1
|
Chiu HF, Liao YR, Shen YC, Han YC, Golovinskaia O, Venkatakrishnan K, Hung CC, Wang CK. Improvement on blood pressure and skin using roselle drink: A clinical trial. J Food Biochem 2022; 46:e14287. [PMID: 35758855 DOI: 10.1111/jfbc.14287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Roselle (Hibiscus sabdariffa L.) is an increasingly attractive plant for its health and pharmaceutical, beverage, and cosmetic applications. The purpose of this study was to investigate the clinical effects of roselle drink on antioxidant activity, blood pressure, and skin condition. Roselle drink used in this study contained rich phenolics (1.96 g of gallic acid equivalent/100 ml) and anthocyanins (1.65 g of cyanidin-3-glucoside equivalent/100 ml). In a randomized, cross-over, double-blind, placebo-controlled clinical study, 39 healthy adults received drank 200 ml of roselle drink or placebo-control drink for 6 months. A significant reduction in the blood pressure was observed in the roselle drink treated group when compared with preintervention values. After 6 months of treatment with roselle drink, serum phenolics contents, the levels of Trolox equivalent antioxidant capacity (TEAC), glutathione, superoxide dismutase (SOD), glucose-6-phosphate dehydrogenase (G-6-PDH), glutathione peroxidase (GSH-Px), and glutathione reductase (GSH-Rd) were significantly increased in healthy subjects. However, a significant increment in skin redness and skin moisture was observed in the facial skin of roselle drink-treated participants. Oral administration of roselle drink for 6 months significantly lowered the blood pressure, improved antioxidation level, and positively regulated skin redness as well as moisture. Phenolics and anthocyanins in roselle could be the major potential contributors to such health effects. PRACTICAL APPLICATIONS: Roselle is a typical plant. Continuous administration of roselle drink clearly improved antioxidation levels, reduced blood pressure and positively regulated skin redness and moisture. Phenloics and anthocyanins in roselle could be the major potentila contributors of such health benefits.
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health and Well-Being, Taichung, Taiwan
| | - Yi-Ru Liao
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - You-Cheng Shen
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Chin Han
- Department of Nutrition and Health Science, Fooyin University, Kaohsiung, Taiwan
| | | | | | | | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Jackman MJ, Davies NM, Bak A, Puri S. Landscape for oral delivery of peptides. ORAL DELIVERY OF THERAPEUTIC PEPTIDES AND PROTEINS 2022:1-50. [DOI: 10.1016/b978-0-12-821061-1.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Expression, purification and characterization of human proton-coupled oligopeptide transporter 1 hPEPT1. Protein Expr Purif 2021; 190:105990. [PMID: 34637915 DOI: 10.1016/j.pep.2021.105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022]
Abstract
The human peptide transporter hPEPT1 (SLC15A1) is responsible for uptake of dietary di- and tripeptides and a number of drugs from the small intestine by utilizing the proton electrochemical gradient, and hence an important target for peptide-like drug design and drug delivery. hPEPT1 belongs to the ubiquitous major facilitator superfamily that all contain a 12TM core structure, with global conformational changes occurring during the transport cycle. Several bacterial homologues of these transporters have been characterized, providing valuable insight into the transport mechanism of this family. Here we report the overexpression and purification of recombinant hPEPT1 in a detergent-solubilized state. Thermostability profiling of hPEPT1 at different pH values revealed that hPEPT1 is more stable at pH 6 as compared to pH 7 and 8. Micro-scale thermophoresis (MST) confirmed that the purified hPEPT1 was able to bind di- and tripeptides respectively. To assess the in-solution oligomeric state of hPEPT1, negative stain electron microscopy was performed, demonstrating a predominantly monomeric state.
Collapse
|
4
|
Amezcua M, Cruz RS, Ku A, Moran W, Ortega ME, Salzameda NT. Discovery of Dipeptides as Potent Botulinum Neurotoxin A Light-Chain Inhibitors. ACS Med Chem Lett 2021; 12:295-301. [PMID: 33603978 DOI: 10.1021/acsmedchemlett.0c00674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/16/2022] Open
Abstract
The botulinum neurotoxin, the caustic agent that causes botulism, is the most lethal toxin known to man. The neurotoxin composed of a heavy chain (HC) and a light chain (LC) enters neurons and cleaves SNARE proteins, leading to flaccid paralysis, which, in severe occurrences, can result in death. A therapeutic target for botulinum neurotoxin (BoNT) intoxication is the LC, a zinc metalloprotease that directly cleaves SNARE proteins. Herein we report dipeptides containing an aromatic connected to the N-terminus via a sulfonamide and a hydroxamic acid at the C-terminus as BoNT/A LC inhibitors. On the basis of a structure-activity relationship study, 33 was discovered to inhibit the BoNT/A LC with an IC50 of 21 nM. X-ray crystallography analysis of 30 and 33 revealed that the dipeptides inhibit through a competitive mechanism and identified several key intermolecular interactions.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Ricardo S. Cruz
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Alex Ku
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Wilfred Moran
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Marcos E. Ortega
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| | - Nicholas T. Salzameda
- Department of Chemistry & Biochemistry, California State University, Fullerton, California 92831, United States
| |
Collapse
|
5
|
Prabhala BK, Rahman M, Nour-Eldin HH, Jørgensen FS, Mirza O. PTR2/POT/NPF transporters: what makes them tick? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:219-240. [PMID: 33485485 DOI: 10.1016/bs.apcsb.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PTR2/POT/NPF are a family of primarily proton coupled transporters that belong to the major facilitator super family and are found across most kingdoms of life. They are involved in uptake of nutrients, hormones, ions and several orally administered drug molecules. A wealth of structural and functional data is available for this family; the similarity between the protein structural features have been discussed and investigated in detail on several occasions, however there are no reports on the unification of substrate information. In order to fill this gap, we have collected information about substrates across the entire PTR2/POT/NPF family in order to provide key insights into what makes a molecule a substrate and whether there are common features among confirmed substrates. This review will be of particular interest for researchers in the field trying to probe the mechanisms responsible for the different selectivity of these transporters at a molecular resolution, and to design novel substrates.
Collapse
Affiliation(s)
- Bala K Prabhala
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Moazur Rahman
- School of Biological Sciences, University of the Punjab, Lahore, Punjab, Pakistan; Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Hussam H Nour-Eldin
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
ACE2 and gut amino acid transport. Clin Sci (Lond) 2020; 134:2823-2833. [PMID: 33140827 DOI: 10.1042/cs20200477] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
ACE2 is a type I membrane protein with extracellular carboxypeptidase activity displaying a broad tissue distribution with highest expression levels at the brush border membrane (BBM) of small intestine enterocytes and a lower expression in stomach and colon. In small intestinal mucosa, ACE2 mRNA expression appears to increase with age and to display higher levels in patients taking ACE-inhibitors (ACE-I). There, ACE2 protein heterodimerizes with the neutral amino acid transporter Broad neutral Amino acid Transporter 1 (B0AT1) (SLC6A19) or the imino acid transporter Sodium-dependent Imino Transporter 1 (SIT1) (SLC6A20), associations that are required for the surface expression of these transport proteins. These heterodimers can form quaternary structures able to function as binding sites for SARS-CoV-2 spike glycoproteins. The heterodimerization of the carboxypeptidase ACE2 with B0AT1 is suggested to favor the direct supply of substrate amino acids to the transporter, but whether this association impacts the ability of ACE2 to mediate viral infection is not known. B0AT1 mutations cause Hartnup disorder, a condition characterized by neutral aminoaciduria and, in some cases, pellagra-like symptoms, such as photosensitive rash, diarrhea, and cerebellar ataxia. Correspondingly, the lack of ACE2 and the concurrent absence of B0AT1 expression in small intestine causes a decrease in l-tryptophan absorption, niacin deficiency, decreased intestinal antimicrobial peptide production, and increased susceptibility to inflammatory bowel disease (IBD) in mice. Thus, the abundant expression of ACE2 in small intestine and its association with amino acid transporters appears to play a crucial role for the digestion of peptides and the absorption of amino acids and, thereby, for the maintenance of structural and functional gut integrity.
Collapse
|
7
|
Diabetes downregulates peptide transporter 1 in the rat jejunum: possible involvement of cholate-induced FXR activation. Acta Pharmacol Sin 2020; 41:1465-1475. [PMID: 32341465 DOI: 10.1038/s41401-020-0408-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/24/2020] [Indexed: 12/31/2022]
Abstract
Peptide transporter 1 (PepT1), highly expressed on the apical membrane of enterocytes, is involved in energy balance and mediates intestinal absorption of peptidomimetic drugs. In this study, we investigated whether and how diabetes affected the function and expression of intestinal PepT1. Diabetes was induced in rats by combination of high-fat diet and low dose streptozocin injection. Pharmacokinetics study demonstrated that diabetes significantly decreased plasma exposures of cephalexin and acyclovir following oral administration of cephalexin and valacyclovir, respectively. Single-pass intestinal perfusion analysis showed that diabetes remarkably decreased cephalexin absorption, which was associated with decreased expression of intestinal PepT1 protein. We assessed the levels of bile acids in intestine of diabetic rats, and found that diabetic rats exhibited significantly higher levels of chenodeoxycholic acid (CDCA), cholic acid (CA) and glycocholic acid (GCA), and lower levels of lithocholic acid (LCA) and hyodeoxycholic acid (HDCA) than control rats; intestinal deoxycholic acid (DCA) levels were unaltered. In Caco-2 cells, the 6 bile acids remarkably decreased expression of PepT1 protein with CDCA causing the strongest inhibition, whereas TNF-α, LPS and insulin little affected expression of PepT1 protein; short-chain fatty acids induced rather than decreased expression of PepT1 protein. Farnesoid X receptor (FXR) inhibitor glycine-β-muricholic acid or FXR knockdown reversed the downregulation of PepT1 expression by CDCA and GW4064 (another FXR agonist). In diabetic rats, the expression of intestinal FXR protein was markedly increased. Oral administration of CDCA (90, 180 mg·kg-1·d-1, for 3 weeks) dose-dependently decreased the expression and function of intestinal PepT1 in rats. In conclusion, diabetes impairs the expression and function of intestinal PepT1 partly via CDCA-mediated FXR activation.
