1
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Pandey AK, Piplani N, Mondal T, Katranidis A, Bhattacharya J. Efficient delivery of hydrophobic drug, Cabazitaxel, using Nanodisc: A nano sized free standing planar lipid bilayer. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Effects of lipid composition in cationic liposomes on suppression of mast cell activation. Chem Phys Lipids 2020; 231:104948. [DOI: 10.1016/j.chemphyslip.2020.104948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
|
4
|
Essential Role of Host Double-Stranded DNA Released from Dying Cells by Cationic Liposomes for Mucosal Adjuvanticity. Vaccines (Basel) 2019; 8:vaccines8010008. [PMID: 31892192 PMCID: PMC7157664 DOI: 10.3390/vaccines8010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
Infectious disease remains a substantial cause of death. To overcome this issue, mucosal vaccine systems are considered to be a promising strategy. Yet, none are approved for clinical use, except for live-attenuated mucosal vaccines, mainly owing to the lack of effective and safe systems to induce antigen-specific immune responses in the mucosal compartment. We have reported that intranasal vaccination of an antigenic protein, with cationic liposomes composed of 1,2-dioleoyl-3-trimethylammonium-propane and 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl], induced antigen-specific mucosal and systemic antibody responses in mice. However, precise molecular mechanism(s) underlying the mucosal adjuvant effects of cationic liposomes remain to be uncovered. Here, we show that a host double-stranded DNA (dsDNA), released at the site of cationic liposome injection, plays an essential role for the mucosal adjuvanticity of the cationic liposome. Namely, we found that nasal administration of the cationic liposomes induced localized cell death, at the site of injection, resulting in extracellular leakage of host dsDNA. Additionally, in vivo DNase I treatment markedly impaired OVA-specific mucosal and systemic antibody production exerted by cationic liposomes. Our report reveals that host dsDNA, released from local dying cells, acts as a damage-associated molecular pattern that mediates the mucosal adjuvant activity of cationic liposomes.
Collapse
|
5
|
Yang B, Mao J, Jiang S, Wei J, Li Y, Gao B, Lu X. Cholesterol depletion induced by RNA interference targeting DHCR24 protects cells from liposome-induced cytotoxicity. Prep Biochem Biotechnol 2019; 49:453-458. [PMID: 30896287 DOI: 10.1080/10826068.2019.1591979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Existing evidence has demonstrated liposomes as the gene transporter induce the cytotoxicity during the transfection process through several known pathways. In the present study, we investigated the possibility of siRNAs targeting 3-β-hydroxysterol △-24-reductase (DHCR24), which encodes an enzyme catalyzing the last step of cholesterol biosynthesis, to suppress the liposome cytotoxicity induced by lipid-based transfection reagent in the neuroblastoma cell line N2A. We found that the siRNAs targeting DHCR24 mRNA protect cells from the liposome-induced cell death, probably through the effect of siDHCR24s on the reduction of the cellular cholesterol and decrease in the generation of reactive oxygen species (ROS). This suggests that siRNAs targeting DHCR24 or other methods that reduce the intracellular cholesterol levels might be a good strategy for avoiding the cytotoxicity of liposomes, without impairing its efficiency of gene-delivering.
Collapse
Affiliation(s)
- Baoyu Yang
- a School of Life Science , Liaoning University , Shenyang , China
| | - Jing Mao
- a School of Life Science , Liaoning University , Shenyang , China
| | - Shan Jiang
- a School of Life Science , Liaoning University , Shenyang , China
| | - Jie Wei
- a School of Life Science , Liaoning University , Shenyang , China
| | - Yang Li
- b Institute of Basic Medical Sciences , Shenyang Medical College , Shenyang , China
| | - Bing Gao
- b Institute of Basic Medical Sciences , Shenyang Medical College , Shenyang , China
| | - Xiuli Lu
- a School of Life Science , Liaoning University , Shenyang , China
| |
Collapse
|
6
|
Muripiti V, Brijesh L, Rachamalla HK, Marepally SK, Banerjee R, Patri SV. α-Tocopherol-ascorbic acid hybrid antioxidant based cationic amphiphile for gene delivery: Design, synthesis and transfection. Bioorg Chem 2018; 82:178-191. [PMID: 30326400 DOI: 10.1016/j.bioorg.2018.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Natural antioxidants and vitamins have potential to protect biological systems from peroxidative damage induced by peroxyl radicals, α-tocopherol (Vitamin E, lipid soluble) and ascorbic acid (vitamin C, water soluble), well known natural antioxidant molecules. In the present study we described the synthesis and biological evaluation of hybrid of these two natural antioxidants with each other via ammonium di-ethylether linker, Toc-As in gene delivery. Two control cationic lipids N14-As and Toc-NOH are designed in such a way that one is with ascorbic acid moiety and no tocopherol moiety; another is with tocopherol moiety and no ascorbic acid moiety respectively. All the three cationic lipids can form self-assembled aggregates. The antioxidant efficiencies of the three lipids were compared with free ascorbic acid. The cationic lipids (Toc-As, N14-As and Toc-NOH) were formulated individually with a well-known fusogenic co-lipid DOPE and characterization studies such as DNA binding, heparin displacement, size, charge, circular dichroism were performed. The biological characterization studies such as cell viability assay and in vitro transfection studies were carried out with the above formulations in HepG2, Neuro-2a, CHO andHEK-293T cell lines. The three formulations showed their transfection efficiencies with highest in Toc-As, moderate inN14-As and least in Toc-NOH. Interestingly, the transfection efficiency observed with the antioxidant based conjugated lipid Toc-As is found to be approximately two and half fold higher than the commercially available lipofectamine 2000 at 4:1 charge ratio in Hep G2 cell lines. In the other cell lines studied the efficiency of Toc-As is found to be either higher or similarly active compared to lipofectamine 2000. The physicochemical characterization results show that Toc-As lipid is showing maximum antioxidant potency, strong binding with pDNA, least size and optimal zeta potential. It is also found to be least toxic in all the cell lines studied especially in Neuro-2a cell lines when compared to other two lipids. In summary, the designed antioxidant lipid can be exploited as a delivering system for treating ROS related diseases such as malignancy, brain stroke, etc.
