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aβ-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aβ accumulation or if is a consequence of it. Aβ promotes mitochondrial failure. However, amyloid β precursor protein (AβPP) could be cleaved in the mitochondria producing Aβ peptide. Mitochondrial-produced Aβ could interact with newly formed ones or with Aβ that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aβ toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Diego Tapia
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Fabián Alarcón
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Adely de la Peña
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Jesus Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Gabriela Vargas-Mardones
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Javiera A Indo
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| |
Collapse
|
6
|
Sonawane SK, Chinnathambi S. Epigallocatechin-3-gallate modulates Tau Post-translational modifications and cytoskeletal network. Oncotarget 2021; 12:1083-1099. [PMID: 34084282 PMCID: PMC8169072 DOI: 10.18632/oncotarget.27963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a type of dementia denoted by progressive neuronal death due to the accumulation of proteinaceous aggregates of Tau. Post-translational modifications like hyperphosphorylation, truncation, glycation, etc. play a pivotal role in Tau pathogenesis. Glycation of Tau aids in paired helical filament formation and abates its microtubule-binding function. The chemical modulators of Tau PTMs, such as kinase inhibitors and antibody-based therapeutics, have been developed, but natural compounds, as modulators of Tau PTMs are not much explored. MATERIALS AND METHODS We applied biophysical and biochemical techniques like fluorescence kinetics, oligomerization analysis and transmission electron microscopy to investigate the impact of EGCG on Tau glycation in vitro. The effect of glycation on cytoskeleton instability and its EGCG-mediated rescue were studied by immunofluorescence microscopy in neuroblastoma cells. RESULTS EGCG inhibited methyl glyoxal (MG)-induced Tau glycation in vitro. EGCG potently inhibited MG-induced advanced glycation endproducts formation in neuroblastoma cells as well modulated the localization of AT100 phosphorylated Tau in the cells. In addition to preventing the glycation, EGCG enhanced actin-rich neuritic extensions and rescued actin and tubulin cytoskeleton severely disrupted by MG. EGCG maintained the integrity of the Microtubule Organizing Center (MTOC) stabilized microtubules by Microtubule-associated protein RP/EB family member 1 (EB1). CONCLUSIONS We report EGCG, a green tea polyphenol, as a modulator of in vitro methylglyoxal-induced Tau glycation and its impact on reducing advanced glycation end products in neuroblastoma cells. We unravel unprecedented function of EGCG in remodeling neuronal cytoskeletal integrity.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, Nitro-Oxidative Stress, Impaired Autophagy, and Insulin Resistance as a Mechanistic Convergence Between Arterial Stiffness and Alzheimer's Disease. Front Mol Biosci 2021; 8:651215. [PMID: 33855048 PMCID: PMC8039307 DOI: 10.3389/fmolb.2021.651215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The average age of the world's elderly population is steadily increasing. This unprecedented rise in the aged world population will increase the prevalence of age-related disorders such as cardiovascular disease (CVD) and neurodegeneration. In recent years, there has been an increased interest in the potential interplay between CVDs and neurodegenerative syndromes, as several vascular risk factors have been associated with Alzheimer's disease (AD). Along these lines, arterial stiffness is an independent risk factor for both CVD and AD. In this review, we discuss several inflammaging-related disease mechanisms including acute tissue-specific inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance which may contribute to the proposed synergism between arterial stiffness and AD.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Guido R. Y. De Meyer
- Laboratory of Physiopharmacology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Vasilevskaya A, Taghdiri F, Burke C, Tarazi A, Naeimi SA, Khodadadi M, Goswami R, Sato C, Grinberg M, Moreno D, Wennberg R, Mikulis D, Green R, Colella B, Davis KD, Rusjan P, Houle S, Tator C, Rogaeva E, Tartaglia MC. Interaction of APOE4 alleles and PET tau imaging in former contact sport athletes. Neuroimage Clin 2020; 26:102212. [PMID: 32097865 PMCID: PMC7037542 DOI: 10.1016/j.nicl.2020.102212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Genetic polymorphisms like apolipoprotein E (APOE) and microtubule-associated protein tau (MAPT) genes increase the risk of neurodegeneration. METHODS 38 former players (age 52.63±14.02) of contact sports underwent neuroimaging, biofluid collection, and comprehensive neuropsychological assessment. The [F-18]AV-1451 tracer signal was compared in the cortical grey matter between APOE4 allele carriers and non-carriers as well as carriers of MAPT H1H1 vs non-H1H1. Participants were then divided into the high (N = 13) and low (N = 13) groups based on cortical PET tau standard uptake value ratios (SUVRs) for comparison. FINDINGS Cortical grey matter PET tau SUVR values were significantly higher in APOE4 carriers compared to non-carriers (p = 0.020). In contrast, there was no significant difference in SUVR between MAPT H1H1 vs non-H1H1 carrier genes (p = 1.00). There was a significantly higher APOE4 allele frequency in the high cortical grey matter PET tau group, comparing to low cortical grey matter PET tau group (p = 0.048). No significant difference in neuropsychological function was found between APOE4 allele carriers and non-carriers. INTERPRETATION There is an association between higher cortical grey matter tau burden as seen with [F-18]AV-1451 PET tracer SUVR, and the APOE4 allele in former professional and semi-professional players at high risk of concussions. APOE4 allele may be a risk factor for tau accumulation in former contact sports athletes at high risk of neurodegeneration. FUNDING Toronto General and Western Hospital Foundations; Weston Brain Institute; Canadian Consortium on Neurodegeneration in ageing; Krembil Research Institute. There was no role of the funders in this study.