Collapse
|
8
|
Pharmacokinetic Herb-Drug Interaction between Hibiscus sabdariffa Calyces Aqueous Extract and Captopril in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5013898. [PMID: 32655663 PMCID: PMC7317316 DOI: 10.1155/2020/5013898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
Hibiscus sabdariffa L. (Malvaceae) is a traditional medicinal herb widely consumed as a beverage (“hibiscus tea”), and its global popularity is expanding due to health benefits such as blood pressure and cholesterol control. Previous studies showed that Hibiscus sabdariffa is coadministered with antihypertensives and antihyperlipidemics, thus predisposing herb-drug interactions. We investigated the pharmacokinetic interaction between H. sabdariffa L. aqueous extract and captopril, a frequently prescribed antihypertensive. In this study, chemical profile of H. sabdariffa L. aqueous extract was identified using HPLC system equipped with a DAD detector at 360 nm and 520 nm. The male Sprague Dawley rats were divided into two groups of six rats. Group I received a single dose of captopril suspension (4.5 mg/200 g body weight (BW) orally (p.o.)) while group II received H. sabdariffa L. aqueous extract (60 mg/200 g BW; p.o.) daily for two weeks prior to the same captopril dose. Multiple blood samples were collected at predetermined times after captopril administration and the plasma concentration was analyzed using ultrahigh-pressure liquid chromatography-tandem mass spectrometry. Chemical profiling of the H. sabdariffa L. aqueous extract showed that the extract contains chlorogenic acid, myricetin 3-arabinogalactoside, 5-O-caffeoylshikimic acid, quercetin 3-rutinoside, delphinidin 3-sambubioside, and cyanidin 3-sambubioside. Ingestion of the extract significantly reduced the captopril area under the curve (AUC)0−t (0.1745 (0.1254–0.2429)), AUC0−∞ (0.1734 (0.1232–0.2442))], and peak plasma concentration (0.2119 (0.1337–0.3359)) (geometric mean ratio of the coadministration group to the captopril group (90% CI)). The geometric mean ratios were falling outside the 90% CI of 0.8–1.25 bioequivalent range. Conversely, H. sabdariffa L. extract increased the apparent total body clearance (Cl/F, 0.0257 ± 0.0115 vs. 0.1418 ± 0.0338 mL/h·kg) and the apparent volume of distribution (Vd/F, 0.0541 ± 0.0226 vs. 0.3205 ± 0.0790 mL/kg). This study indicated that coadministration of H. sabdariffa L. aqueous extract could change the pharmacokinetic profile of captopril; therefore, its coadministration should be avoided.
Collapse
|
9
|
Effects of Hibiscus Sabdariffa Calyces Aqueous Extract on the Antihypertensive Potency of Captopril in the Two-Kidney-One-Clip Rat Hypertension Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9694212. [PMID: 31379972 PMCID: PMC6662455 DOI: 10.1155/2019/9694212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
Hibiscus sabdariffa aqueous extract (HS) is often used as complementary therapy for hypertension. However, some studies have shown that coadministration with a conventional antihypertensive drug can affect drug potency. We compared the effects of HS plus captopril (CAP) coadministration to HS and CAP administration alone on blood pressure and renin-angiotensin-aldosterone system (RAAS) biomarkers in the rat two-kidney-one-clip (2K1C) model of hypertension. Male Sprague Dawley rats were randomly divided into seven groups (n=6/group), a normal control (SHAM) group, and six 2K1C groups. In 2K1C animals, hypertension was induced using a stainless microclip (inner diameter of 0.20 mm). Four weeks after 2K1C surgery, blood pressure was significantly higher than in the SHAM group. Then, model rats were randomly divided into negative control (2K1C, no treatment), positive control (4.5 mg captopril/200 g body weight [BW] orally [p.o.]), HS alone (30 mg/200 g BW; p.o.), and 3 co-treatment groups receiving HS (15, 30, or 60 mg/200 g BW; p.o.) plus 4.5 mg/200 g BW captopril. The treatments were performed for two weeks. Blood pressure was significantly reduced by all the drug treatments to near the level of SHAM controls. Plasma renin level, serum angiotensin converting enzyme (ACE) activity, and plasma angiotensin II level were also significantly elevated in the 2K1C group compared to the SHAM group. Both serum ACE activity and plasma angiotensin II level were significantly reduced to near SHAM group levels by all the drug treatments. Hibiscus sabdariffa aqueous extract alone can reduce blood pressure. This extract appears could be used as a supplement with captopril but may not provide any additional benefit.
Collapse
|
10
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
11
|
Song F, Hu Y, Jiang H, Smith DE. Species Differences in Human and Rodent PEPT2-Mediated Transport of Glycylsarcosine and Cefadroxil in Pichia Pastoris Transformants. Drug Metab Dispos 2017; 45:130-136. [PMID: 27836942 PMCID: PMC5267517 DOI: 10.1124/dmd.116.073320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/09/2016] [Indexed: 11/22/2022] Open
Abstract
The proton-coupled oligopeptide transporter PEPT2 (SLC15A2) plays an important role in the disposition of di/tripeptides and peptide-like drugs in kidney and brain. However, unlike PEPT1 (SLC15A1), there is little information about species differences in the transport of PEPT2-mediated substrates. The purpose of this study was to determine whether PEPT2 exhibited a species-dependent uptake of glycylsarcosine (GlySar) and cefadroxil using yeast Pichia pastoris cells expressing cDNA from human, mouse, and rat. In such a system, the functional activity of PEPT2 was evaluated with [3H]GlySar as a function of time, pH, substrate concentration, and specificity, and with [3H]cefadroxil as a function of concentration. We observed that the uptake of GlySar was pH-dependent with an optimal uptake at pH 6.5 for all three species. Moreover, GlySar showed saturable uptake kinetics, with Km values in human (150.6 µM) > mouse (42.8 µM) ≈ rat (36.0 µM). The PEPT2-mediated uptake of GlySar in yeast transformants was specific, being inhibited by di/tripeptides and peptide-like drugs, but not by amino acids and nonsubstrate compounds. Cefadroxil also showed a saturable uptake profile in all three species, with Km values in human (150.8 μM) > mouse (15.6 μM) ≈ rat (11.9 μM). These findings demonstrated that the PEPT2-mediated uptake of GlySar and cefadroxil was specific, species dependent, and saturable. Furthermore, based on the Km values, mice appeared similar to rats but both were less than optimal as animal models in evaluating the renal reabsorption and pharmacokinetics of peptides and peptide-like drugs in humans.
Collapse
Affiliation(s)
- Feifeng Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (Y.H., D.E.S.); and Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (F.S., H.J.)
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (Y.H., D.E.S.); and Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (F.S., H.J.)
| | - Huidi Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (Y.H., D.E.S.); and Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (F.S., H.J.)
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (Y.H., D.E.S.); and Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (F.S., H.J.)
| |
Collapse
|
12
|
Akt drives buffalo casein-derived novel peptide-mediated osteoblast differentiation. J Nutr Biochem 2016; 38:134-144. [DOI: 10.1016/j.jnutbio.2016.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/09/2016] [Accepted: 08/28/2016] [Indexed: 01/02/2023]
|
13
|
Sivadas A, Salleh MZ, Teh LK, Scaria V. Genetic epidemiology of pharmacogenetic variants in South East Asian Malays using whole-genome sequences. THE PHARMACOGENOMICS JOURNAL 2016; 17:461-470. [PMID: 27241059 DOI: 10.1038/tpj.2016.39] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 03/16/2016] [Accepted: 05/02/2016] [Indexed: 12/28/2022]
Abstract
Expanding the scope of pharmacogenomic research by including multiple global populations is integral to building robust evidence for its clinical translation. Deep whole-genome sequencing of diverse ethnic populations provides a unique opportunity to study rare and common pharmacogenomic markers that often vary in frequency across populations. In this study, we aim to build a diverse map of pharmacogenetic variants in South East Asian (SEA) Malay population using deep whole-genome sequences of 100 healthy SEA Malay individuals. We investigated the allelic diversity of potentially deleterious pharmacogenomic variants in SEA Malay population. Our analysis revealed 227 common and 466 rare potentially functional single nucleotide variants (SNVs) in 437 pharmacogenomic genes involved in drug metabolism, transport and target genes, including 74 novel variants. This study has created one of the most comprehensive maps of pharmacogenetic markers in any population from whole genomes and will hugely benefit pharmacogenomic investigations and drug dosage recommendations in SEA Malays.