Collapse
Affiliation(s)
| | | | - Hari Krishnareddy Rachamalla
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500607, Telangana, India
| | | | - Rajkumar Banerjee
- Division of Lipid Science and Technology, Indian Institute of Chemical Technology, Hyderabad 500607, Telangana, India
| | | |
Collapse
|
7
|
Inoh Y, Haneda A, Tadokoro S, Yokawa S, Furuno T. Cationic liposomes suppress intracellular calcium ion concentration increase via inhibition of PI3 kinase pathway in mast cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2461-2466. [PMID: 28966111 DOI: 10.1016/j.bbamem.2017.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 11/26/2022]
Abstract
Cationic liposomes are commonly used as vectors to effectively introduce foreign genes (antisense DNA, plasmid DNA, siRNA, etc.) into target cells. Cationic liposomes are also known to affect cellular immunocompetences such as the mast cell function in allergic reactions. In particular, we previously showed that the cationic liposomes bound to the mast cell surface suppress the degranulation induced by cross-linking of high affinity IgE receptors in a time- and dose-dependent manner. This suppression is mediated by impairment of the sustained level of intracellular Ca2+ concentration ([Ca2+]i) via inhibition of store-operated Ca2+ entry (SOCE). Here we study the mechanism underlying an impaired [Ca2+]i increase by cationic liposomes in mast cells. We show that cationic liposomes inhibit the phosphorylation of Akt and PI3 kinases but not Syk and LAT. As a consequence, SOCE is suppressed but Ca2+ release from endoplasmic reticulum (ER) is not. Cationic liposomes inhibit the formation of STIM1 puncta, which is essential to SOCE by interacting with Orai1 following the Ca2+ concentration decrease in the ER. These data suggest that cationic liposomes suppress SOCE by inhibiting the phosphorylation of PI3 and Akt kinases in mast cells.
Collapse
Affiliation(s)
- Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | - Aki Haneda
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Satoshi Tadokoro
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
8
|
An anti-oxidant, α-lipoic acid conjugated oleoyl- sn -phosphatidylcholineas a helper lipid in cationic liposomal formulations. Colloids Surf B Biointerfaces 2017; 152:133-142. [DOI: 10.1016/j.colsurfb.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
|
9
|
Takahashi S, Tada R, Negishi Y, Aramaki Y. Mechanisms of Enhanced Antigen Delivery to Murine Dendritic Cells by the Cationic Liposomes. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/oji.2017.74007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Oliveira ACN, Sárria MP, Moreira P, Fernandes J, Castro L, Lopes I, Côrte-Real M, Cavaco-Paulo A, Real Oliveira MECD, Gomes AC. Counter ions and constituents combination affect DODAX : MO nanocarriers toxicity in vitro and in vivo. Toxicol Res (Camb) 2016; 5:1244-1255. [PMID: 30090429 PMCID: PMC6062248 DOI: 10.1039/c6tx00074f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/22/2016] [Indexed: 12/31/2022] Open
Abstract
Liposomes have received extensive attention as nanocarriers for bioactive compounds due to their good biocompatibility, possibility of targeting and incorporation of hydrophilic and hydrophobic compounds. Although generally considered as safe, detailed knowledge of the effects induced in cells and tissues with which they interact is still underexplored. The aim of this study is to gain insight into the toxicity profile of dioctadecyldimethylammonium (DODAX) : monoolein(MO) liposomes (X is bromide or chloride), previously validated for gene therapy, by evaluating the effect of the counter ions Br- or Cl-, and of the cationic : neutral lipid molar fraction, both in vitro and in vivo. Effects on cellular metabolism and proliferation, plasma membrane integrity, oxidative stress, mitochondrial membrane potential dysfunction and ability to trigger apoptosis and necrosis were evaluated in a dose-/time-dependent manner in normal human skin fibroblasts. Also, newly fertilized zebrafish zygotes were exposed to liposomes, permitting a fast-track evaluation of the morphophysiological modifications. In vitro data showed that only very high doses of DODAX : MO induce apoptosis and necrosis, inhibit cell proliferation, and affect the metabolism and plasma membrane integrity of fibroblasts in a dose-/time-dependent manner. Furthermore, liposomes affected mitochondrial function, increasing ROS accumulation and disturbing mitochondrial membrane potential. DODAC-based liposomes were consistently more toxic when compared to DODAB-based formulations; furthermore, the inclusion of MO was found to reduce toxicity, in contrast to liposomes with cationic DODAX only, especially in DODAB : MO (1 : 2) nanocarriers. These results were corroborated, in a holistic approach, by cytotoxicity profiling in five additional human cell lines, and also with the zebrafish embryotoxicity testing, which constitutes a sensitive and informative tool and accurately extends cell-based assays.
Collapse
Affiliation(s)
- Ana Cristina Norberto Oliveira
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
- CFUM (Center of Physics) , Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Marisa Passos Sárria
- INL - International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga , 4715-330 Braga , Portugal
| | - Pedro Moreira
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| | - Joana Fernandes
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| | - Lisandra Castro
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| | - Ivo Lopes
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
- CFUM (Center of Physics) , Department of Physics , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
- Nanodelivery-I&D em Bionanotecnologia Lda. , Department of Biology , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | - Manuela Côrte-Real
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| | - Artur Cavaco-Paulo
- CEB , Department of Biological Engineering , University of Minho , Campus of Gualtar , 4710-057 Braga , Portugal
| | | | - Andreia Castro Gomes
- CBMA (Center of Molecular and Environmental Biology) , Department of Biology , University of Minho , Campus of Gualtar , 4710 057 Braga , Portugal . ; ; Tel: +351 253 601 511
| |
Collapse
|
11
|
Misic V, El-Mogy M, Haj-Ahmad Y. Role of Endonuclease G in Exogenous DNA Stability in HeLa Cells. BIOCHEMISTRY (MOSCOW) 2016; 81:163-75. [PMID: 27260396 DOI: 10.1134/s0006297916020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endonuclease G (EndoG) is a well-conserved mitochondrial-nuclear nuclease with dual lethal and vital roles in the cell. The aim of our study was to examine whether EndoG exerts its nuclease activity on exogenous DNA substrates such as plasmid DNA (pDNA), considering their importance in gene therapy applications. The effects of EndoG knockdown on pDNA stability and levels of encoded reporter gene expression were evaluated in the cervical carcinoma HeLa cells. Transfection of pDNA vectors encoding short-hairpin RNAs (shRNAs) reduced levels of EndoG mRNA in HeLa cells. In physiological circumstances, EndoG knockdown did not have an effect on the stability of pDNA or the levels of encoded transgene expression as measured over a four-day time course. However, when endogenous expression of EndoG was induced by an extrinsic stimulus, targeting of EndoG by shRNA improved the perceived stability and transgene expression of pDNA vectors. Therefore, EndoG is not a mediator of exogenous DNA clearance, but in non-physiological circumstances, it may nonspecifically cleave intracellular DNA regardless of its origin. These findings make it unlikely that targeting of EndoG is a viable strategy for improving the duration and level of transgene expression from nonviral DNA vectors in gene therapy efforts.