Collapse
Affiliation(s)
- Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Charles Burke
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; School of Medicine & Dentistry, Western University, Windsor, ON, Canada
| | - Apameh Tarazi
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Seyed Ali Naeimi
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Mozghan Khodadadi
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Ruma Goswami
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Mark Grinberg
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada
| | - Richard Wennberg
- Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - David Mikulis
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Robin Green
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Rehabilitation Sciences, University of Toronto, 500 University Ave, Toronto, ON, M5G 1V7, Canada
| | - Brenda Colella
- Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Rehabilitation Sciences, University of Toronto, 500 University Ave, Toronto, ON, M5G 1V7, Canada
| | - Karen D Davis
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Department of Surgery, University of Toronto, 149 College St., Toronto, ON, M5T 1P5, Canada
| | - Pablo Rusjan
- Research Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Sylvain Houle
- Research Imaging Centre, Campbell Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada
| | - Charles Tator
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Division of Neurosurgery, Toronto Western Hospital, Krembil Brain Institute, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Department of Medicine, Division of Neurology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard avenue, Toronto, ON M5T 0S8, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada; Division of Neurology, Toronto Western Hospital, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada; Canadian Concussion Center, Toronto Western Hospital, Krembil Neuroscience Centre, University Health Network, 399 Bathurst St., Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
9
|
Beyrent E, Gomez G. Oxidative stress differentially induces tau dissociation from neuronal microtubules in neurites of neurons cultured from different regions of the embryonic Gallus domesticus brain. J Neurosci Res 2019; 98:734-747. [PMID: 31621106 DOI: 10.1002/jnr.24541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
Abnormal phosphorylation of microtubule-associated proteins such as tau has been shown to play a role in neurodegenerative disorders. It is hypothesized that oxidative stress-induced aggregates of hyperphosphorylated tau could lead to the microtubule network degradation commonly associated with neurodegeneration. We investigated whether oxidative stress induced tau hyperphosphorylation and focused on neurite degradation using cultured neurons isolated from the embryonic chick brain as a model system. Cells were isolated from the cerebrum, cerebellum, and tectum of 14-day-old chicks, grown separately in culture, and treated with tert-Butyl hydroperoxide (to simulate oxidative stress) for 48 hr. Relative expression and localization of tau or phospho-tau and β-tubulin III in neurites were determined using quantitative immunocytochemistry and confocal microscopy. In untreated cells, tau was tightly colocalized with β-tubulin III. Increasing levels of oxidative stress induced an increase in overall tau expression in neurites of cerebral and tectal but not the cerebellar neurons, coupled with a decrease in phospho-tau expression in tectal but not the cerebral or cerebellar neurons. In addition, oxidative stress induced the degeneration of the distal ends of the neurites and redistribution of phospho-tau toward the neuronal soma in the cerebral but not the tectal and cerebellar neurons. These results suggest that oxidative stress induces changes in tau protein that precede cytoskeletal degradation and neurite retraction. Additionally, there is a differential susceptibility of neuronal subpopulations to oxidative stress, which may offer potential avenues for investigation of the cellular mechanisms underlying the differential manifestations of neurodegenerative disorders in different regions of the brain.
Collapse
Affiliation(s)
- Erika Beyrent
- Biology Department, University of Scranton, Scranton, PA, USA
| | - George Gomez
- Biology Department, University of Scranton, Scranton, PA, USA
| |
Collapse
|
10
|
Venkatramani A, Panda D. Regulation of neuronal microtubule dynamics by tau: Implications for tauopathies. Int J Biol Macromol 2019; 133:473-483. [DOI: 10.1016/j.ijbiomac.2019.04.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
|
11
|
Barón-Mendoza I, García O, Calvo-Ochoa E, Rebollar-García JO, Garzón-Cortés D, Haro R, González-Arenas A. Alterations in neuronal cytoskeletal and astrocytic proteins content in the brain of the autistic-like mouse strain C58/J. Neurosci Lett 2018; 682:32-38. [PMID: 29885454 DOI: 10.1016/j.neulet.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficient social interaction, impaired communication as well as repetitive behaviors. ASD subjects present connectivity and neuroplasticity disturbances associated with morphological alterations in axons, dendrites, and dendritic spines. Given that the neuronal cytoskeleton and astrocytes have an essential role in regulating several mechanisms of neural plasticity, the aim of this work was to study alterations in the content of neuronal cytoskeletal components actin and tubulin and their associated proteins, as well as astrocytic proteins GFAP and TSP-1 in the brain of a C58/J mouse model of ASD. We determined the expression and regulatory phosphorylation state of cytoskeletal components in the prefrontal cortex, hippocampus, and cerebellum of C58/J mice by means of Western blotting. Our results show that autistic-like mice present: 1) region-dependent altered expression and phosphorylation patterns of Tau isoforms, associated with anomalous microtubule depolymerization; 2) reduced MAP2 A content in prefrontal cortex; 3) region-dependent changes in cofilin expression and phosphorylation, associated with abnormal actin filament depolymerizing dynamics; 4) diminished synaptopodin levels in the hippocampus; and 5) reduced content of the astrocyte-secreted protein TSP-1 in the prefrontal cortex and hippocampus. Our work demonstrates changes in the expression and phosphorylation of cytoskeletal proteins as well as in TSP-1 in the brain of the autistic-like mice C58/J, shedding light in one of the possible molecular mechanisms underpinning neuroplasticity alterations in the ASD brain and laying the foundation for future investigations in this topic.