Collapse
Affiliation(s)
- A Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - M Z Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Malaysia, Puncak Alam, Selangor, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Malaysia, Puncak Alam, Selangor, Malaysia
| | - L K Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Malaysia, Puncak Alam, Selangor, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Malaysia, Puncak Alam, Selangor, Malaysia
| | - V Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| |
Collapse
|
14
|
Stelzl T, Baranov T, Geillinger KE, Kottra G, Daniel H. Effect of N-glycosylation on the transport activity of the peptide transporter PEPT1. Am J Physiol Gastrointest Liver Physiol 2016; 310:G128-41. [PMID: 26585416 DOI: 10.1152/ajpgi.00350.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/10/2015] [Indexed: 01/31/2023]
Abstract
The intestinal peptide transporter PEPT1 provides bulk quantities of amino acids to epithelial cells. PEPT1 is a high-capacity and low-affinity solute carrier of the SLC15 family found in apical membranes of enterocytes in small intestine and distal colon. Surprisingly, murine PEPT1 (mPEPT1) has an apparent molecular mass of ∼95 kDa in the small intestine but ∼105 kDa in the large intestine. Here we describe studies on mPEPT1 protein glycosylation and how glycans affect transport function. Putative N-glycosylation sites of mPEPT1 were altered by site-directed mutagenesis followed by expression in Xenopus laevis oocytes. Replacement of six asparagine residues (N) at positions N50, N406, N439, N510, N515, and N532 by glutamine (Q) resulted in a decrease of the mPEPT1 mass by around 35 kDa. Electrophysiology revealed all glycosylation-deficient transporters to be functional with comparable expression levels in oocyte membranes. Strikingly, the mutant protein with N50Q exhibited a twofold decreased affinity for Gly-Sar but a 2.5-fold rise in the maximal inward currents compared with the wild-type protein. Elevated maximal transport currents were also recorded for cefadroxil and tri-l-alanine. Tracer flux studies performed with [(14)C]-Gly-Sar confirmed the reduction in substrate affinity and showed twofold increased maximal transport rates for the N50Q transporter. Elimination of individual N-glycosylation sites did not alter membrane expression in oocytes or overall transport characteristics except for the mutant protein N50Q. Because transporter surface density was not altered in N50Q, removal of the glycan at this location appears to accelerate the substrate turnover rate.
Collapse
Affiliation(s)
- Tamara Stelzl
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Tatjana Baranov
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Kerstin E Geillinger
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Gabor Kottra
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, Technische Universität München, Freising, Germany; ZIEL, Institute for Food and Health, Freising, Germany
| |
Collapse
|
15
|
Vij R, Reddi S, Kapila S, Kapila R. Transepithelial transport of milk derived bioactive peptide VLPVPQK. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.05.121] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Nielsen CU, Frølund S, Abdulhadi S, Sari H, Langthaler L, Nøhr MK, Kall MA, Brodin B, Holm R. Sertraline inhibits the transport of PAT1 substrates in vivo and in vitro. Br J Pharmacol 2014; 170:1041-52. [PMID: 23962042 DOI: 10.1111/bph.12341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/02/2013] [Accepted: 08/03/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Intestinal nutrient transporters may mediate the uptake of drugs. The aim of this study was to investigate whether sertraline interacts with the intestinal proton-coupled amino acid transporter 1 PAT1 (SLC36A1). EXPERIMENTAL APPROACH In vitro investigations of interactions between sertraline and human (h)PAT1, hSGLT1 (sodium-glucose linked transporter 1) and hPepT1 (proton-coupled di-/tri-peptide transporter 1) were conducted in Caco-2 cells using radiolabelled substrates. In vivo pharmacokinetic investigations were conducted in male Sprague-Dawley rats using gaboxadol (10 mg·kg(-1), p.o.) as a PAT1 substrate and sertraline (0-30.6 mg·kg(-1)). Gaboxadol was quantified by hydrophilic interaction chromatography followed by MS/MS detection. KEY RESULTS Sertraline inhibited hPAT1-mediated L-[(3)H]-Pro uptake in Caco-2 cells. This interaction between sertraline and PAT1 appeared to be non-competitive. The uptake of the hSGLT1 substrate [(14)C]-α-methyl-D-glycopyranoside and the hPepT1 substrate [(14)C]-Gly-Sar in Caco-2 cells was also decreased in the presence of 0.3 mM sertraline. In rats, the administration of sertraline (0.1-10 mM, corresponding to 0.3-30.6 mg·kg(-1), p.o.) significantly reduced the maximal gaboxadol plasma concentration and AUC after its administration p.o. CONCLUSIONS AND IMPLICATIONS Sertraline is an apparent non-competitive inhibitor of hPAT1-mediated transport in vitro. This inhibitory effect of sertraline is not specific to hPAT1 as substrate transport via hPepT1 and hSGLT1 was also reduced in the presence of sertraline. In vivo, sertraline reduced the amount of gaboxadol absorbed, suggesting that the inhibitory effect of sertraline on PAT1 occurs both in vitro and in vivo. Hence, sertraline could alter the bioavailability of drugs absorbed via PAT1.
Collapse
Affiliation(s)
- C U Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Kottra G, Spanier B, Verri T, Daniel H. Peptide transporter isoforms are discriminated by the fluorophore-conjugated dipeptides β-Ala- and d-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid. Physiol Rep 2013; 1:e00165. [PMID: 24744852 PMCID: PMC3970736 DOI: 10.1002/phy2.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/16/2013] [Accepted: 10/26/2013] [Indexed: 02/06/2023] Open
Abstract
Peptide transporters of the SLC15 family are classified by structure and function into PEPT1 (low‐affinity/high‐capacity) and PEPT2 (high‐affinity/low‐capacity) isoforms. Despite the differences in kinetics, both transporter isoforms are reckoned to transport essentially all possible di‐ and tripeptides. We here report that the fluorophore‐conjugated dipeptide derivatives β‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (β‐AK‐AMCA) and d‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (d‐AK‐AMCA) are transported by distinct PEPT isoforms in a species‐specific manner. Transport of the fluorophore peptides was studied (1) in vitro after heterologous expression in Xenopus oocytes of PEPT1 and PEPT2 isoforms from different vertebrate species and of PEPT1 and PEPT2 transporters from Caenorhabditis elegans by using electrophysiological and fluorescence methods and (2) in vivo in C. elegans by using fluorescence methods. Our results indicate that both substrates are transported by the vertebrate “renal‐type” and the C. elegans “intestinal‐type” peptide transporter only. A systematic analysis among species finds four predicted amino acid residues along the sequence that may account for the substrate uptake differences observed between the vertebrate PEPT1/nematode PEPT2 and the vertebrate PEPT2/nematode PEPT1 subtype. This selectivity on basis of isoforms and species may be helpful in better defining the structure–function determinants of the proteins of the SLC15 family. Peptide transporters of the SLC15 family can be classified by structure and function into the PEPT1 (low‐affinity/high‐capacity) and PEPT2 (high‐affinity/low‐capacity) phenotype. We found that the fluorophore‐conjugated dipeptide derivatives β‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (β‐AK‐AMCA) and d‐Ala‐Lys‐N‐7‐amino‐4‐methylcoumarin‐3‐acetic acid (d‐AK‐AMCA) are transported only by distinct PEPT isoforms in a species‐specific manner. This selectivity on basis of isoforms and species should be helpful in further defining the substrate‐binding domain of peptide transporters.
Collapse
Affiliation(s)
- Gabor Kottra
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, Freising, D-85350, Germany
| | - Britta Spanier
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, Freising, D-85350, Germany
| | - Tiziano Verri
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, Lecce, I-73100, Italy
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Gregor-Mendel-Str. 2, Freising, D-85350, Germany
| |
Collapse
|
19
|
Foster DR, Yee S, Bleske BE, Carver PL, Shea MJ, Menon SS, Ramachandran C, Welage LS, Amidon GL. Lack of Interaction Between the Peptidomimetic Substrates Captopril and Cephradine. J Clin Pharmacol 2013; 49:360-7. [DOI: 10.1177/0091270008329554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Krylov IS, Kashemirov BA, Hilfinger JM, McKenna CE. Evolution of an amino acid based prodrug approach: stay tuned. Mol Pharm 2013; 10:445-58. [PMID: 23339402 PMCID: PMC3788118 DOI: 10.1021/mp300663j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Certain acyclic nucleoside phosphonates (ANPs) such as (S)-HPMPC (cidofovir, Vistide) and (S)-HPMPA have been shown to be active against a broad spectrum of DNA and retroviruses. However, their poor absorption as well as their toxicity limit the utilization of these therapeutics in the clinic. Nucleoside phosphonates are poorly absorbed primarily due to the presence of the phosphonic acid group, which ionizes at physiological pH. When dosed intravenously they display dose-limiting nephrotoxicity due to their accumulation in the kidney. To overcome these limitations, nucleoside phosphonate prodrug strategies have taken center stage in the development pathway and a number of different approaches are at various stages of development. Our efforts have focused on the development of ANP prodrugs in which a benign amino acid promoiety masks a phosphonate P-OH via a hydroxyl side chain. The design of these prodrugs incorporates multiple chemical groups (the P-X-C linkage, the amino acid stereochemistry, the C-terminal and N-terminal functional groups) that can be tuned to modify absorption, pharmacokinetic and efficacy properties with the goal of improving overall prodrug performance.