Collapse
Affiliation(s)
- V Misic
- Brock University, Department of Biological Sciences, St. Catharines, ON, L2S 3A1, Canada.
| | | | | |
Collapse
|
12
|
Misic V, El-Mogy M, Geng S, Haj-Ahmad Y. Effect of endonuclease G depletion on plasmid DNA uptake and levels of homologous recombination in hela cells. Mol Biol 2016. [DOI: 10.1134/s0026893316020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Moretti E, Mazzi L, Bonechi C, Salvatici MC, Iacoponi F, Rossi C, Collodel G. Effect of Quercetin-loaded liposomes on induced oxidative stress in human spermatozoa. Reprod Toxicol 2016; 60:140-7. [PMID: 26923737 DOI: 10.1016/j.reprotox.2016.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/25/2016] [Accepted: 02/19/2016] [Indexed: 12/24/2022]
Abstract
A strategy to circumvent the poor polyphenols bioavailability is to load these compounds into liposomes. We evaluated the in vitro effects of quercetin (Q) and Q-loaded liposomes (QLL, 30, 50, 100μM) on motility, viability and chromatin integrity of swim-up selected human sperm. Antioxidant power was assayed against tert-butylhydroperoxide induced lipid peroxidation (LPO) using C11-BODIPY581/591 fluorescent probe and transmission electron microscopy. QLL showed decreased toxicity for sperm motility and viability and increased DNA damage compared to Q. The percentage of sperm with fluorescence, marker of LPO, was decreased in samples incubated with Q vs QLL (P<0.001). The ultrastructure of acrosomes and membranes was preserved with Q 30/100μM, whereas QLL did not prevent membrane injury. Q alone appeared more effective than Q incorporated into liposomes; however liposomes could be considered as carriers that may convey different compounds inside sperm; they may therefore represent a field of research rich of many applications.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, Viale Bracci 14, 53100 Siena, Italy.
| | - Lucia Mazzi
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, Viale Bracci 14, 53100 Siena, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, FI, Via della Lastruccia, 3, Sesto Fiorentino, 50019 , Italy
| | - Maria Cristina Salvatici
- Centro di Microscopie Elettroniche "Laura Bonzi", ICCOM, Consiglio Nazionale delle Ricerche (CNR),Via Madonna del Piano,10 Firenze, Italy
| | - Francesca Iacoponi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Rome, Italy
| | - Claudio Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, FI, Via della Lastruccia, 3, Sesto Fiorentino, 50019 , Italy
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, Policlinico Le Scotte, Viale Bracci 14, 53100 Siena, Italy
| |
Collapse
|
14
|
Formulation, high throughput in vitro screening and in vivo functional characterization of nanoemulsion-based intranasal vaccine adjuvants. PLoS One 2015; 10:e0126120. [PMID: 25962136 PMCID: PMC4427474 DOI: 10.1371/journal.pone.0126120] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/29/2015] [Indexed: 01/08/2023] Open
Abstract
Vaccine adjuvants have been reported to induce both mucosal and systemic immunity when applied to mucosal surfaces and this dual response appears important for protection against certain pathogens. Despite the potential advantages, however, no mucosal adjuvants are currently approved for human use. Evaluating compounds as mucosal adjuvants is a slow and costly process due to the need for lengthy animal immunogenicity studies. We have constructed a library of 112 intranasal adjuvant candidate formulations consisting of oil-in-water nanoemulsions that contain various cationic and nonionic surfactants. To facilitate adjuvant development we first evaluated this library in a series of high-throughput, in vitro assays for activities associated with innate and adaptive immune activation in vivo. These in vitro assays screened for the ability of the adjuvant to bind to mucin, induce cytotoxicity, facilitate antigen uptake in epithelial and dendritic cells, and activate cellular pathways. We then sought to determine how these parameters related to adjuvant activity in vivo. While the in vitro assays alone were not enough to predict the in vivo adjuvant activity completely, several interesting relationships were found with immune responses in mice. Furthermore, by varying the physicochemical properties of the surfactant components (charge, surfactant polar head size and hydrophobicity) and the surfactant blend ratio of the formulations, the strength and type of the immune response generated (TH1, TH2, TH17) could be modulated. These findings suggest the possibility of using high-throughput screens to aid in the design of custom adjuvants with unique immunological profiles to match specific mucosal vaccine applications.
Collapse
|
15
|
Sudhakar G, Bathula SR, Banerjee R. Development of new estradiol-cationic lipid hybrids: Ten-carbon twin chain cationic lipid is a more suitable partner for estradiol to elicit better anticancer activity. Eur J Med Chem 2014; 86:653-63. [DOI: 10.1016/j.ejmech.2014.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 02/09/2023]
|
16
|
Inoh Y, Tadokoro S, Tanabe H, Inoue M, Hirashima N, Nakanishi M, Furuno T. Inhibitory effects of a cationic liposome on allergic reaction mediated by mast cell activation. Biochem Pharmacol 2013; 86:1731-8. [PMID: 24099793 DOI: 10.1016/j.bcp.2013.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 11/30/2022]
Abstract
Several studies have shown that cationic liposomes exert immunomodulatory effects with low immunogenicity and toxicity, and offer advantages such as easy preparation and targeting. Cationic liposomes not only transport DNA to immune cells but also enhance the function of antigen presenting cells such as dendritic cells and macrophages. Here, we investigated the effect of a particular cationic liposome on mast cell function during allergic reaction. We found that the cationic liposomes bound to the mast cell surface suppressed degranulation induced by cross-linking of high affinity immunoglobulin E receptors in a time- and dose-dependent manner. The suppression of degranulation was mediated by impairment of the sustained level of intracellular Ca(2+) concentration ([Ca(2+)]i) derived from the inhibition of store-operated Ca(2+) entry. The decrease in sustained elevation of [Ca(2+)]i led to the suppression of phosphorylation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins such as SNAP-23, syntaxin-4, which are necessary for membrane fusion between secretory granules and the plasma membrane during degranulation. Furthermore, the cationic liposomes suppressed vascular permeability elevation induced by mast cell activation in mice. These results showed that cationic liposomes possess the novel property of inhibiting mast cell activation, suggesting the possibility of developing cationic liposomes as anti-allergic effectors.