Collapse
Affiliation(s)
- Isabel Barón-Mendoza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Octavio García
- Departamento de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Erika Calvo-Ochoa
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Jorge Omar Rebollar-García
- Unidad de Modelos Biológicos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Daniel Garzón-Cortés
- Unidad de Modelos Biológicos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Reyes Haro
- Instituto Mexicano de Medicina Integral de Sueño, Ciudad de México, México
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
12
|
Sayas CL, Tortosa E, Bollati F, Ramírez-Ríos S, Arnal I, Avila J. Tau regulates the localization and function of End-binding proteins 1 and 3 in developing neuronal cells. J Neurochem 2015; 133:653-67. [PMID: 25761518 DOI: 10.1111/jnc.13091] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Abstract
The axonal microtubule-associated protein tau is a well-known regulator of microtubule stability in neurons. However, the putative interplay between tau and End-binding proteins 1 and 3 (EB1/3), the core microtubule plus-end tracking proteins, has not been elucidated yet. Here, we show that a cross-talk between tau and EB1/3 exists in developing neuronal cells. Tau and EBs partially colocalize at extending neurites of N1E-115 neuroblastoma cells and axons of primary hippocampal neurons, as shown by confocal immunofluorescence analyses. Tau down-regulation leads to a reduction of EB1/3 comet length, as observed in shRNA-stably depleted neuroblastoma cells and TAU-/- neurons. EB1/3 localization depends on the expression levels and localization of tau protein. Over-expression of tau at high levels induces EBs relocalization to microtubule bundles at extending neurites of N1E-115 cells. In differentiating primary neurons, tau is required for the proper accumulation of EBs at stretches of microtubule bundles at the medial and distal regions of the axon. Tau interacts with EB proteins, as shown by immunoprecipitation in different non-neuronal and neuronal cells and in whole brain lysates. A tau/EB1 direct interaction was corroborated by in vitro pull-down assays. Fluorescence recovery after photobleaching assays performed in neuroblastoma cells confirmed that tau modulates EB3 cellular mobility. In summary, we provide evidence of a new function of tau as a direct regulator of EB proteins in developing neuronal cells. This cross-talk between a classical microtubule-associated protein and a core microtubule plus-end tracking protein may contribute to the fine-tuned regulation of microtubule dynamics and stability during neuronal differentiation. We describe here a novel function for tau as a direct regulator of End binding (EB) proteins in differentiating neuronal cells. EB1/3 cellular mobility and localization in extending neurites and axons is modulated by tau levels and localization. We provide new evidence of the interplay between classical microtubule-associated proteins (MAPs) and "core" microtubule plus-end tracking proteins (+TIPs) during neuronal development.
Collapse
Affiliation(s)
- Carmen Laura Sayas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain; Centre for Biomedical Research of the Canary Islands (CIBICAN), Institute for Biomedical Technologies (ITB), University of La Laguna (ULL), Tenerife, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Cruz CD, Coelho A, Antunes-Lopes T, Cruz F. Biomarkers of spinal cord injury and ensuing bladder dysfunction. Adv Drug Deliv Rev 2015; 82-83:153-9. [PMID: 25446137 DOI: 10.1016/j.addr.2014.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/02/2014] [Accepted: 11/08/2014] [Indexed: 12/29/2022]
Abstract
During the acute phase of SCI, the extension and residual neurological deficits that will persist after the waning of the spinal shock period are difficult to estimate on clinical grounds. Therefore, objective biomarkers able to estimate the extension of the lesion and the degree of neurological recovery are of great importance. Research has been focused on the detection of structural neuronal and glial proteins that leak from damaged cells, inflammatory proteins recruited to remove necrotic debris and more accurate neuroimaging methods that are able to discriminate the extension and functional consequences of the SCI. Urinary biomarkers are also being investigated to estimate functional changes that typically affect bladder function following SCI which can endanger patient's life in the long run. Future studies are needed to precisely characterize the composition and function of the glial scar that appears in the area of SCI and repeals axonal growth, therefore preventing axonal rewiring.
Collapse
|
14
|
Kitagishi Y, Nakanishi A, Ogura Y, Matsuda S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2014; 6:35. [PMID: 25031641 PMCID: PMC4075129 DOI: 10.1186/alzrt265] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer’s disease (AD) is characterized by the formation of senile plaques and neurofibrillary tangles composed of phosphorylated Tau. Several findings suggest that correcting signal dysregulation for Tau phosphorylation in AD may offer a potential therapeutic approach. The PI3K/AKT/GSK-3β pathway has been shown to play a pivotal role in neuroprotection, enhancing cell survival by stimulating cell proliferation and inhibiting apoptosis. This pathway appears to be crucial in AD because it promotes protein hyper-phosphorylation in Tau. Understanding those regulations may provide a better efficacy of new therapeutic approaches. In this review, we summarize advances in the involvement of the PI3K/AKT/GSK-3β pathways in cell signaling of neuronal cells. We also review recent studies on the features of several diets and the signaling pathway involved in AD.
Collapse
Affiliation(s)
- Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara, 630-8506, Japan
| |
Collapse
|
15
|
Rodríguez-Vázquez J, Camacho-Arroyo I, Velázquez-Moctezuma J. Differential impact of REM sleep deprivation on cytoskeletal proteins of brain regions involved in sleep regulation. Neuropsychobiology 2012; 65:161-7. [PMID: 22456537 DOI: 10.1159/000330010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/09/2011] [Indexed: 12/16/2022]
Abstract
Rapid eye movement (REM) sleep is involved in memory consolidation, which implies synaptic plasticity. This process requires protein synthesis and the reorganization of the neural cytoskeleton. REM sleep deprivation (REMSD) has an impact on some neuronal proteins involved in synaptic plasticity, such as glutamate receptors and postsynaptic density protein 95, but its effects on cytoskeletal proteins is unknown. In this study, the effects of REMSD on the content of the cytoskeletal proteins MAP2 and TAU were analyzed. Adult female rats were submitted to selective REMSD by using the multiple platform technique. After 24, 48 or 72 h of REMSD, rats were decapitated and the following brain areas were dissected: pons, preoptic area, hippocampus and frontal cortex. Protein extraction and Western blot were performed. Results showed an increase in TAU content in the pons, preoptic area and hippocampus after 24 h of REMSD, while in the frontal cortex a significant increase in TAU content was observed after 72 h of REMSD. A TAU content decrease was observed in the hippocampus after 48 h of REMSD. Interestingly, a marked increase in TAU content was observed after 72 h of REMSD. MAP2 content only increased in the preoptic area at 24 h, and in the frontal cortex after 24 and 72 h of REMSD, without significant changes in the pons and hippocampus. These results support the idea that REM sleep plays an important role in the organization of neural cytoskeleton, and that this effect is tissue-specific.