Collapse
Affiliation(s)
- Ivan S. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 USA
| | | | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0744 USA
| |
Collapse
|
21
|
Hu Y, Chen X, Smith DE. Species-dependent uptake of glycylsarcosine but not oseltamivir in Pichia pastoris expressing the rat, mouse, and human intestinal peptide transporter PEPT1. Drug Metab Dispos 2012; 40:1328-35. [PMID: 22490229 PMCID: PMC3382839 DOI: 10.1124/dmd.111.044263] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/09/2012] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to determine whether glycylsarcosine (a model dipeptide) and oseltamivir (an antiviral prodrug) exhibited a species-dependent uptake in yeast Pichia pastoris expressing the rat, mouse, and human homologs of PEPT1. Experiments were performed with [(3)H]glycylsarcosine (GlySar) in yeast P. pastoris expressing human, mouse, and rat peptide transporter 1 (PEPT1), in which uptake was examined as a function of time, concentration, potential inhibitors, and the dose-response inhibition of GlySar by oseltamivir. Studies with [(14)C]oseltamivir were also performed under identical experimental conditions. We found that GlySar exhibited saturable uptake in all three species, with K(m) values for human (0.86 mM) > mouse (0.30 mM) > rat (0.16 mM). GlySar uptake in the yeast transformants was specific for peptides (glycylproline) and peptide-like drugs (cefadroxil, cephradine, and valacyclovir), but was unaffected by glycine, l-histidine, cefazolin, cephalothin, cephapirin, acyclovir, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid, tetraethylammonium, and elacridar. Although oseltamivir caused a dose-dependent inhibition of GlySar uptake [IC(50) values for human (27.4 mM) > rat (18.3 mM) > mouse (10.7 mM)], the clinical relevance of this interaction would be very low in humans. Of importance, oseltamivir was not a substrate for the intestinal PEPT1 transporter in yeast expressing the three mammalian species tested. Instead, the prodrug exhibited nonspecific binding to the yeast vector and PEPT1 transformants. Finally, the mouse appeared to be a better animal model than the rat for exploring the intestinal absorption and pharmacokinetics of peptides and peptide-like drugs in human.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 4742C Medical Sciences II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5633, USA
| | | | | |
Collapse
|
22
|
Cheong HS, Kim HD, Na HS, Kim JO, Kim LH, Kim SH, Bae JS, Chung MW, Shin HD. Screening of genetic variations of SLC15A2, SLC22A1, SLC22A2 and SLC22A6 genes. J Hum Genet 2011; 56:666-70. [PMID: 21796140 DOI: 10.1038/jhg.2011.77] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing list of membrane-spanning proteins involved in the transport of a large variety of drugs has been recognized and characterized to include peptide and organic anion/cation transporters. Given such an important role of transporter genes in drug disposition process, the role of single-nucleotide polymorphisms (SNPs) in such transporters as potential determinants of interindividual variability in drug disposition and pharmacological response has been investigated. To define the distribution of transporter gene SNPs across ethnic groups, we screened 450 DNAs in cohorts of 250 Korean, 50 Han Chinese, 50 Japanese, 50 African-American and 50 European-American ancestries for 64 SNPs in four transporter genes encoding proteins of the solute carrier family (SLC15A2, SLC22A1, SLC22A2 and SLC22A6). Of the 64 SNPs, 19 were core pharmacogenetic variants and 45 were HapMap tagging SNPs. Polymorphisms were genotyped using the golden gate genotyping assay. After genetic variability, haplotype structures and ethnic diversity were analyzed, we observed that the distributions of SNPs in a Korean population were similar to other Asian groups (Chinese and Japanese), and significantly different from African-American and European-American cohorts. Findings from this study would be valuable for further researches, including pharmacogenetic studies for drug responses.
Collapse
Affiliation(s)
- Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nässl AM, Rubio-Aliaga I, Fenselau H, Marth MK, Kottra G, Daniel H. Amino acid absorption and homeostasis in mice lacking the intestinal peptide transporter PEPT1. Am J Physiol Gastrointest Liver Physiol 2011; 301:G128-37. [PMID: 21350187 DOI: 10.1152/ajpgi.00017.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The intestinal peptide transporter PEPT1 mediates the uptake of di- and tripeptides derived from dietary protein breakdown into epithelial cells. Whereas the transporter appears to be essential to compensate for the reduced amino acid delivery in patients with mutations in amino acid transporter genes, such as in cystinuria or Hartnup disease, its physiological role in overall amino acid absorption is still not known. To assess the quantitative importance of PEPT1 in overall amino acid absorption and metabolism, PEPT1-deficient mice were studied by using brush border membrane vesicles, everted gut sacs, and Ussing chambers, as well as by transcriptome and proteome analysis of intestinal tissue samples. Neither gene expression nor proteome profiling nor functional analysis revealed evidence for any compensatory changes in the levels and/or function of transporters for free amino acids in the intestine. However, most plasma amino acid levels were increased in Pept1(-/-) compared with Pept1(+/+) animals, suggesting that amino acid handling is altered. Plasma appearance rates of (15)N-labeled amino acids determined after intragastric administration of a low dose of protein remained unchanged, whereas administration of a large protein load via gavage revealed marked differences in plasma appearance of selected amino acids. PEPT1 seems, therefore, important for overall amino acid absorption only after high dietary protein intake when amino acid transport processes are saturated and PEPT1 can provide additional absorption capacity. Since renal amino acid excretion remained unchanged, elevated basal concentrations of plasma amino acids in PEPT1-deficient animals seem to arise mainly from alterations in hepatic amino acid metabolism.
Collapse
Affiliation(s)
- Anna-Maria Nässl
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Omkvist DH, Brodin B, Nielsen CU. Ibuprofen is a non-competitive inhibitor of the peptide transporter hPEPT1 (SLC15A1): possible interactions between hPEPT1 substrates and ibuprofen. Br J Pharmacol 2011; 161:1793-805. [PMID: 20726987 DOI: 10.1111/j.1476-5381.2010.01000.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, we identified etodolac as a possible ligand for the human intestinal proton-couple peptide transporter (hPEPT1). This raised the possibility that other non-steroidal anti-inflammatory drugs, and especially ibuprofen, could also interact with hPEPT1. Here, we have assessed the interactions of ibuprofen with hPEPT1. EXPERIMENTAL APPROACH The uptake of [(14)C]Gly-Sar, [(3)H]Ibuprofen and other radio-labelled compounds were investigated in Madin-Darby canine kidney cells (MDCK)/hPEPT1, MDCK/Mock, LLC-PK(1) or Caco-2 cells. The transepithelial transport of ibuprofen and hPEPT1 substrates was investigated in Caco-2 cell monolayers. KEY RESULTS Ibuprofen concentration dependently inhibited hPEPT1-mediated uptake of Gly-Sar in MDCK/hPEPT1 cells (K(i)(app) = 0.4 mM) but uptake of ibuprofen in Caco-2 cells and MDCK/hPEPT1 cells was not inhibited by hPEPT1 substrates. The maximum uptake rate for Gly-Sar uptake was reduced from 522 pmol·min(-1)·cm(-2) to 181 pmol·min(-1)·cm(-2) and 78 pmol·min(-1)·cm(-2) in the presence of 0.5 mM and 1 mM ibuprofen, respectively. The interaction between ibuprofen and hPEPT1 was thus non-competitive. In LLC-PK1 cells, ibuprofen (1 mM) did not influence the transporter-mediated uptake of glycine or α-methyl-D-glycopyranoside. In Caco-2 cell monolayers the absorptive transport of δ-aminolevulinic acid was reduced by 23% and 48% by ibuprofen (1 and 10 mM), respectively. Likewise the transport of Gly-Sar was reduced by 23% in the presence of ibuprofen (1 mM). CONCLUSIONS AND IMPLICATIONS Ibuprofen is a non-competitive inhibitor of hPEPT1. As ibuprofen reduced the transepithelial transport of δ-aminolevulinic acid, drug-drug interactions between ibuprofen and hPEPT1 drug substrates at their site of absorption are possible if administered together.