Collapse
Affiliation(s)
- Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Zidan AS, Spinks CB, Habib MJ, Khan MA. Formulation and transport properties of tenofovir loaded liposomes through Caco-2 cell model. J Liposome Res 2013; 23:318-26. [DOI: 10.3109/08982104.2013.810645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Lonez C, Vandenbranden M, Ruysschaert JM. Cationic lipids activate intracellular signaling pathways. Adv Drug Deliv Rev 2012; 64:1749-58. [PMID: 22634161 DOI: 10.1016/j.addr.2012.05.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/09/2012] [Indexed: 11/25/2022]
Abstract
Cationic liposomes are commonly used as a transfection reagent for DNA, RNA or proteins and as a co-adjuvant of antigens for vaccination trials. A high density of positive charges close to cell surface is likely to be recognized as a signal of danger by cells or contribute to trigger cascades that are classically activated by endogenous cationic compounds. The present review provides evidence that cationic liposomes activate several cellular pathways like pro-apoptotic and pro-inflammatory cascades. An improved knowledge of the relationship between the cationic lipid properties (nature of the lipid hydrophilic moieties, hydrocarbon tail, mode of organization) and the activation of these pathways opens the way to the use and design of cationic tailored for a specific application (e.g. for gene transport or as adjuvants).
Collapse
|
19
|
Takano K, Sato K, Negishi Y, Aramaki Y. Involvement of actin cytoskeleton in macrophage apoptosis induced by cationic liposomes. Arch Biochem Biophys 2011; 518:89-94. [PMID: 22203089 DOI: 10.1016/j.abb.2011.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 01/24/2023]
Abstract
We clarified whether actin cytoskeleton is involved in the macrophage apoptosis induced by cationic liposomes composed of stearylamine (SA-liposomes). Externalization of phosphatidylserine induced by SA-liposomes was suppressed by cytochalasin D, a specific inhibitor of polymerization of F-actin. Furthermore, activation of PKCδ and reactive oxygen species (ROS) generation, which could be involved in the macrophage apoptosis, were inhibited by cytochalasin D. Microscopical observation revealed the co-localization of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled SA-liposomes and fluorescein-labeled phalloidin, which specifically binds to F-actin, and this co-localization was also inhibited by cytochalasin D. Co-localization of SA-liposomes and F-actin was also inhibited by the pre-treatment of cells with chondroitinase ABC. These findings could be the first observation concerning the contribution of the proteoglycan-actin cytoskeleton-ROS generation pathway to apoptosis induced by SA-liposomes in macrophages.
Collapse
Affiliation(s)
- Katsuki Takano
- Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
20
|
Arisaka M, Takano K, Negishi Y, Arima H, Aramaki Y. Involvement of lipid rafts in macrophage apoptosis induced by cationic liposomes. Arch Biochem Biophys 2011; 508:72-7. [PMID: 21315683 DOI: 10.1016/j.abb.2011.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/02/2011] [Accepted: 02/03/2011] [Indexed: 11/15/2022]
Abstract
We have demonstrated that protein kinase Cδ (PKCδ) could be involved in macrophage apoptosis induced by cationic liposomes composed of stearylamine (SA-liposomes), but the detailed mechanism of how SA-liposomes activate PKCδ has remained unclear. In this paper, we clarified whether lipid rafts are involved in the PKCδ activation induced by SA-liposomes. Co-localization of SA-liposomes and Cholera toxin B subunit (CBT), which specifically binds to ganglioside GM1 on lipid rafts, was found by microscopic observation. The incorporation of SA-liposomes into lipid rafts was clearly inhibited by the pretreatment of cells with an agent, 2,6-di-O-methyl-α-cyclodextrin (DM-α-CD) which disrupts lipid rafts. Activation of PKCδ and externalization of phosphatidylserine induced by SA-liposomes were also suppressed by DM-α-CD, which extracts sphingolipids and proteins from lipid rafts. Reactive oxygen species (ROS) generation, which could be involved in the macrophage apoptosis, was also inhibited by DM-α-CD. Furthermore, apoptosis induced by SA-liposomes was clearly inhibited when the cells were pre-treated with DM-α-CD, but not nystatin, a cholesterol-sequestering agent that disrupt lipid rafts. These findings suggest that sphingolipids in lipid rafts are involved in the activation of PKCδ which leads to apoptosis induced by cationic liposomes, SA-liposomes.
Collapse
Affiliation(s)
- Masaya Arisaka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
21
|
KONGKANERAMIT LALANA, WITOONSARIDSILP WASU, PEUNGVICHA PENCHOM, INGKANINAN KORNKANOK, WARANUCH NETI, SARISUTA NARONG. Antioxidant activity and antiapoptotic effect of Asparagus racemosus root extracts in human lung epithelial H460 cells. Exp Ther Med 2011; 2:143-148. [PMID: 22977482 PMCID: PMC3440636 DOI: 10.3892/etm.2010.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/16/2010] [Indexed: 11/06/2022] Open
Abstract
The present study examined the antioxidant activity and protective effect of extracts from Asparagus racemosus roots against Lipofectamine-induced apoptosis. Five fractions from a successive extraction process ranging from non-polar to more polar solvents were obtained. The total saponin content as a marker in terms of diosgenin equivalent value of the root extracts was found to be in the range of 240-420 μg/mg extract, with higher values for the ethanol and aqueous fractions. The antioxidant activity measured using the DPPH method in terms of mean effective concentration (EC(50)) of the aqueous fraction was found to be 600 μg/ml as compared to 1.5 μg/ml of ascorbic acid. It is proposed that Asparagus racemosus root extracts effectively inhibit Lipofectamine-induced apoptosis by their protective effect, and may serve as an advantageous alternative option for gene delivery.