Collapse
Affiliation(s)
- Jennifer Rodríguez-Vázquez
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México.
| | | | | |
Collapse
|
16
|
Walker S, Ullman O, Stultz CM. Using intramolecular disulfide bonds in tau protein to deduce structural features of aggregation-resistant conformations. J Biol Chem 2012; 287:9591-600. [PMID: 22291015 PMCID: PMC3308815 DOI: 10.1074/jbc.m111.336107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/17/2012] [Indexed: 01/11/2023] Open
Abstract
Because tau aggregation likely plays a role in a number of neurodegenerative diseases, understanding the processes that affect tau aggregation is of considerable importance. One factor that has been shown to influence the aggregation propensity is the oxidation state of the protein itself. Tau protein, which contains two naturally occurring cysteine residues, can form both intermolecular disulfide bonds and intramolecular disulfide bonds. Several studies suggest that intermolecular disulfide bonds can promote tau aggregation in vitro. By contrast, although there are data to suggest that intramolecular disulfide bond formation retards tau aggregation in vitro, the precise mechanism underlying this observation remains unclear. While it has been hypothesized that a single intramolecular disulfide bond in tau leads to compact conformations that cannot form extended structure consistent with tau fibrils, there are few data to support this conjecture. In the present study we generate oxidized forms of the truncation mutant, K18, which contains all four microtubule binding repeats, and isolate the monomeric fraction, which corresponds to K18 monomers that have a single intramolecular disulfide bond. We study the aggregation propensity of the oxidized monomeric fraction and relate these data to an atomistic model of the K18 unfolded ensemble. Our results argue that the main effect of intramolecular disulfide bond formation is to preferentially stabilize conformers within the unfolded ensemble that place the aggregation-prone tau subsequences, PHF6* and PHF6, in conformations that are inconsistent with the formation of cross-β-structure. These data further our understanding of the precise structural features that retard tau aggregation.
Collapse
Affiliation(s)
| | | | - Collin M. Stultz
- From the Research Laboratory of Electronics
- the Harvard-MIT Division of Health Sciences and Technology and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
| |
Collapse
|
17
|
Schulte C, Gasser T. Genetic basis of Parkinson's disease: inheritance, penetrance, and expression. APPLICATION OF CLINICAL GENETICS 2011; 4:67-80. [PMID: 23776368 PMCID: PMC3681179 DOI: 10.2147/tacg.s11639] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson’s disease can be caused by rare familial genetic mutations, but in most cases it is likely to result from an interaction between multiple genetic and environmental risk factors. Over recent years, many variants in a growing number of genes involved in the pathogenesis of Parkinson’s disease have been identified. Mutations in several genes have been shown to cause familial parkinsonism. In this review, we discuss 12 of them (SNCA, LRRK2, Parkin, PINK1, DJ1, ATP13A2, PLA2G6, FBXO7, UCHL1, GIGYF2, HTRA2, and EIF4G1). Additionally, six genes have been shown conclusively to be risk factors for sporadic Parkinson’s disease, and are also discussed (GBA, MAPT, BST1, PARK16, GAK, and HLA). Many more genes and genetic loci have been suggested, but need confirmation. There is evidence that pathways involved in the rare familial forms also play a role in the sporadic form, and that the respective genes might also be risk factors for sporadic Parkinson’s disease. The identification of genes involved in the development of Parkinson’s disease will improve our understanding of the underlying molecular mechanisms, and will hopefully lead to new drug targets and treatment strategies.
Collapse
Affiliation(s)
- Claudia Schulte
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, and German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | |
Collapse
|
18
|
Basso V, Corbetta S, Gualdoni S, Tonoli D, Poliani PL, Sanvito F, Doglioni C, Mondino A, de Curtis I. Absence of Rac1 and Rac3 GTPases in the nervous system hinders thymic, splenic and immune-competence development. Eur J Immunol 2011; 41:1410-9. [PMID: 21469092 PMCID: PMC3132589 DOI: 10.1002/eji.201040892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/07/2011] [Accepted: 02/23/2011] [Indexed: 11/06/2022]
Abstract
The nervous system influences organ development by direct innervation and the action of hormones. We recently showed that the specific absence of Rac1 in neurons (Rac1(N) ) in a Rac3-deficient (Rac3(KO) ) background causes motor behavioural defects, epilepsy, and premature mouse death around postnatal day 13. We report here that Rac1(N) /Rac3(KO) mice display a progressive loss of immune-competence. Comparative longitudinal analysis of lymphoid organs from control, single Rac1(N) or Rac3(KO) , and double Rac1(N) /Rac3(KO) mutant animals showed that thymus development is preserved up to postnatal day 9 in all animals, but is impaired in Rac1(N) /Rac3(KO) mice at later times. This is evidenced by a drastic reduction in thymic cell numbers. Cell numbers were also reduced in the spleen, leading to splenic tissue disarray. Organ involution occurs in spite of unaltered thymocyte and lymphocyte subset composition, and proper mature T-cell responses to polyclonal stimuli in vitro. Suboptimal thymus innervation by tau-positive neuronal terminals possibly explains the suboptimal thymic output and arrested thymic development, which is accompanied by higher apoptotic rates. Our results support a role for neuronal Rac1 and Rac3 in dictating proper lymphoid organ development, and suggest the existence of lymphoid-extrinsic mechanisms linking neural defects to the loss of immune-competence.