Collapse
Affiliation(s)
- Diana Højmark Omkvist
- Department of Pharmaceutics and Analytical Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
25
|
Cano-Soldado P, Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med Res Rev 2011; 32:428-57. [DOI: 10.1002/med.20221] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pedro Cano-Soldado
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| | - Marçal Pastor-Anglada
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| |
Collapse
|
26
|
Abdel-Rahman SM, Newland JG, Kearns GL. Pharmacologic considerations for oseltamivir disposition: focus on the neonate and young infant. Paediatr Drugs 2011; 13:19-31. [PMID: 21162598 DOI: 10.2165/11536950-000000000-00000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Across much of the world, pandemic H1N1 infection has produced a significant healthcare crisis, reflected in significant morbidity and mortality. Statistics reveal that infection-associated deaths among individuals without pre-existing conditions (e.g. immunosuppression) are clustered in pregnant women and young infants. In developing countries where the availability of influenzae vaccine is limited, the only currently available pharmacologic counter-measure for H1N1 disease is oseltamivir, a neuraminidase inhibitor with excellent in vitro activity against the virus. This drug is available in oral solid and liquid formulations, has excellent peroral bioavailability in adults, and generally has a very favorable safety profile. Many observational studies indicate that oseltamivir treatment is associated with symptomatic improvement in pediatric patients with H1N1 infection and, therefore, is considered to represent a viable therapeutic option for use in children. However, the disposition of the ethyl ester prodrug and its active metabolite has not been well characterized in infants and children. Presently, data are available from only two published investigations and preliminary summary information from a recent presentation of an ongoing study. Given that recent in vitro data support the importance of a target exposure-response profile for the active metabolite of oseltamivir and that many processes known to modulate drug disposition have a developmental basis, understanding the potential impact of age on oseltamivir disposition becomes crucial in the development of age-appropriate dosing regimens for the drug. In this review, the impact of ontogeny on processes that are important in regulating the absorption, distribution, metabolism, and excretion of oseltamivir and its active metabolite are considered. Data from both animal and human investigations are presented in the context of defining how development might influence the dose-exposure relationship and, most importantly, the significant variability associated with it. In addition, the available pediatric pharmacokinetic data for oseltamivir and its active metabolite are summarized and current 'information gaps' deserving of future study are presented.
Collapse
Affiliation(s)
- Susan M Abdel-Rahman
- Division of Clinical Pharmacology and Medical Toxicology, The Childrens Mercy Hospitals and Clinics, Kansas City, Missouri 64108, USA.
| | | | | |
Collapse
|
27
|
Zhou MM, Wu YM, Liu HY, Zhao K, Liu JX. Effects of tripeptides and lactogenic hormones on oligopeptide transporter 2 in bovine mammary gland. J Anim Physiol Anim Nutr (Berl) 2010; 95:781-9. [PMID: 21198960 DOI: 10.1111/j.1439-0396.2010.01110.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study was conducted to investigate the expression of oligopeptide transporter 2 (PepT2) and its potential function in bovine mammary gland. First, the PepT2 mRNA and protein were determined in cultured mammary epithelial cells. Then the effects of lactogenic hormones (prolactin, hydrocortisone or insulin) and substrate (threonyl-phenylalanyl-phenylalanine) on PepT2 were investigated. The PepT2 mRNA and protein were successfully detected in bovine mammary epithelial cells. PepT2 gene expression was enhanced by the addition of 50, 500 and 5000 ng/ml prolactin, 10 and 100 ng/ml hydrocortisone, and 50, 500, 5000 and 50,000 ng/ml insulin. PepT2 mRNA abundance was increased when 5, 10 and 15% of threonyl-phenylalanyl-phenylalanine was included. Responses of PepT2 to lactogenic hormones and oligopeptide inferred that it may play an important role in bovine mammary gland.
Collapse
Affiliation(s)
- M M Zhou
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
28
|
Foley DW, Rajamanickam J, Bailey PD, Meredith D. Bioavailability through PepT1: the role of computer modelling in intelligent drug design. Curr Comput Aided Drug Des 2010; 6:68-78. [PMID: 20370696 DOI: 10.2174/157340910790980133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to being responsible for the majority of absorption of dietary nitrogen, the mammalian proton-coupled di- and tri-peptide transporter PepT1 is also recognised as a major route of drug delivery for several important classes of compound, including beta-lactam antibiotics and angiotensin-converting enzyme inhibitors. Thus there is considerable interest in the PepT1 protein and especially its substrate binding site. In the absence of a crystal structure, computer modelling has been used to try to understand the relationship between PepT1 3D structure and function. Two basic approaches have been taken: modelling the transporter protein, and modelling the substrate. For the former, computer modelling has evolved from early interpretations of the twelve transmembrane domain structure to more recent homology modelling based on recently crystallised bacterial members of the major facilitator superfamily (MFS). Substrate modelling has involved the proposal of a substrate binding template, to which all substrates must conform and from which the affinity of a substrate can be estimated relatively accurately, and identification of points of potential interaction of the substrate with the protein by developing a pharmacophore model of the substrates. Most recently, these two approaches have moved closer together, with the attempted docking of a substrate library onto a homology model of the human PepT1 protein. This article will review these two approaches in which computers have been applied to peptide transport and suggest how such computer modelling could affect drug design and delivery through PepT1.
Collapse
Affiliation(s)
- David W Foley
- Faculty of Natural Sciences, Keele University, Keele, Staffs ST5 5BG, UK
| | | | | | | |
Collapse
|
29
|
Bosquillon C. Drug transporters in the lung--do they play a role in the biopharmaceutics of inhaled drugs? J Pharm Sci 2010; 99:2240-55. [PMID: 19950388 DOI: 10.1002/jps.21995] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of transporters in drug absorption, distribution and elimination processes as well as in drug-drug interactions is increasingly being recognised. Although the lungs express high levels of both efflux and uptake drug transporters, little is known of the implications for the biopharmaceutics of inhaled drugs. The current knowledge of the expression, localisation and functionality of drug transporters in the pulmonary tissue and the few studies that have looked at their impact on pulmonary drug absorption is extensively reviewed. The emphasis is on transporters most likely to affect the disposition of inhaled drugs: (1) the ATP-binding cassette (ABC) superfamily which includes the efflux pumps P-glycoprotein (P-gp), multidrug resistance associated proteins (MRPs), breast cancer resistance protein (BCRP) and (2) the solute-linked carrier (SLC and SLCO) superfamily to which belong the organic cation transporter (OCT) family, the peptide transporter (PEPT) family, the organic anion transporter (OAT) family and the organic anion transporting polypeptide (OATP) family. Whenever available, expression and localisation in the intact human tissue are compared with those in animal lungs and respiratory epithelial cell models in vitro. The influence of lung diseases or exogenous agents on transporter expression is also mentioned.
Collapse
Affiliation(s)
- Cynthia Bosquillon
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham NG72RD, United Kingdom.
| |
Collapse
|
30
|
Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2010; 60:543-85. [DOI: 10.1211/jpp.60.5.0002] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractPeptide transport is currently a prominent topic in membrane research. The transport proteins involved are under intense investigation because of their physiological importance in protein absorption and also because peptide transporters are possible vehicles for drug delivery. Moreover, in many tissues peptide carriers transduce peptidic signals across membranes that are relevant in information processing. The focus of this review is on the pharmaceutical relevance of the human peptide transporters PEPT1 and PEPT2. In addition to their physiological substrates, both carriers transport many β-lactam antibiotics, valaciclovir and other drugs and prodrugs because of their sterical resemblance to di- and tripeptides. The primary structure, tissue distribution and substrate specificity of PEPT1 and PEPT2 have been well characterized. However, there is a dearth of knowledge on the substrate binding sites and the three-dimensional structure of these proteins. Until this pivotal information becomes available by X-ray crystallography, the development of new drug substrates relies on classical transport studies combined with molecular modelling. In more than thirty years of research, data on the interaction of well over 700 di- and tripeptides, amino acid and peptide derivatives, drugs and prodrugs with peptide transporters have been gathered. The aim of this review is to put the reports on peptide transporter-mediated drug uptake into perspective. We also review the current knowledge on pharmacogenomics and clinical relevance of human peptide transporters. Finally, the reader's attention is drawn to other known or proposed human peptide-transporting proteins.
Collapse
Affiliation(s)
- Matthias Brandsch
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Ilka Knütter
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Eva Bosse-Doenecke
- Institute of Biochemistry/Biotechnology, Faculty of Science I, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|
31
|
Cang J, Zhang J, Wang C, Liu Q, Meng Q, Wang D, Sugiyama Y, Tsuji A, Kaku T, Liu K. Pharmacokinetics and Mechanism of Intestinal Absorption of JBP485 in Rats. Drug Metab Pharmacokinet 2010; 25:500-7. [DOI: 10.2133/dmpk.dmpk-10-rg-045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Brandsch M. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls. Expert Opin Drug Metab Toxicol 2009; 5:887-905. [DOI: 10.1517/17425250903042292] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Oostendorp RL, Beijnen JH, Schellens JH. The biological and clinical role of drug transporters at the intestinal barrier. Cancer Treat Rev 2009; 35:137-47. [DOI: 10.1016/j.ctrv.2008.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/17/2008] [Accepted: 09/20/2008] [Indexed: 11/27/2022]
|
34
|
Miguel M, Dávalos A, Manso MA, de la Peña G, Lasunción MA, López-Fandiño R. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Mol Nutr Food Res 2008; 52:1507-13. [DOI: 10.1002/mnfr.200700503] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 2008; 38:1022-42. [PMID: 18668438 DOI: 10.1080/00498250701875254] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. The peptide transporters belong to the peptide transporter (PTR) family and serve as integral membrane proteins for the cellular uptake of di- and tripeptides in the organism. By their ability also to transport peptidomimetics and other substrates with therapeutic activities or precursors of pharmacologically active agents, they are of considerable importance in pharmacology. 2. PEPT1 is the low-affinity, high-capacity transporter and is mainly expressed in the small intestine, whereas PEPT2 is the high-affinity, low-capacity transporter and has a broader distribution in the organism. 3. Targeted mouse models have revealed PEPT2 to be the dominant transporter for the reabsorption of di- and tripeptides and its pharmacological substrates in the organism, and for the removal of these substrates from the cerebrospinal fluid. Moreover, the peptide transporters undergo physiological and pharmacological regulation and, of great interest, are present in disease states where PEPT1 exhibits ectopic expression in colonic inflammation. 4. The paper reviews the structural characteristics of the peptide transporters, the structural requirements for substrates, the distribution of the peptide transporters in the organism, and finally their regulation in the organism in healthy and pathological situations.