Collapse
Affiliation(s)
| | | | | | - KORNKANOK INGKANINAN
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000,
Thailand
| | - NETI WARANUCH
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000,
Thailand
| | | |
Collapse
|
22
|
Parmentier J, Hartmann FJ, Fricker G. In vitro evaluation of liposomes containing bio-enhancers for the oral delivery of macromolecules. Eur J Pharm Biopharm 2010; 76:394-403. [DOI: 10.1016/j.ejpb.2010.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 07/31/2010] [Accepted: 09/03/2010] [Indexed: 11/15/2022]
|
23
|
Arisaka M, Nakamura T, Yamada A, Negishi Y, Aramaki Y. Involvement of protein kinase Cδ in induction of apoptosis by cationic liposomes in macrophage-like RAW264.7 cells. FEBS Lett 2010; 584:1016-20. [DOI: 10.1016/j.febslet.2010.01.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/07/2010] [Accepted: 01/27/2010] [Indexed: 12/01/2022]
|
24
|
Puapermpoonsiri U, Lipipun V, Vardhanabhuti N. Synergistic Effect of Phospholipid-Based Liposomes and Propylthiouracil on U-937 Cell Growth. J Liposome Res 2008; 15:215-27. [PMID: 16393912 DOI: 10.1080/00032710500364316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Scientific evidence indicates that exogenous phospholipids in the form of liposomes can affect cell growth. Effects of liposomes on cell growth depend on several factors including composition of liposomes, lipid concentration, and type of cells studied. Because phagocytic cells such as monocytes and macrophages are natural targets of liposomes, intracellular delivery of drugs to modulate cellular activity of these cells is of interest. We explored the effects of phospholipid-based liposomes composed of soy bean phosphatidylcholine (PC) as the main lipid component on U-937 cell growth. Effects of charge-imposing lipids and cholesterol were also studied. In addition, we investigated whether phospholipid-based liposomes would exert any interaction on cell growth with propylthiouracil, a drug with known antiproliferative activity. We found that PC in the form of extruded liposomes had intrinsic antiproliferative activity on U-937 cells at concentrations of 200 microM and up without any appreciable cytotoxicity. Phosphatidylserine and phosphatidylglycerol, but not dicetlylphosphate, at 10 mol% increased growth retardation activity of PC liposomes. Cholesterol at 30 mol% did not have any effect on cell growth, except for liposomes composed of PC and phosphatidylserine, where growth retardation was negated in the presence of cholesterol. Synergistic effect on cell growth was seen with certain liposome compositions when 5.5 microg/mL of propylthiouracil was coincubated. The results of this study suggest that the effects of exogenous lipids on cell growth should be taken into consideration when PC-based liposomes are to be used as drug delivery systems, especially when the targets are cells with phagocytic activity.
Collapse
Affiliation(s)
- Utsana Puapermpoonsiri
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
25
|
Alsarra IA, Hamed AY, Alanazi FK. Acyclovir liposomes for intranasal systemic delivery: development and pharmacokinetics evaluation. Drug Deliv 2008; 15:313-21. [PMID: 18763162 DOI: 10.1080/10717540802035251] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Intranasal route is one of the most attractive routes for distributing drugs to systemic circulation. Liposomes are used as biocompatible carriers to improve delivery properties across nasal mucosa. The objective of the present study was to formulate acyclovir liposomes and partition into poly-N-vinyl-2-pyrrolidone. Entrapment efficiency showed that multilamellar and unilamellar liposomes were 43.2% +/- 0.83 and 21% +/- 1.01, respectively. The bioavailability of acyclovir from nasal mucoadhesive gel was 60.72% compared with intravenous route. The use of liposomes acyclovir and mucoadhesive gel not only promoted the prolonged contact between the drug and the absorptive sites in the nasal cavity, but also facilitated direct absorption through the nasal mucosa.
Collapse
Affiliation(s)
- Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | | | | |
Collapse
|
26
|
Kongkaneramit L, Sarisuta N, Azad N, Lu Y, Iyer AKV, Wang L, Rojanasakul Y. Dependence of reactive oxygen species and FLICE inhibitory protein on lipofectamine-induced apoptosis in human lung epithelial cells. J Pharmacol Exp Ther 2008; 325:969-77. [PMID: 18354056 DOI: 10.1124/jpet.107.136077] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Cationic liposomes such as lipofectamine (LF) are widely used as nonviral gene delivery vectors; however, their clinical application is limited by their cytotoxicity. These agents have been shown to induce apoptosis as the primary mode of cell death, but their mechanism of action is not well understood. The present study investigated the mechanism of LF-induced apoptosis and examined the role of reactive oxygen species (ROS) in this process. We found that LF induced apoptosis of human epithelial H460 cells through a mechanism that involves caspase activation and ROS generation. Inhibition of caspase activity by pan-caspase inhibitor (z-VAD-fmk) or by specific caspase-8 inhibitor (z-IETD-fmk) or caspase-9 inhibitor (z-LEHD-fmk) inhibited the apoptotic effect of LF. Overexpression of FLICE-inhibitory protein (FLIP) or B-cell lymphoma-2, which are known inhibitors of the extrinsic and intrinsic death pathways, respectively, similarly inhibited apoptosis by LF. Induction of apoptosis by LF was shown to require ROS generation because its inhibition by ROS scavengers or by ectopic expression of antioxidant enzyme superoxide dismutase and glutathione peroxidase strongly inhibited the apoptotic effect of LF. Electron spin resonance studies showed that LF induced multiple ROS; however, superoxide was found to be the primary ROS responsible for LF-induced apoptosis. The mechanism by which ROS mediate the apoptotic effect of LF involves down-regulation of FLIP through the ubiquitination pathway. In demonstrating the role of FLIP and ROS in LF death signaling, we document a novel mechanism of apoptosis regulation that may be exploited to decrease cytotoxicity and increase gene transfection efficiency of cationic liposomes.
Collapse
Affiliation(s)
- Lalana Kongkaneramit
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Yan W, Chen W, Huang L. Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J Control Release 2008; 130:22-8. [PMID: 18554742 DOI: 10.1016/j.jconrel.2008.05.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/25/2008] [Accepted: 05/06/2008] [Indexed: 11/17/2022]
Abstract
Recently, we developed a simple and potent therapeutic liposome cancer vaccine consisting of a peptide antigen and a cationic lipid. The molecular mechanism of the adjuvanticity of cationic liposome was studied and described in the current report. First, cationic DOTAP liposome, but not the neutral liposome DOPC, was shown to generate reactive oxygen species (ROS) in mouse bone marrow-derived dendritic cells (BMDC). ROS generation by DOTAP was required for ERK and p38 activation and downstream chemokine/cytokine induction. Furthermore, ROS were shown to be involved in the expression of the co-stimulatory molecules CD86/CD80 induced by DOTAP. However, as the DOTAP concentration increased from 50 to 800 microM, the apoptotic marker Annexin V and ROS double positive cells increased, suggesting that high dose of DOTAP-generated ROS causes cell apoptosis. In vivo, optimal amount of ROS in the draining lymph nodes (DLN) and anti-tumor (HPV positive TC-1 tumor) activity induced by E7 peptide (antigen derived from E7 oncoprotein of human papillomavirus (HPV) type 16) formulated in 100 nmol DOTAP were attenuated by incorporating DOPC in the formulation, suggesting that ROS are essential for the vaccine induced anti-tumor activity. Moreover, 600 nmol DOTAP/E7 generated huge amount of ROS in the DLN and showed no activity of tumor regression. Interestingly, 600 nmol DOTAP/E7-induced ROS were tuned down to the same level induced by 100 nmol DOTAP/E7 by adding DOPC in the formulation and this formulation showed tumor regression activity. In conclusion, DOTAP is an active DC stimulator resulting in the activation of ERK and p38 and induction of chemokines, cytokines and co-stimulatory molecules mediated by appropriate amount of ROS. Our data elucidated an important mechanism of adjuvant activity of cationic liposome and could facilitate rational design of synthetic lipid based adjuvants and vaccine formulation.