Collapse
Affiliation(s)
- Veronica Basso
- Lymphocyte Activation Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stoppelkamp S, Bell HS, Palacios-Filardo J, Shewan DA, Riedel G, Platt B. In vitro modelling of Alzheimer's disease: degeneration and cell death induced by viral delivery of amyloid and tau. Exp Neurol 2011; 229:226-37. [PMID: 21295028 DOI: 10.1016/j.expneurol.2011.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 11/15/2022]
Abstract
With increasing life expectancy, Alzheimer's disease (AD) and other dementias pose an increasing and as yet unresolved health problem. A variety of cellular models of AD has helped to decipher some key aspects of amyloid and tau related degeneration. The initial approach of extracellular applications of synthetic peptides has now been replaced by the introduction of amyloid precursor protein (APP) and tau genes. In the present study adenoviral transductions were exploited for gene delivery into primary rat hippocampal and dorsal root ganglion (DRG) cultures to enable comparative and mechanistic studies at the cellular level and subsequent drug testing. Time lapse experiments revealed a different pattern of cell death: apoptotic-like for APP whereas tau positive cells joined and formed clusters. Mutated human APP or tau expression caused accelerated neuronal damage and cell death (cf. EGFP: -50% for APP at 5 days; -40% for tau at 3 days). This reduction in viability was preceded by decreased excitability, monitored via responses to depolarising KCl-challenges in Ca(2+) imaging experiments. Additionally, both transgenes reduced neurite outgrowth in DRG neurones. Treatment studies confirmed that APP induced-damage can be ameliorated by β- and γ-secretase inhibitors (providing protection to 60-100% of control levels), clioquinol (80%) and lithium (100%); while anti-aggregation treatments were beneficial for tau-induced damage (60-90% recovery towards controls). Interestingly, caffeine was the most promising drug candidate for therapeutic intervention with high efficacy in both APP (77%) and tau-induced models (72% recovery). Overall, these cellular models offer advantages for mechanistic studies and target identification in AD and related disorders.
Collapse
Affiliation(s)
- Sandra Stoppelkamp
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD Scotland, UK
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder. In most instances, PD is thought to result from a complex interaction between multiple genetic and environmental factors, though rare monogenic forms of the disease do exist. Mutations in 6 genes (SNCA, LRRK2, PRKN, DJ1, PINK1, and ATP13A2) have conclusively been shown to cause familial parkinsonism. In addition, common variation in 3 genes (MAPT, LRRK2, and SNCA) and loss-of-function mutations in GBA have been well-validated as susceptibility factors for PD. The function of these genes and their contribution to PD pathogenesis remain to be fully elucidated. The prevalence, incidence, clinical manifestations, and genetic components of PD are discussed in this review.
Collapse
Affiliation(s)
- Lynn M Bekris
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | |
Collapse
|
21
|
Amorim MA, Guerra-Araiza C, Garcia-Segura LM. Progesterone as a regulator of phosphorylation in the central nervous system. Horm Mol Biol Clin Investig 2010; 4:601-7. [DOI: 10.1515/hmbci.2010.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/15/2022]
Abstract
AbstractProgesterone exerts a variety of actions in the central nervous system under physiological and pathological conditions. As in other tissues, progesterone acts in the brain through classical progesterone receptors and through alternative mechanisms. Here, we review the role of progesterone as a regulator of kinases and phosphatases, such as extracellular-signal regulated kinases, phosphoinositide 3-kinase, Akt, glycogen synthase kinase 3, protein phosphatase 2A and phosphatase and tensin homolog deleted on chromosome 10. In addition, we analyzed the effects of progesterone on the phosphorylation of Tau, a protein that is involved in microtubule stabilization in neurons.
Collapse
|
22
|
Quantitative Analysis of MAP-Mediated Regulation of Microtubule Dynamic Instability In Vitro. Methods Cell Biol 2010; 95:481-503. [DOI: 10.1016/s0091-679x(10)95024-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Protas PT, Muszynska-Roslan K, Holownia A, Grabowska A, Wielgat P, Krawczuk-Rybak M, Braszko JJ. Negative correlation between cerebrospinal fluid tau protein and cognitive functioning in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2009; 53:105-8. [PMID: 19309718 DOI: 10.1002/pbc.22029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the study was to assess whether cerebrospinal fluid tau protein is associated with cognitive changes in children with acute lymphoblastic leukemia (ALL). Examination of 38 ALL patients revealed a statistically significant increase in tau protein on treatment day 59 and at two points during consolidation phase. Cognitive functioning was examined in 19 patients at an average of 3.7 years after diagnosis. The level of tau at the initiation of maintenance therapy was negatively correlated with verbal abilities measured on an intellectual scale. The study suggests that standard ALL treatment may cause a decline in cognitive functioning.
Collapse
Affiliation(s)
- Piotr T Protas
- Department of Clinical Pharmacology, Medical University of Bialystok, Bialystok, Waszyngtona, Poland.
| | | | | | | | | | | | | |
Collapse
|
24
|
Gordon D, Kidd GJ, Smith R. Antisense suppression of tau in cultured rat oligodendrocytes inhibits process formation. J Neurosci Res 2009; 86:2591-601. [PMID: 18500753 DOI: 10.1002/jnr.21719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The microtubule-associated protein tau is integral to neuronal process development and has a role in the pathogenesis of several neurodegenerative conditions. We examined possible roles for tau in cultured oligodendrocyte process formation by using antisense oligonucleotide treatment. Inhibition of tau synthesis with single oligonucleotides resulted in decreased tau protein levels and significantly shorter cellular processes. Simultaneous use of two nonoverlapping oligonucleotides caused a major reduction in tau levels and severely inhibited process outgrowth. The timing of oligonucleotide addition to oligodendrocyte cultures was important, with addition of antisense at the time of plating into culture having the most significant effect on morphology through reduction of tau expression.