Collapse
Affiliation(s)
- I Rubio-Aliaga
- Molecular Nutrition Unit, Technical University of Munich, Freising-Weihenstephan, Germany
| | | |
Collapse
|
36
|
Knütter I, Wollesky C, Kottra G, Hahn MG, Fischer W, Zebisch K, Neubert RHH, Daniel H, Brandsch M. Transport of angiotensin-converting enzyme inhibitors by H+/peptide transporters revisited. J Pharmacol Exp Ther 2008; 327:432-41. [PMID: 18713951 DOI: 10.1124/jpet.108.143339] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are often regarded as substrates for the H+/peptide transporters (PEPT)1 and PEPT2. Even though the conclusions drawn from published data are quite inconsistent, in most review articles PEPT1 is claimed to mediate the intestinal absorption of ACE inhibitors and thus to determine their oral availability. We systematically investigated the interaction of a series of ACE inhibitors with PEPT1 and PEPT2. First, we studied the effect of 14 ACE inhibitors including new drugs on the uptake of the dipeptide [14C]glycylsarcosine into human intestinal Caco-2 cells constitutively expressing PEPT1 and rat renal SKPT cells expressing PEPT2. In a second approach, the interaction of ACE inhibitors with heterologously expressed human PEPT1 and PEPT2 was determined. In both assay systems, zofenopril and fosinopril were found to have very high affinity for binding to peptide transporters. Medium to low affinity for transporter interaction was found for benazepril, quinapril, trandolapril, spirapril, cilazapril, ramipril, moexipril, quinaprilat, and perindopril. For enalapril, lisinopril, and captopril, very weak affinity or lack of interaction was found. Transport currents of PEPT1 and PEPT2 expressed in Xenopus laevis oocytes were recorded by the two-electrode voltage-clamp technique. Statistically significant, but very low currents were only observed for lisinopril, enalapril, quinapril, and benazepril at PEPT1 and for spirapril at PEPT2. For the other ACE inhibitors, electrogenic transport activity was extremely low or not measurable at all. The present results suggest that peptide transporters do not control intestinal absorption and renal reabsorption of ACE inhibitors.
Collapse
Affiliation(s)
- Ilka Knütter
- Biozentrum of the Martin-Luther-University Halle-Wittenberg, Membrane Transport Group, Halle, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Links JLS, Kulkarni AA, Davies DL, Lee VHL, Haworth IS. Cysteine scanning of transmembrane domain three of the human dipeptide transporter: Implications for substrate transport. J Drug Target 2008; 15:218-25. [PMID: 17454359 DOI: 10.1080/10611860701267491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The human intestinal dipeptide transporter (hPepT1) transports dipeptides and pharmacologically active drugs from the intestine to the blood. The role of transmembrane domain 3 (TMD3) of hPepT1 was studied using cysteine-scanning mutagenesis and methane thiosulfonate (MTS) cysteine modification. Each amino acid in TMD3 was individually mutated to a cysteine and Gly-Sar uptake by each mutated and modified transporter was determined relative to wild-type hPepT1. Uptake data for mutated transporters modified with the lipid-insoluble cysteine-modifying reagent MTSET suggested tilting of TMD3 relative to the substrate translocation pathway; the extracellular region of TMD3 showed little MTSET reactivity, indicative of solvent inaccessibility, whereas the intracellular part of TMD3 was relatively solvent accessible. Modification at 10 positions of TMD3 with MTSEA, a lipid-soluble cysteine-modifying reagent, gave unusual and statistically significant increases in Gly-Sar uptake relative to untreated mutants. We interpret these data in terms of the spatial properties of the hPepT1 substrate translocation channel and possible interactions of TMD3 with other transmembrane domains.
Collapse
Affiliation(s)
- Jennifer L S Links
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121, USA
| | | | | | | | | |
Collapse
|
38
|
Sala-Rabanal M, Loo DDF, Hirayama BA, Wright EM. Molecular mechanism of dipeptide and drug transport by the human renal H+/oligopeptide cotransporter hPEPT2. Am J Physiol Renal Physiol 2008; 294:F1422-32. [PMID: 18367661 DOI: 10.1152/ajprenal.00030.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human proton/oligopeptide cotransporters hPEPT1 and hPEPT2 have been targeted to enhance the bioavailability of drugs and prodrugs. Previously, we established the mechanisms of drug transport by hPEPT1. Here, we extend these studies to hPEPT2. Major variants hPEPT2*1 and hPEPT2*2 were expressed in Xenopus oocytes, and each was examined using radiotracer uptake and electrophysiological methods. Glycylsarcosine (Gly-Sar); the beta-lactam antibiotics ampicillin, amoxicillin, cephalexin, and cefadroxil; and the anti-neoplastics delta-aminolevulinic acid (delta-ALA) and bestatin induced inward currents, indicating that they are transported. Variations in transport rate were due to differences in affinity and in turnover rate: for example, cefadroxil was transported with higher apparent affinity but at a lower maximum velocity than Gly-Sar. Transport rates were highest at pH 5 and decreased significantly as the external pH was increased. Our results strongly suggest that the protein does not operate as a cotransporter in tissues where there is little or no pH gradient, such as choroid plexus, lung, or mammary gland. In the absence of substrates, rapid voltage jumps produced hPEPT2 capacitive currents at pH 7. These transients were significantly reduced at pH 5 but recovered on addition of substrates. The seven-state ordered kinetic model previously proposed for hPEPT1 accounts for the steady-state kinetics of neutral drug and dipeptide transport by hPEPT2. The model also explains the capacitive transients, the striking difference in pre-steady-state behavior between hPEPT2 and hPEPT1, and differences in turnover numbers for Gly-Sar and cefadroxil. No functional differences were found between the common variants hPEPT2*1 and hPEPT2*2.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- Dept. of Physiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., 53-330 CHS, Los Angeles, CA 90095-1751, USA.
| | | | | | | |
Collapse
|
39
|
Li K, Xu L, Kulkarni AA, Perkins DI, Haworth IS, Davies DL. Ethanol inhibits functional activity of the human intestinal dipeptide transporter hPepT1 expressed in Xenopus oocytes. Alcohol Clin Exp Res 2008; 32:777-84. [PMID: 18336632 DOI: 10.1111/j.1530-0277.2008.00636.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The pathological effects of high alcohol (ethanol) consumption on gastrointestinal and hepatic systems are well recognized. However, the effects of ethanol intake on gastric and intestinal absorption and transport systems remain unclear. The present study investigates the effects of ethanol on the human peptide transporter 1 (hPepT1) which mediates the transport of di-and tripeptides as well as several orally administered peptidomimetic drugs such as beta-lactam antibiotics (e.g., penicillin), angiotensin-converting enzyme inhibitors, the anti-neoplastic agent bestatin, and prodrugs of acyclovir. METHODS Xenopus oocytes were injected with hPepT1 cRNA and incubated for 3 to 10 days. Currents induced by glycyl-sarcosine (Gly-Sar), Ala-Ala (dipeptides), penicillin and enalapril measured in the presence or absence of ethanol were determined using an 8-channel 2-electrode voltage clamp system, with a membrane potential of -70 mV and 11 voltage steps of 100 milliseconds (from +50 mV to -150 mV in -20 mV increments). RESULTS Ethanol (200 mM) inhibited Gly-Sar and Ala-Ala currents by 42 and 30%, respectively, with IC(50)s of 184 and 371 mM, respectively. Ethanol reduced maximal transport capacity (I(max)) of hPepT1 for Gly-Sar without affecting Gly-Sar binding affinity (K(0.5) and Hill coefficient). Penicillin- and enalapril-induced currents were significantly less than those induced by dipeptides and were not inhibited by ethanol. CONCLUSION Ethanol significantly reduced transport of dipeptides via a reduction in transport capacity, rather than competing for binding sites in hPepT1. Ethanol inhibition or alteration of transport function may be a primary causative factor contributing to both the nutritional deficits as well as the immunological deficiencies that many alcoholics experience including alcohol liver disease and brain damage.
Collapse
Affiliation(s)
- Kaixun Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Zhu XL, Watanabe K, Shiraishi K, Ueki T, Noda Y, Matsui T, Matsumoto K. Identification of ACE-inhibitory peptides in salt-free soy sauce that are transportable across caco-2 cell monolayers. Peptides 2008; 29:338-44. [PMID: 18160180 DOI: 10.1016/j.peptides.2007.11.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/07/2007] [Accepted: 11/08/2007] [Indexed: 11/27/2022]
Abstract
In present study, we aimed to identify angiotensin I-converting enzyme (ACE)-inhibitory peptides from a salt-free soy sauce (SFS), a newly developed antihypertensive seasoning obtained by Aspergillus oryzae fermentation of soybean in the absence of salt, which can be transported through caco-2 cell monolayers. Through an Ussing transport investigation of SFS across caco-2 cell monolayers, three di-peptides, Ala-Phe, Phe-Ile and Ile-Phe, were successfully identified from the SFS as transportable inhibitory peptides. Ala-Phe and Ile-Phe, but not Phe-Ile, exhibited ACE-inhibitory activity with IC(50) values of 165.3 microM and 65.8 microM, respectively. Kinetic studies revealed that Ile-Phe (Km: 3.1 mM, P(app): 2.4 x 10(-6) cm/s) exhibited greater affinity toward the transport compared with Ala-Phe (K(m): 48.1 mM, P(app): 1.4 x 10(-6) cm/s) and Phe-Ile (K(m): 12.7 mM, P(app): 1.4 x 10(-6) cm/s).