Collapse
Affiliation(s)
- Weili Yan
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
28
|
Chen W, Yan W, Huang L. A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. Cancer Immunol Immunother 2008; 57:517-30. [PMID: 17724588 PMCID: PMC11029866 DOI: 10.1007/s00262-007-0390-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 08/10/2007] [Indexed: 12/11/2022]
Abstract
Developing a cancer vaccine with a potent adjuvant, which is safe for human use, remains to be an unmet need. In this study, we developed a simple, safe, yet efficient, peptide-based therapeutic cancer vaccine, DOTAP/E7 complex, which comprises only two molecules: a DOTAP cationic lipid and a peptide antigen derived from E7 oncoprotein of human papillomavirus (HPV) type 16. The anti-cancer activity of DOTAP/E7 against existing HPV positive TC-1 tumor was compared to that of our previous LPD/E7 formulation, which contains bacterial DNA CpG motifs. Tumor-bearing mice showed significant tumor inhibition following a single vaccination of either formulation at the optimal lipid dose, suggesting that DOTAP liposome alone can provide a potent adjuvant activity without plasmid DNA. E7 peptide formulated with DOTAP induced migration of activated dendritic cells (DC) to the draining lymph node (DLN) and efficiently generated functional antigen-specific CD8+ T lymphocyte responses. Accumulation of CD8+ tumor infiltrating T cells and apoptosis at tumor sites were observed after treatment with DOTAP/E7 complexes, which was also associated with a decreased amount of CD25(+)Foxp3(+) regulatory T cells in treated animals. Reactive oxygen species (ROS) induced by DOTAP cationic lipid in DLN revealed a plausible mechanism of the initial interaction between DC and DOTAP. An adequate amount of ROS generation was apparently required for the initiation of the vaccine mechanism; however, an overdose of DOTAP induced massive ROS production and apoptosis of DC in DLN, which led to diminished anti-cancer immunity. Overall, these results indicate that cationic lipid DOTAP alone serves as an efficient vaccine adjuvant for the induction of a therapeutic, antigen-specific anti-cancer activity.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Cations/immunology
- Cytotoxicity, Immunologic
- Fatty Acids, Monounsaturated/immunology
- Fatty Acids, Monounsaturated/metabolism
- Female
- Flow Cytometry
- Immunohistochemistry
- In Situ Nick-End Labeling
- Lipids/immunology
- Liposomes/immunology
- Mice
- Mice, Inbred C57BL
- Neoplasms, Experimental/therapy
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/metabolism
- Papillomavirus E7 Proteins
- Quaternary Ammonium Compounds/immunology
- Quaternary Ammonium Compounds/metabolism
- Reactive Oxygen Species
Collapse
Affiliation(s)
- Weihsu Chen
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill, 2316 Kerr Hall, CB# 7360, Chapel Hill, NC 27599 USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Weili Yan
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill, 2316 Kerr Hall, CB# 7360, Chapel Hill, NC 27599 USA
| | - Leaf Huang
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill, 2316 Kerr Hall, CB# 7360, Chapel Hill, NC 27599 USA
| |
Collapse
|
29
|
Weyenberg W, Filev P, Van den Plas D, Vandervoort J, De Smet K, Sollie P, Ludwig A. Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int J Pharm 2007; 337:291-8. [PMID: 17300887 DOI: 10.1016/j.ijpharm.2006.12.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 12/21/2006] [Accepted: 12/23/2006] [Indexed: 11/21/2022]
Abstract
The cytotoxicity and physical properties of various submicron O/W emulsions and solid lipid nanoparticles for dermal applications were investigated. Droplet size and zetapotential of submicron emulsions depended on the composition of the cosurfactant blend used. The viability of J774 macrophages, mouse 3T3 fibroblasts and HaCaT keratinocytes was significantly reduced in the presence of stearylamine. Nanoparticles consisting of stearic acid or different kinds of adeps solidus could be manufactured when formulated with lecithin, sodium taurocholate, polysorbate 80 and stearylamine. Survival of macrophages was highly affected by stearic acid and stearylamine. In general a viability of more than 90% was observed when semi-synthetic glycerides or hard fat was employed to formulate nanoparticles.
Collapse
Affiliation(s)
- Wim Weyenberg
- Laboratory of Pharmaceutical Technology and Biopharmacy, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Yoshida T, Oide N, Sakamoto T, Yotsumoto S, Negishi Y, Tsuchiya S, Aramaki Y. Induction of cancer cell-specific apoptosis by folate-labeled cationic liposomes. J Control Release 2006; 111:325-32. [PMID: 16478640 DOI: 10.1016/j.jconrel.2005.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 12/21/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
We have previously reported that cationic liposomes themselves can induce apoptosis in macrophages and lymphocytes. In this paper, we attempted the cancer cell-specific delivery of cationic liposomes and the induction of apoptosis utilizing this characteristic. Cationic liposomes composed of stearylamine (SA-liposomes) induced apoptosis in human nasopharyngeal epidermoid carcinoma cells (KB cells) overexpressing the folate receptor and human fibroblasts (WI-38 cells) with no folate receptor, without showing selectivity. To recruit liposomes to cancer cells and induce apoptosis, we focused on the folate receptor and prepared folic acid-labeled liposomes using polyethyleneglycol (PEG) (folate-PEG-liposomes). Folate-PEG-liposomes showed selectivity and induced apoptosis in KB cells, but not WI-38 cells. The apoptosis occurred in a dose-dependent manner. Furthermore, folate-PEG-liposomes appear to associate with KB cells via the folate receptor, whereas SA-liposomes may associate with cells through electrostatic interactions. To confirm the contribution of the folate receptor to apoptosis of KB cells induced by folate-PEG-liposomes, the effect of folic acid on the apoptosis was examined. The addition of free folic acid drastically suppressed the apoptosis of KB cells and the percentage of cells with hypodiploid nuclei returned to the control level. Taken together, cationic liposomes labeled with folate bound to KB cells via folate receptors and, interestingly, the cationic liposomes themselves could cause apoptosis in cancer cells.