Collapse
Affiliation(s)
- David Gordon
- Department of Biochemistry and Molecular Biology, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
25
|
Radio NM, Mundy WR. Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 2008; 29:361-76. [PMID: 18403021 DOI: 10.1016/j.neuro.2008.02.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/13/2008] [Accepted: 02/20/2008] [Indexed: 11/15/2022]
Abstract
In vitro models may be useful for the rapid toxicological screening of large numbers of chemicals for their potential to produce toxicity. Such screening could facilitate prioritization of resources needed for in vivo toxicity testing towards those chemicals most likely to result in adverse health effects. Cell cultures derived from nervous system tissue have proven to be powerful tools for elucidating cellular and molecular mechanisms of nervous system development and function, and have been used to understand the mechanism of action of neurotoxic chemicals. Recently, it has been suggested that in vitro models could be used to screen for chemical effects on critical cellular events of neurodevelopment, including differentiation and neurite growth. This review examines the use of neuronal cell cultures as an in vitro model of neurite outgrowth. Examples of the cell culture systems that are commonly used to examine the effects of chemicals on neurite outgrowth are provided, along with a description of the methods used to quantify this neurodevelopmental process in vitro. Issues relating to the relevance of the methods and models currently used to assess neurite outgrowth are discussed in the context of hazard identification and chemical screening. To demonstrate the utility of in vitro models of neurite outgrowth for the evaluation of large numbers of chemicals, efforts should be made to: (1) develop a set of reference chemicals that can be used as positive and negative controls for comparing neurite outgrowth between model systems, (2) focus on cell cultures of human origin, with emphasis on the emerging area of neural progenitor cells, and (3) use high-throughput methods to quantify endpoints of neurite outgrowth.
Collapse
Affiliation(s)
- Nicholas M Radio
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protections Agency (USEPA), B105-06 Research Triangle Park, NC 27711, USA
| | | |
Collapse
|
26
|
Morfini G, Pigino G, Mizuno N, Kikkawa M, Brady ST. Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res 2008; 85:2620-30. [PMID: 17265463 DOI: 10.1002/jnr.21154] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tau protein is a major microtubule (MT)-associated brain protein enriched in axons. Multiple functional roles are proposed for tau protein, including MT stabilization, generation of cell processes, and targeting of phosphotransferases to MTs. Recently, experiments involving exogenous tau expression in cultured cells suggested a role for tau as a regulator of kinesin-1-based motility. Tau was proposed to inhibit attachment of kinesin-1 to MTs by competing for the kinesin-1 binding site. In this work, we evaluated effects of tau on fast axonal transport (FAT) by using vesicle motility assays in isolated squid axoplasm. Effects of recombinant tau constructs on both kinesin-1 and cytoplasmic dynein-dependent FAT rates were evaluated by video microscopy. Exogenous tau binding to endogenous squid MTs was evidenced by a dramatic change in individual MT morphologies. However, perfusion of tau at concentrations approximately 20-fold higher than physiological levels showed no effect on FAT. In contrast, perfusion of a cytoplasmic dynein-derived peptide that competes with kinesin-1 and cytoplasmic dynein binding to MTs in vitro rapidly inhibited FAT in both directions. Taken together, our results indicate that binding of tau to MTs does not directly affect kinesin-1- or cytoplasmic dynein-based motilities. In contrast, our results provide further evidence indicating that the functional binding sites for kinesin-1 and cytoplasmic dynein on MTs overlap.
Collapse
Affiliation(s)
- Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
27
|
Guerra-Araiza C, Amorim MAR, Camacho-Arroyo I, Garcia-Segura LM. Effects of progesterone and its reduced metabolites, dihydroprogesterone and tetrahydroprogesterone, on the expression and phosphorylation of glycogen synthase kinase-3 and the microtubule-associated protein tau in the rat cerebellum. Dev Neurobiol 2007; 67:510-20. [PMID: 17443805 DOI: 10.1002/dneu.20383] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Progesterone exerts a variety of actions in the brain, where it is rapidly metabolized to 5alpha-dihydroprogesterone (DHP) and 3alpha,5alpha-tetrahydroprogesterone (THP). The effect of progesterone and its metabolites on the expression and phosphorylation of the microtubule-associated protein Tau and glycogen synthase kinase 3beta (GSK3beta), a kinase involved in Tau phosphorylation, were assessed in two progesterone-sensitive brain areas: the hypothalamus and the cerebellum. Administration of progesterone, DHP, and THP to ovariectomized rats did not affect Tau and GSK3beta assessed in whole hypothalamic homogenates. In contrast, progesterone and its metabolites resulted in a significant decrease in the expression of Tau and GSK3beta in the cerebellum. Furthermore, progesterone administration resulted in an increase in the phosphorylation of two epitopes of Tau (Tau-1 and PHF-1) phosphorylated by GSK3beta, but did not affect the phosphorylation of an epitope of Tau (Ser262) that is GSK3beta insensitive. These effects were accompanied by a decrease in the phosphorylation of GSK3beta in serine, which is associated to an increase in its activity, suggesting that the effect of progesterone on Tau-1 and PHF-1 phosphorylation in the cerebellum is mediated by GSK3beta. The regulation of Tau expression and phosphorylation by progesterone may contribute to the hormonal regulation of cerebellar function by the modification of neuronal cytoskeleton.