Collapse
Affiliation(s)
- Xiao-Lin Zhu
- Division of Bioscience and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Quirós A, Dávalos A, Lasunción MA, Ramos M, Recio I. Bioavailability of the antihypertensive peptide LHLPLP: Transepithelial flux of HLPLP. Int Dairy J 2008. [DOI: 10.1016/j.idairyj.2007.09.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Biegel A, Gebauer S, Hartrodt B, Knütter I, Neubert K, Brandsch M, Thondorf I. Recognition of 2-aminothiazole-4-acetic acid derivatives by the peptide transporters PEPT1 and PEPT2. Eur J Pharm Sci 2007; 32:69-76. [PMID: 17644326 DOI: 10.1016/j.ejps.2007.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 04/10/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
The H(+)/peptide cotransporters PEPT1 and PEPT2 have gained considerable interest in pharmaceutical sciences as routes for drug delivery. It is, therefore, of interest to develop uncommon artificial substrates for the two carriers. This study was initiated to investigate the binding affinity of 2-aminothiazole-4-acetic acid (ATAA) conjugates with amino acids to PEPT1 and PEPT2. The 2-aminothiazole-4-acetic acid derivatives have been synthesised and tested for their affinity to PEPT1 and PEPT2. The K(i) values were compared with in silico predicted values from CoMSIA models. C-terminal ATAA-Xaa conjugates proved to be low to medium inhibitors of the [(14)C]Gly-Sar uptake at both carrier systems whereas N-terminal Xaa-ATAA conjugates exhibited medium to high affinity. A promising candidate for further functionalisation is Val-ATAA which shows extraordinary high affinity to PEPT1.
Collapse
Affiliation(s)
- Annegret Biegel
- Institute of Biochemistry and Biotechnology, Faculty of Sciences I, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Fujita T, Nakamura K, Yamazaki A, Ozaki M, Sahashi K, Shichijo K, Nomura K, Maeda M, Nakamura T, Fujita T, Yokota S, Kuroyama S, Kumagai Y, Majima M, Ohtani Y. Effect of l-phenylalanine supplementation and a high-protein diet on pharmacokinetics of cefdinir in healthy volunteers: an exploratory study. J Clin Pharm Ther 2007; 32:277-85. [PMID: 17489880 DOI: 10.1111/j.1365-2710.2007.00826.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Upregulation of oligopeptide transport activity by dietary protein, certain dipeptides and amino acids has been reported in the rat intestine and a human intestinal cell line. OBJECTIVE In this study, the pharmacokinetics of cefdinir were investigated after L-phenylalanine supplementation and a high-protein diet (HPD) in humans to explore changes in the activities of intestinal and renal oligopeptide transporters. METHODS A normal-protein diet (NPD, 73.2 +/- 2.6 g/day), NPD + l-phenylalanine (7.5 g/day), or HPD (141.3 +/- 3.7 g/day) was given to six male healthy volunteers for 12 days followed by a single dose of cefdinir after an overnight fast in a randomized three-way crossover study with a 22-day washout. Blood and urine were collected over a 12-h period after administration of cefdinir. Concentrations of cefdinir in plasma and/or urine were measured by high-performance liquid chromatography. RESULTS Plasma concentrations and urinary excretion of the drug did not change throughout the study. Physiological variables and laboratory values did not reveal any differences between the three periods except for serum and urinary nitrogen levels and serum triglyceride. DISCUSSION A reason for the unchanged pharmacokinetics of cefdinir may be due to lower doses of L-phenylalanine and protein in humans than in animals when converting animal effective doses to humans. CONCLUSION In humans, L-phenylalanine supplementation and HPD do not seem to upregulate intestinal and renal oligopeptide transport in the ranges of duration and dose examined.
Collapse
Affiliation(s)
- T Fujita
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tsuji A. Impact of transporter-mediated drug absorption, distribution, elimination and drug interactions in antimicrobial chemotherapy. J Infect Chemother 2006; 12:241-50. [PMID: 17109086 DOI: 10.1007/s10156-006-0478-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Indexed: 01/16/2023]
Abstract
A comprehensive list of drug transporters has recently become available as a result of extensive genome analysis. Membrane transporters play important roles in determining the pharmacokinetic aspects of intestinal absorption, tissue distribution, and the urinary and biliary excretions of a wide variety of therapeutic drugs. The identification and characterization of transporters responsible for the transfer of nutrients and xenobiotics, including drugs, is expected to provide a scientific basis for understanding drug disposition, as well as the molecular mechanisms of drug-drug/drug-food/drug-protein interactions and inter-individual/inter-species differences. This review focuses on the influence of transporters on the pharmacokinetics of beta-lactam antibiotics, new quinolones, and other antimicrobial agents, as well as focusing on the drug-drug interactions associated with transporter-mediated uptake from the small intestine and transporter-mediated elimination from the kidney and liver.
Collapse
Affiliation(s)
- Akira Tsuji
- Department of Molecular Pharmaceutics, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
45
|
Matsui T, Zhu XL, Watanabe K, Tanaka K, Kusano Y, Matsumoto K. Combined administration of captopril with an antihypertensive Val–Tyr di-peptide to spontaneously hypertensive rats attenuates the blood pressure lowering effect. Life Sci 2006; 79:2492-8. [PMID: 16959271 DOI: 10.1016/j.lfs.2006.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/05/2006] [Accepted: 08/15/2006] [Indexed: 11/28/2022]
Abstract
Some di-peptides have been proven to exert an antihypertensive effect in mild-hypertensive subjects. The aim of this study was to clarify whether combined administration of an ACE inhibitor, captopril, with an antihypertensive di-peptide Val-Tyr (VY) would alter their potent antihypertensive effects in spontaneously hypertensive rats (SHRs). Single oral administration of captopril (2.5 mg/kg), VY (25 mg/kg), or captopril (2.5 mg/kg)+VY (25 mg/kg) to 18-week-old male SHRs was performed. Systolic blood pressure (SBP) was measured up to 9 h, and plasma captopril concentrations were determined. A transport study of captopril and/or VY across living rat jejunum from SHRs was also performed to evaluate the kinetics of absorption. Combined administration of captopril with VY failed to lower the BP during the 9-h experiment. A transport study of captopril or VY revealed that VY inhibited captopril transport, and vice versa, in a competitive manner and exhibited an approximately 1/3-fold lower Ki value for captopril compared with that for VY; indicating that both compounds compete for the same membrane transport pathway. A 50% decrease in plasma captopril levels by combined administration with VY supported that the attenuation of the BP lowering effect was due to inhibition of captopril uptake by VY. Consequently, our findings suggest that subjects treated with ACE inhibitors for hypertension should avoid combined-intake with antihypertensive foods that are rich in small peptides due to the competitive inhibition of drug uptake by these peptides.
Collapse
Affiliation(s)
- Toshiro Matsui
- Division of Bioscience and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 812-8581, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Biegel A, Knütter I, Hartrodt B, Gebauer S, Theis S, Luckner P, Kottra G, Rastetter M, Zebisch K, Thondorf I, Daniel H, Neubert K, Brandsch M. The renal type H+/peptide symporter PEPT2: structure-affinity relationships. Amino Acids 2006; 31:137-56. [PMID: 16868651 DOI: 10.1007/s00726-006-0331-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 01/04/2006] [Indexed: 10/24/2022]
Abstract
The H(+)/peptide cotransporter PEPT2 is expressed in a variety of organs including kidney, lung, brain, mammary gland, and eye. PEPT2 substrates are di- and tripeptides as well as peptidomimetics, such as beta-lactam antibiotics. Due to the presence of PEPT2 at the bronchial epithelium, the aerosolic administration of peptide-like drugs might play a major role in future treatment of various pulmonary and systemic diseases. Moreover, PEPT2 has a significant influence on the in vivo disposition and half-life time of peptide-like drugs within the body, particularly in kidney and brain. PEPT2 is known to have similar but not identical structural requirements for substrate recognition and transport compared to PEPT1, its intestinal counterpart. In this review we compiled available affinity constants of 352 compounds, measured at different mammalian tissues and expression systems and compare the data whenever possible with those of PEPT1.