Collapse
Affiliation(s)
- Tomomi Yoshida
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Iwaoka S, Nakamura T, Takano S, Tsuchiya S, Aramaki Y. Cationic liposomes induce apoptosis through p38 MAP kinase-caspase-8-Bid pathway in macrophage-like RAW264.7 cells. J Leukoc Biol 2005; 79:184-91. [PMID: 16275897 DOI: 10.1189/jlb.0405181] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have demonstrated that cationic liposomes composed of stearylamine (SA-liposomes) induce apoptosis in a variety of cells, but the mechanism responsible for the cellular death is not clear. In this paper, we investigated the signaling pathways implicated in SA-liposome-induced apoptosis in the macrophage-like cell line RAW264.7. Treatment with SA-liposomes caused the activation of mitogen-activated protein kinases (MAPKs), especially p38 and c-jun N-terminal kinase, and apoptosis was only inhibited upon the addition of a specific inhibitor for p38. N-acetylcysteine, a scavenger of reactive oxygen species (ROS), effectively inhibited the activation of p38 and cellular death, indicating that the activation induced by ROS is an initial step in the process of apoptosis triggered by SA-liposomes. Caspase-8 was activated by p38, and caspase-8-dependent cleavage of Bid was also observed. No down-regulation of bcl-2 expression, and no cleavage of Bax protein were observed. Taken together, our results suggest that apoptosis of RAW264.7 by SA-liposomes was mediated by the MAPK p38 and a caspase-8-dependent Bid-cleavage pathway. Moreover, we found that ROS can contribute intimately to the SA-liposome-induced cell death in RAW264.7.
Collapse
Affiliation(s)
- Sayaka Iwaoka
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | |
Collapse
|
32
|
Rengel RG, Filipović-Grcić J, Cepelak I, Zanić-Grubisić T, Barisić K. The effect of liposomes with superoxide dismutase on A2182 cells. Eur J Pharm Biopharm 2005; 60:47-51. [PMID: 15848055 DOI: 10.1016/j.ejpb.2004.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 12/07/2004] [Accepted: 12/07/2004] [Indexed: 11/21/2022]
Abstract
Differently charged liposomes were examined for the efficiency of delivery of Cu/Zn superoxide dismutase (CuZnSOD) to human lung epithelial cells, A2182, and their prospects of cell protection from oxidative agents. A2182 cells were treated with cationic, neutral and anionic liposomes with encapsulated CuZnSOD. Untreated cells and cells pre-treated with liposome-encapsulated CuZnSOD were exposed to oxidative stress caused by xanthine/xanthine oxidase. Cellular antioxidant response was monitored for 4 or 24h after the beginning of oxidative stress induced by the activity of superoxide dismutase (SOD) and total glutathione concentration. CuZnSOD-loaded liposomes increased the SOD activity of A2182 cells 24h after treatment. The highest increase of cellular SOD, by 108%, was achieved using anionic liposomes. Neutral and cationic liposomes increased cellular SOD by 83 and 85%, respectively. Cationic liposomes were the most cytotoxic. Exposure of untreated cells to oxidative stress increased the cellular glutathione level after 24h. Cells pre-treated with liposome-encapsulated CuZnSOD were protected from oxidative stress, as shown by the unchanged concentration of cellular glutathione.
Collapse
Affiliation(s)
- Ruzica Galović Rengel
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
33
|
Arima H. Polyfection as Nonviral Gene Transfer Method —Design of Novel Nonviral Vector Using α-Cyclodextrin—. YAKUGAKU ZASSHI 2004; 124:451-64. [PMID: 15235229 DOI: 10.1248/yakushi.124.451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to the growing concerns over the toxicity and immunogenicity of viral DNA delivery systems, DNA delivery via nonviral routes has become more desirable and advantageous. In particular, polycation complexes with DNA (polyplex) are attractive nonviral vectors. To design novel polycationic vectors, we prepared polyamidoamine starburst dendrimer (dendrimer) conjugates with three cyclodextrins (CDE conjugates) and three generations (G2, G3, and G4) of dendrimers. Of seven CDE conjugates, an alpha-CDE conjugate (G3) with an average degree of substitution (DS) of alpha-CyD of 2.4 [alpha-CDE conjugate (G3, DS 2.4)] showed greater gene transfer activity than dendrimers and other alpha-CDE conjugates with less cytotoxicity. These results suggest the potential use of alpha-CDE conjugate (G3, DS 2.4) as a polycationic vector in vitro and in vivo. Herein, I review a recent polyfection method, with special focus on alpha-CDE conjugate (G3, DS 2.4).
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.
| |
Collapse
|
34
|
Takano S, Aramaki Y, Tsuchiya S. Physicochemical properties of liposomes affecting apoptosis induced by cationic liposomes in macrophages. Pharm Res 2003; 20:962-8. [PMID: 12880280 DOI: 10.1023/a:1024441702398] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Cationic liposomes are expected to be useful as nonviral vectors for gene delivery. Cationic liposomes showed cytotoxicity, and we proposed that the cytotoxicity is through apoptosis. In this study, we examined the effects of liposomal properties, such as liposomal charge, size, membrane fluidity, and PEG coating, on the induction of apoptosis in the macrophage-like cell line RAW264.7. METHODS RAW264.7 cells were treated with liposomes, and the induction of apoptosis was evaluated by monitoring the changes in DNA content by flow cytometry. The association of liposomes with cells and the generation of reactive oxygen species (ROS) were also measured by flow cytometry. RESULTS The induction of apoptosis of RAW264.7 cells was dependent on the concentrations of stearylamine or cholesterol, a component of cationic liposomes. A significant correlation was observed between the degree of apoptosis and association of cationic liposomes with the cells. Coating the liposomal surface with polyethylene glycol (PEG) decreased the association of cationic liposomes with RAW264.7 cells and reduced the induction of apoptosis. Liposomal size also affected the induction of apoptosis, and larger liposomes showed a higher degree of apoptosis induction. Furthermore, ROS, which were required for the induction of apoptosis by cationic liposomes, were generated in a cholesterol content-dependent manner, and ROS generation was also decreased by PEG coating as the association and the induction of apoptosis were reduced. CONCLUSIONS The degree of apoptosis is related to the extent of association of cationic liposomes with cells and is related to the generation of ROS.