Collapse
|
28
|
Muszyńska-Rosłan K, Krawczuk-Rybak M, Protas PT, Hołownia A. Level of tau protein in children treated for acute lymphoblastic leukemia. Pediatr Neurol 2006; 34:367-71. [PMID: 16647996 DOI: 10.1016/j.pediatrneurol.2005.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/05/2005] [Accepted: 10/06/2005] [Indexed: 11/20/2022]
Abstract
Long-term neuropsychological complications such as attention and concentration disturbances, poor school performance, hyperexcitability, and even leukoencephalopathy have been described in children after chemotherapy for acute lymphoblastic leukemia. Elevation of the cerebrospinal fluid level of tau protein, associated with neuronal axons, is a neurodegenerative marker. The aim of the study was to assess the level of cerebrospinal fluid tau protein in children with acute lymphoblastic leukemia. The study included 26 patients with acute lymphoblastic leukemia and 19 patients with clinical symptoms of cerebrospinal meningitis (reference group). Tau protein levels were determined by enzyme-linked immunosorbent assay. Cerebrospinal fluid total protein level was not elevated in any of the samples. The examination was performed at diagnosis, after induction treatment, during consolidation, and after reinduction, i.e. before maintenance therapy. Neither age nor sex had an effect on tau protein levels in both groups. The mean tau protein value at diagnosis was 244.84 +/- 98.96 pg/mL in the study group (norm 300 pg/mL) and produced no correlation with initial leukocytosis, lactate dehydrogenase activity, or organomegaly at this point. Dynamic analysis revealed a statistically significant increase in tau protein after induction treatment (431.25 +/- 232.50) as compared with its level at diagnosis (244.84 +/- 98.96, P < 0.008) and later during treatment. The levels of tau protein at various points of treatment did not differ statistically significantly between the groups, except for the values obtained after termination of remission induction. The observed metabolic changes in tau protein, which is a known marker of neuronal damage, indicate that some patients are at a greater risk of central nervous system disorders. This finding requires further studies, also in reference to other central nervous system proteins, and confirms the necessity of long-term follow-up of leukemia patients.
Collapse
|
29
|
Shu T, Tseng HC, Sapir T, Stern P, Zhou Y, Sanada K, Fischer A, Coquelle FM, Reiner O, Tsai LH. Doublecortin-like kinase controls neurogenesis by regulating mitotic spindles and M phase progression. Neuron 2006; 49:25-39. [PMID: 16387637 DOI: 10.1016/j.neuron.2005.10.039] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/22/2005] [Accepted: 10/19/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms controlling neurogenesis during brain development remain relatively unknown. Through a differential protein screen with developmental versus mature neural tissues, we identified a group of developmentally enriched microtubule-associated proteins (MAPs) including doublecortin-like kinase (DCLK), a protein that shares high homology with doublecortin (DCX). DCLK, but not DCX, is highly expressed in regions of active neurogenesis in the neocortex and cerebellum. Through a dynein-dependent mechanism, DCLK regulates the formation of bipolar mitotic spindles and the proper transition from prometaphase to metaphase during mitosis. In cultured cortical neural progenitors, DCLK RNAi Lentivirus disrupts the structure of mitotic spindles and the progression of M phase, causing an increase of cell-cycle exit index and an ectopic commitment to a neuronal fate. Furthermore, both DCLK gain and loss of function in vivo specifically promote a neuronal identity in neural progenitors. These data provide evidence that DCLK controls mitotic division by regulating spindle formation and also determines the fate of neural progenitors during cortical neurogenesis.
Collapse
Affiliation(s)
- Tianzhi Shu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Feinstein SC, Wilson L. Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta Mol Basis Dis 2005; 1739:268-79. [PMID: 15615645 DOI: 10.1016/j.bbadis.2004.07.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 07/20/2004] [Indexed: 11/21/2022]
Abstract
Interest in the microtubule-associated protein tau stems from its critical roles in neural development and maintenance, as well as its role in Alzheimer's, FTDP-17 and related neurodegenerative diseases. Under normal circumstances, tau performs its functions by binding to microtubules and powerfully regulating their stability and growing and shortening dynamics. On the other hand, genetic analyses have established a clear cause-and-effect relationship between tau dysfunction/mis-regulation and neuronal cell death and dementia in FTDP-17, but the molecular basis of tau's destructive action(s) remains poorly understood. One attractive model suggests that the intracellular accumulation of abnormal tau aggregates causes cell death, i.e., a gain-of-toxic function model. Here, we describe the evidence and arguments for an alternative loss-of-function model in which tau-mediated neuronal cell death is caused by the inability of affected cells to properly regulate their microtubule dynamic due to mis-regulation by tau. In support of this model, our recent data demonstrate that missense FTDP-17 mutations that alter amino acid residues near tau's microtubule binding region strikingly modify the ability of tau to modulate microtubule dynamics. Additional recent data from our labs support the notion that the same dysfunction occurs in the FTDP-17 regulatory mutations that alter tau RNA splicing patterns. Our model posits that the dynamics of microtubules in neuronal cells must be tightly regulated to enable them to carry out their diverse functions, and that microtubules that are either over-stabilized or under-stabilized, that is, outside an acceptable window of dynamic activity, lead to neurodegeneration. An especially attractive aspect of this model is that it readily accommodates both the structural and regulatory classes of FTDP-17 mutations.