Collapse
Affiliation(s)
- A Biegel
- Institute of Biochemistry, Department of Biochemistry/Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu L, Cui Y, Chung AY, Shitara Y, Sugiyama Y, Keppler D, Pang KS. Vectorial transport of enalapril by Oatp1a1/Mrp2 and OATP1B1 and OATP1B3/MRP2 in rat and human livers. J Pharmacol Exp Ther 2006; 318:395-402. [PMID: 16627748 DOI: 10.1124/jpet.106.103390] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although Oatp1a1 (rat organic anion-transporting polypeptide 1a1) was the transporter found responsible for the hepatocellular entry of enalapril (EN) into the rat liver, the canalicular transporter involved for excretion of EN and the metabolite, enalaprilat (ENA), was unknown. The Eisai hyperbilirubinemic rat (EHBR) that lacks Mrp2 (multidrug resistance-associated protein 2) was used to appraise the role of Mrp2 in the excretion of [3H]EN and its metabolite [3H]ENA in single-pass rat liver preparations. Although the total and metabolic clearances and hepatic extraction ratios at steady-state were virtually unaltered for EN in EHBR compared with published values of Sprague-Dawley rats, the biliary clearances of EN and ENA were significantly reduced almost to zero (P<0.05). Involvement of human OATP1B1, OATP1B3, and MRP2 in EN transport was further assessed in single- or double-transfected mammalian cells. Human embryonic kidney 293 cells that expressed OATP1B1 or OATP1B3 showed that OATP1B3 transport of EN (20-500 microM) was of low affinity, whereas transport of EN by OATP1B1 was associated with the Km of 262+/-35 microM, a value similar to that for Oatp1a1 (214 microM). The transcellular transport of EN via human OATP1B1 and MRP2, investigated with the double-transfected Madin-Darby canine kidney (MDCK) II cells in the Transwell system, showed that the sinusoidal to canalicular flux of EN in the OATP1B1/MRP2/MDCK cells was significantly higher (P<0.05) than that of mock/MDCK and OATP1B1/MDCK cells. EN was transported by Oatp1a1 and Mrp2 in rats and OATP1B1/OATP1B3 and MRP2 in humans.
Collapse
Affiliation(s)
- Lichuan Liu
- Department of Pharmaceutical Sciences, University of Toronto, 19 Russell Street, Toronto, ON, Canada M5S 2S2, and Division of Tumor Biochemistry, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Sala-Rabanal M, Loo DDF, Hirayama BA, Turk E, Wright EM. Molecular interactions between dipeptides, drugs and the human intestinal H+ -oligopeptide cotransporter hPEPT1. J Physiol 2006; 574:149-66. [PMID: 16627568 PMCID: PMC1817799 DOI: 10.1113/jphysiol.2006.107904] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 04/13/2006] [Indexed: 11/08/2022] Open
Abstract
The human intestinal proton-coupled oligopeptide transporter hPEPT1 has been implicated in the absorption of pharmacologically active compounds. We have investigated the interactions between a comprehensive selection of drugs, and wild-type and variant hPEPT1s expressed in Xenopus oocytes, using radiotracer uptake and electrophysiological methods. The beta-lactam antibiotics ampicillin, amoxicillin, cephalexin and cefadroxil, the antineoplastics delta-aminolevulinic acid (delta-ALA) and bestatin, and the neuropeptide N-acetyl-Asp-Glu (NAAG), were transported, as judged by their ability to evoke inward currents. When the drugs were added in the presence of the typical substrate glycylsarcosine (Gly-Sar), the inward currents were equal or less than that induced by Gly-Sar alone. This suggests that the drugs are transported at a lower turnover rate than Gly-Sar, but may also point towards complex interactions between dipeptides, drugs and the transporter. Gly-Sar and the drugs also modified the kinetics of hPEPT1 presteady-state charge movement, by causing a reduction in maximum charge (Qmax) and a shift of the midpoint voltage (V0.5) to more negative potentials. Our results indicate that the substrate selectivity of hPEPT1 is: Gly-Sar > NAAG, delta-ALA, bestatin > cefadroxil, cephalexin > ampicillin, amoxicillin. Based on steady-state and presteady-state analysis of Gly-Sar and cefadroxil transport, we proposed an extension of the 6-state kinetic model for hPEPT1 function that globally accounts for the observed presteady-state and steady-state kinetics of neutral dipeptide and drug transport. Our model suggests that, under saturating conditions, the rate-limiting step of the hPEPT1 transport cycle is the reorientation of the empty carrier within the membrane. Variations in rates of drug cotransport are predicted to be due to differences in affinity and turnover rate. Oral availability of drugs may be reduced in the presence of physiological concentrations of dietary dipeptides in the gut, suggesting that oral delivery drugs should be taken on an empty stomach. The common hPEPT1 single-nucleotide polymorphisms Ser117Asn and Gly419Ala retained the essential kinetic and drug recognition characteristics of the wild type, suggesting that neither variant is likely to have a major impact on oral absorption of drugs.
Collapse
Affiliation(s)
- Monica Sala-Rabanal
- Department of Physiology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, 53-330 CHS, Los Angeles, California 90095-1751, USA.
| | | | | | | | | |
Collapse
|
49
|
Rodriguez L, Batlle A, Di Venosa G, MacRobert AJ, Battah S, Daniel H, Casas A. Study of the mechanisms of uptake of 5-aminolevulinic acid derivatives by PEPT1 and PEPT2 transporters as a tool to improve photodynamic therapy of tumours. Int J Biochem Cell Biol 2006; 38:1530-9. [PMID: 16632403 DOI: 10.1016/j.biocel.2006.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 11/22/2022]
Abstract
Endogenous porphyrin accumulation after administration of 5-aminolevulinic acid is employed in photodynamic therapy of tumours. Due to its low membrane permeability, esterified 5-aminolevulinic acid derivatives less hydrophilic than the parental compound are under investigation. Knowledge of the mechanisms of 5-aminolevulinic acid derivatives uptake into target cells is essential to understand and improve photodynamic therapy and useful in the design of new derivatives with better affinity and with higher selectivity for tumour cells in specific tissues. The aim of this work was to assess the interaction of 5-aminolevulinic acid derivatives with the intestinal PEPT1 and renal transporter PEPT2 expressed in Pichia pastoris yeasts. We found that Undecanoyl, Hexyl, Methyl and 2-(hydroxymethyl)tetrahydropyranyl 5-aminolevulinic acid esters and the dendron 3m-ALA inhibited (14)C-5-aminolevulinic acid uptake by PEPT2. However, only the Undecanoyl ester inhibited 5-aminolevulinic acid uptake by PEPT1. We have also found through a new developed colorimetric method, that Hexyl and 2-(hydroxymethyl)tetrahydropyranyl 5-aminolevulinic acid esters display more affinity than 5-aminolevulinic acid for PEPT2 whereas none of the compounds surpass 5-aminolevulinic acid affinity for PEPT1. In addition, the Undecanoyl ester binds with high affinity to the membranes of PEPT2 and PEPT1-expressing yeasts and to the control yeasts. The main finding of this work was that some derivatives have the potential to improve 5-aminolevulinic acid-based photodynamic therapy by increased efficiency of transport into cells expressing PEPT2 such as kidney, mammary gland, brain or lung whereas in tissues expressing exclusively PEPT1 the parent 5-aminolevulinic acid remains the compound of choice.
Collapse
Affiliation(s)
- Lorena Rodriguez
- Centro de Investigaciones sobre Porfirinas y Porfirias, CONICET and Hospital de Clínicas José de San Martín, University of Buenos Aires, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires, CP 1120AAF, Argentina
| | | | | | | | | | | | | |
Collapse
|
50
|
Romano A, Kottra G, Barca A, Tiso N, Maffia M, Argenton F, Daniel H, Storelli C, Verri T. High-affinity peptide transporter PEPT2 (SLC15A2) of the zebrafish Danio rerio: functional properties, genomic organization, and expression analysis. Physiol Genomics 2005; 24:207-17. [PMID: 16317081 DOI: 10.1152/physiolgenomics.00227.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Solute carrier 15 (SLC15) membrane proteins PEPT1 (SLC15A1) and PEPT2 (SLC15A2) have been described in great detail in mammals. In contrast, information in lower vertebrates is limited. We characterized the functional properties of a novel zebrafish peptide transporter orthologous to mammalian and avian PEPT2, described its gene (pept2) structure, and determined mRNA tissue distribution. An expressed sequence tag (EST) cDNA (Integrated Molecular Analysis of Gene Expression; IMAGE) corresponding to zebrafish pept2 was completed by inserting a stretch of 75 missing nucleotides in the coding sequence to obtain a 3,238-bp functional clone. The complete open reading frame (ORF) was 2,160 bp and encoded a 719-amino acid protein. Electrophysiological analysis after cRNA injection in Xenopus laevis oocytes suggested that zebrafish PEPT2 is a high-affinity/low-capacity transporter (K(0.5) for glycyl-L-glutamine approximately 18 microM at -120 mV and pH 7.5). Zebrafish pept2 gene was 19,435 kb, thus being the shortest vertebrate pept2 fully characterized so far. Also, zebrafish pept2 exhibited 23 exons and 22 introns, whereas human and rodent pept2 genes contain 22 exons and 21 introns only. Zebrafish pept2 mRNA was mainly detected in brain, kidney, gut, and, interestingly, otic vesicle, the embryonic structure that develops into the auditory/vestibular organ, homolog to the higher vertebrate inner ear, of the adult fish. Characterization of zebrafish pept2 will contribute to the investigation of peptide transporters using a well-established genetic model and will allow the elucidation of the evolutionary and functional relationships among vertebrate peptide transporters. Moreover, it can represent a useful marker to screen mutations that affect choroid plexus and inner ear development.
Collapse
Affiliation(s)
- Alessandro Romano
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Lecce, Lecce, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|