Collapse
Affiliation(s)
- Shuhei Takano
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | | | | |
Collapse
|
35
|
Roy MK, Kuwabara Y, Hara K, Watanabe Y, Tamai Y. Peptides from the N-terminal end of bovine lactoferrin induce apoptosis in human leukemic (HL-60) cells. J Dairy Sci 2002; 85:2065-74. [PMID: 12362437 DOI: 10.3168/jds.s0022-0302(02)74284-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To determine the effects of the multifunctional iron-binding glycoprotein, lactoferrin (LF) and related compounds on the growth of leukemic cells, human myeloid leukemic cells (HL-60) were exposed to bovine lactoferrin (bLF) and proteolytic hydrolysates of bLF. Pepsin hydrolysates of bLF showed a greater growth suppressive effect than tryptic hydrolysates or mature bLF. Four peptides with proliferation inhibition activity were purified from pepsin hydrolysates by ion-exchange chromatography, reverse-phase HPLC, and gel-filtration. All peptides were from the N-terminal end, in a region where lactoferricin B (Lfcin B), an antibacterial peptide, is located. Among the four peptides, peptide 1 (pep1) was found to exhibit highest activity and corresponded to residues 17 to 38 of bLF, with a molecular weight of 2753.88. The IC50 value of this peptide was 6.3 micrograms/ml. Three other peptides were less active and corresponded to sequences 1 to 16 and 45 to 48, linked by disulfide-bridge (pep2, molecular mass of 2430.13), 1 to 15 and 45 to 46 linked by disulfide bridge (pep3, molecular mass of 2017,92) and from residues 1 to 13 (pep4, molecular mass of 1558.73). Cell proliferation inhibition activity of the peptides was thought to be due to induction of apoptosis, which was evaluated by DNA ladder formation, DNA fragmentation, enhanced expression of phosphatidyl serine, and morphological changes. The IC50 values of the three peptides were confirmed using synthetic peptides and were consistent with those of purified peptides.
Collapse
Affiliation(s)
- M K Roy
- Department of Biological Chemistry, Faculty of Agriculture, Ehime University, Japan
| | | | | | | | | |
Collapse
|
36
|
Galović Rengel R, Barisić K, Pavelić Z, Zanić Grubisić T, Cepelak I, Filipović-Grcić J. High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes. Eur J Pharm Sci 2002; 15:441-8. [PMID: 12036721 DOI: 10.1016/s0928-0987(02)00030-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Superoxide dismutase (SOD), antioxidative enzyme and potential anti-inflammatory agent, was encapsulated into mucoadhesive chitosan-coated liposomes in order to increase its releasing time and to facilitate its cellular penetration. Positively, neutrally and negatively charged liposomes were prepared using soybean lecithin, stearylamine, phosphatidyl glycerol and cholesterol. The effects of liposomal lipid composition and protein to lipid ratio on the encapsulation parameters were studied in three preparation methods: dehydration-rehydration, hydration and proliposome methods. The highest efficiency of SOD entrapment, 39-65%, was achieved by the proliposome method. Vesicles prepared by the hydration method entrapped 1-13% and vesicles prepared by dehydration-rehydration entrapped 2-3% of SOD. Stability tests for SOD-loaded liposomes prepared by the proliposome method showed no significant loss of the enzyme activity within 1 month at 4 degrees C or within 2 days at 37 degrees C. Positively, neutrally and negatively charged liposomes, prepared by the proliposome method, were successfully coated with two types of low and medium molecular weight chitosans. Both types of chitosan coating increased the mucoadhesive characteristics of all three types of vesicles. Using the proliposome method and subsequent chitosan coating, highly efficient SOD-loaded vesicles for drug targeting on mucosal tissues could be produced.
Collapse
Affiliation(s)
- Ruzica Galović Rengel
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacića 1, P.O. Box 156, Croatia.
| | | | | | | | | | | |
Collapse
|
37
|
Takano S, Aramaki Y, Tsuchiya S. Lipoxygenase may be involved in cationic liposome-induced macrophage apoptosis. Biochem Biophys Res Commun 2001; 288:116-20. [PMID: 11594761 DOI: 10.1006/bbrc.2001.5731] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the source of reactive oxygen species (ROS) generation and the contribution of ROS to the apoptosis of RAW264.7 cells induced by cationic liposomes. Cationic liposome-induced apoptosis was inhibited by lipoxygenase inhibitors, but not inhibitors of NADPH-oxidase, xanthine oxidase or cyclooxygenase. ROS generation induced by cationic liposomes was also inhibited by the lipoxygenase inhibitor NDGA. Furthermore, lipid peroxidation was observed following liposome treatment, but the apoptosis was not inhibited by the antioxidant alpha-tocopherol. These findings suggested that lipoxygenase is responsible for ROS generation, and ROS but not lipid peroxidation acts as a key mediator in the progress of apoptosis induced by cationic liposomes.
Collapse
Affiliation(s)
- S Takano
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | |
Collapse
|
38
|
Aramaki Y, Takano S, Tsuchiya S. Cationic liposomes induce macrophage apoptosis through mitochondrial pathway. Arch Biochem Biophys 2001; 392:245-50. [PMID: 11488598 DOI: 10.1006/abbi.2001.2458] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify the mechanism of apoptosis of the macrophage-like cell line RAW264.7 induced by cationic liposomes, we focused on the mitochondria and investigated the changes in mitochondrial membrane potential and the release of cytochrome c following treatment of cationic liposomes composed of stearylamine (SA-liposomes). SA-liposomes induced mitochondrial membrane depolarization and also the release of cytochrome c from mitochondria. Caspase-3 was also activated by SA-liposome treatment. Pretreatment of cells with N-acetylcysteine, a scavenger of reactive oxygen species (ROS), conferred resistance to the induction of the membrane depolarization, cytochrome c release, and caspase-3 activation by SA-liposomes. These results indicated that SA-liposomes caused the apoptosis in RAW264.7 cells through the mitochondrial pathway, and ROS generation was required for this phenomenon.
Collapse
Affiliation(s)
- Y Aramaki
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | | | | |
Collapse
|
39
|
Weissig V, Torchilin VP. Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Adv Drug Deliv Rev 2001; 49:127-49. [PMID: 11377808 DOI: 10.1016/s0169-409x(01)00131-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since their first discovery during the end of the 1980s, the number of diseases found to be associated with a defect in the mitochondrial genome has grown significantly. However, despite major advances in understanding mtDNA defects at the genetic and biochemical level, there is no satisfactory treatment available for the vast majority of patients. This is largely due to the fact that most of these patients have respiratory chain defects, i.e. defects that involve the final common pathway of oxidative metabolism, making it impossible to bypass the defect by giving alternative metabolic carriers of energy. These objective limitations of conventional biochemical treatment for patients with defects of mtDNA warrant the exploration of gene therapy approaches. However, mitochondrial gene therapy currently appears to be only theoretical and speculative. Any possibility for gene replacement is dependent on the use of a yet unavailable mitochondrial transfection vector. In this review we describe the current state of the development of mitochondrial DNA delivery systems. We also summarize our own efforts in exploring the properties of dequalinium, a cationic bolaamphiphile with delocalized charge centers, for the design of a vector suited for the transport of DNA to mitochondria in living cells.
Collapse
Affiliation(s)
- V Weissig
- Northeastern University, Bouve College of Health Sciences, Department of Pharmaceutical Sciences, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|