Collapse
Affiliation(s)
- Stuart C Feinstein
- Neuroscience Research Institute, Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
31
|
Wang SS, Lewcock JW, Feinstein P, Mombaerts P, Reed RR. Genetic disruptions of O/E2 and O/E3 genes reveal involvement in olfactory receptor neuron projection. Development 2004; 131:1377-88. [PMID: 14993187 DOI: 10.1242/dev.01009] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mammalian Olf1/EBF (O/E) family of repeated helix-loop-helix (rHLH)transcription factors has been implicated in olfactory system gene regulation,nervous system development and B-cell differentiation. Ebf(O/E1) mutant animals showed defects in B-cell lineage and brain regions where it is the only O/E family member expressed, but the olfactory epithelium appeared unaffected and olfactory marker expression was grossly normal in these animals. In order to further study the mammalian O/E proteins,we disrupted O/E2 and O/E3 genes in mouse and placed tau-lacZ and tau-GFP reporter genes under the control of the respective endogenous O/E promoters. Mice mutant for each of these genes display reduced viability and other gene-specific phenotypes. Interestingly, both O/E2 and O/E3 knockout mice as well as O/E2/O/E3 double heterozygous animals share a common phenotype:olfactory neurons (ORN) fail to project to dorsal olfactory bulb. We suggest that a decreased dose of O/E protein may alter expression of O/E target genes and underlie the ORN projection defect.
Collapse
Affiliation(s)
- Song S Wang
- The Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, PCTB 818, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Dementia affects about 5% of the elderly population over age 65 years and has an unexplained predominance in women and a low rate in some cultures. Different forms of dementia are now distinguished-Alzheimer's disease, dementia with Lewy bodies, frontotemporal dementia, and dementia secondary to disease, such as AIDS dementia. However, such nosological boundaries are being re-evaluated because different dementias are believed to have common underlying neuropathology. Neurochemical and neurobiological research has led to advances in understanding causes of dementia, and functional imaging has allowed identification of possible biomarkers; from these, a range of potential treatment approaches have arisen that focus on enhancement of neurotransmitter function, intervention at the level of amyloid production and deposition, and reduction of secondary risk factors such as hypertension, depression, and hypolipidaemia. Molecular diagnostic testing and genetic counselling for families with autosomal dominant early-onset dementia are new developments; however, this approach is not useful for late-onset dementia, in which the identified candidate susceptibility genes have a relatively small effect on risk. While fundamental research works towards new biological treatment strategies, much remains to be done in the area of disease management and the development of appropriate models of long-term care.
Collapse
Affiliation(s)
- Karen Ritchie
- Institut National de la Santé et de la Recherche Médicale, EMI 99-30, Hôpital La Colombière, Montpellier, France.
| | | |
Collapse
|
33
|
Sytnyk V, Leshchyns'ka I, Delling M, Dityateva G, Dityatev A, Schachner M. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J Cell Biol 2002; 159:649-61. [PMID: 12438412 PMCID: PMC2173095 DOI: 10.1083/jcb.200205098] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Transformation of a contact between axon and dendrite into a synapse is accompanied by accumulation of the synaptic machinery at this site, being delivered in intracellular organelles mainly of TGN origin. Here, we report that in cultured hippocampal neurons, TGN organelles are linked via spectrin to clusters of the neural cell adhesion molecule (NCAM) in the plasma membrane. These complexes are translocated along neurites and trapped at sites of initial neurite-to-neurite contacts within several minutes after initial contact formation. The accumulation of TGN organelles at contacts with NCAM-deficient neurons is reduced when compared with wild-type cells, suggesting that NCAM mediates the anchoring of intracellular organelles in nascent synapses.
Collapse
Affiliation(s)
- Vladimir Sytnyk
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide inhibit dendritic growth in cultured sympathetic neurons. J Neurosci 2002. [PMID: 12151535 DOI: 10.1523/jneurosci.22-15-06560.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are related neuropeptides that are released by the preganglionic sympathetic axons. These peptides have previously been implicated in the regulation of sympathetic neurotransmitter metabolism and cell survival in postganglionic sympathetic neurons. In this study we consider the possibility that PACAP and VIP also affect the morphological development of these neurons. Postganglionic rat sympathetic neurons formed extensive dendritic arbors after exposure to bone morphogenetic protein-7 (BMP-7) in vitro. PACAP and VIP reduced BMP-7-induced dendritic growth by approximately 70-90%, and this suppression was maintained for 3 weeks. However, neither PACAP nor VIP affected axonal growth or cell survival. The actions of PACAP and VIP appear to be mediated by PAC1 receptors because their effects were suppressed by an antagonist that binds to PAC1 and VPAC2 receptors (PACAP6-38), but not by an antagonist that binds to the VPAC1 and VPAC2 receptors. Moreover, exposure to PACAP and VIP caused phosphorylation and nuclear translocation of cAMP response element-binding protein, and agents that increase the intracellular concentration of cAMP mimicked the PACAP-induced inhibition of dendritic growth. These data suggest that peptides released by preganglionic nerves modulate dendritic growth in sympathetic neurons by a cAMP-dependent mechanism.
Collapse
|
36
|
Gonzalez-Billault C, Avila J, Cáceres A. Evidence for the role of MAP1B in axon formation. Mol Biol Cell 2001; 12:2087-98. [PMID: 11452005 PMCID: PMC55658 DOI: 10.1091/mbc.12.7.2087] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cultured neurons obtained from a hypomorphous MAP1B mutant mouse line display a selective and significant inhibition of axon formation that reflects a delay in axon outgrowth and a reduced rate of elongation. This phenomenon is paralleled by decreased microtubule formation and dynamics, which is dramatic at the distal axonal segment, as well as in growth cones, where the more recently assembled microtubule polymer normally predominates. These neurons also have aberrant growth cone formation and increased actin-based protrusive activity. Taken together, this study provides direct evidence showing that by promoting microtubule dynamics and regulating cytoskeletal organization MAP1B has a crucial role in axon formation.
Collapse
Affiliation(s)
- C Gonzalez-Billault
- Centro de Biologia Molecular, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|