1
|
Pekkarinen HM, Karkamo VK, Vainio-Siukola KJ, Hautaniemi MK, Kinnunen PM, Gadd TK, Holopainen RH. Post-vaccinal distemper-like disease in two dog litters with confirmed infection of vaccine virus strain. Comp Immunol Microbiol Infect Dis 2024; 105:102114. [PMID: 38142559 DOI: 10.1016/j.cimid.2023.102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Modified live canine distemper virus (CDV) vaccines are widely used and considered both safe and effective. Although there are occasional literature reports of suspected vaccine-induced disease, there are none where the vaccine strain has been identified in affected tissues. Here we describe two such cases in different litters. In litter A, five of ten puppies presented with fever, anorexia, vomiting, and diarrhea a few days post-vaccination. Four puppies died or were euthanized, and autopsy revealed atypical necrosis of the lymphoid tissue. In litter B, two of five puppies developed typical neurological signs some months post-vaccination and autopsy revealed encephalitis. In all cases, affected organs tested positive for CDV on immunohistochemistry, and CDV RNA extracted from the lesions confirmed the presence of vaccine strain. Since multiple puppies from each litter were affected, it cannot be excluded without further studies that some undiagnosed inherited immunodeficiency disorder may have been involved.
Collapse
Affiliation(s)
| | - Veera K Karkamo
- Finnish Food Authority, Mustialankatu 3, FI-00790 Helsinki, Finland
| | | | | | - Paula M Kinnunen
- MSD Animal Health Finland, Keilaniementie 1, FI-02150 Espoo, Finland
| | - Tuija K Gadd
- Finnish Food Authority, Mustialankatu 3, FI-00790 Helsinki, Finland
| | | |
Collapse
|
2
|
Freitas LA, Leme RA, Saporiti V, Alfieri AA, Alfieri AF. Molecular analysis of the full-length F gene of Brazilian strains of canine distemper virus shows lineage co-circulation and variability between field and vaccine strains. Virus Res 2019; 264:8-15. [PMID: 30794894 DOI: 10.1016/j.virusres.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 02/18/2019] [Indexed: 11/16/2022]
Abstract
Canine distemper is a highly contagious systemic viral disease, with worldwide distribution that affects a wide variety of terrestrial carnivores. This study characterized full-length fusion (F) genes from 15 Brazilian wild-type canine distemper virus (CDV) strains collected between 2003-2004 (n = 6) and 2013-2016 (n = 9). Using deduced amino acid (aa) sequence analysis, 14 strains were classified into Europe 1/South America 1 (EU1/SA1) lineage, with a temporal clustering into past (2003-2004) and contemporary (2013-2016) strains. One strain clustered to Rockborn-like lineage, showing high similarity (98.5%) with the Rockborn vaccine strain. In analyzed strains, the fusion protein signal-peptide (Fsp) coding region was highly variable at the aa level (67.4%-96.2%). The Brazilian strains were more Fsp-divergent from the North America 1 (NA1) strains (24.5%-36.3%) than from the Rockborn (11.2%-14.9%) vaccine strain. Seventeen cysteine residues in the full-length F gene and four non-conserved glycosylation sites in the Fsp region were detected. The results reveal that past and contemporary CDV strains are currently co-circulating. This first analysis of full-length F genes from Brazilian wild-type CDV strains contributes to knowledge of molecular epidemiology of CDV viral infection and evolution.
Collapse
Affiliation(s)
- Luana Almeida Freitas
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid - Campus Universitário, CEP 86057-970 - Londrina, PO Box 10011, Paraná, Brazil
| | - Raquel Arruda Leme
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid - Campus Universitário, CEP 86057-970 - Londrina, PO Box 10011, Paraná, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid - Campus Universitário, CEP 86057-970 - Londrina, PO Box 10011, Paraná, Brazil
| | - Viviane Saporiti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid - Campus Universitário, CEP 86057-970 - Londrina, PO Box 10011, Paraná, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid - Campus Universitário, CEP 86057-970 - Londrina, PO Box 10011, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid - Campus Universitário, CEP 86057-970 - Londrina, PO Box 10011, Paraná, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid - Campus Universitário, CEP 86057-970 - Londrina, PO Box 10011, Paraná, Brazil.
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid - Campus Universitário, CEP 86057-970 - Londrina, PO Box 10011, Paraná, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina. Rodovia Celso Garcia Cid - Campus Universitário, CEP 86057-970 - Londrina, PO Box 10011, Paraná, Brazil
| |
Collapse
|
3
|
Gil H, Fernández-García A, Mosquera MM, Hübschen JM, Castellanos AM, de Ory F, Masa-Calles J, Echevarría JE. Measles virus genotype D4 strains with non-standard length M-F non-coding region circulated during the major outbreaks of 2011-2012 in Spain. PLoS One 2018; 13:e0199975. [PMID: 30011283 PMCID: PMC6047782 DOI: 10.1371/journal.pone.0199975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/18/2018] [Indexed: 11/19/2022] Open
Abstract
In recent decades, vaccination has substantially reduced the number of measles cases to levels close to the elimination stage. However, major measles outbreaks occurred in Europe during 2010-2012, after the introduction of the D4-Enfield lineage. We have performed a molecular characterization of 75 measles virus genotype D4 strains from patients infected in Spain between 2004 and 2012 by sequencing the N-450 region and the M-F non-coding region (M-F NCR) in order to identify genetic features of these viruses. The analysis of the N-450 region confirmed that all samples obtained since 2008 belonged to variants or sets of identical sequences of the D4-Enfield lineage, including a new one named MVs/Madrid.ESP/46.10/. Analysis of the M-F NCR showed insertions and deletions associated with previously described, uncommon non-standard genome length measles viruses. This genetic feature was identified in the D4-Enfield lineage viruses, but not in the other D4 viruses that were circulating in Spain before 2008, suggesting that these non-standard length M-F NCR sequences are characteristic of the D4-Enfield lineage. The results of the phylogenetic analysis of Spanish M-F NCRs suggest higher resolution in discriminating strains than did the N-450 analysis. In addition, the results of the analysis of the M-F NCR on the MVs/Madrid.ESP/46.10/ sub-lineage seem to support the potential utility of this region as a tool for epidemiological surveillance complementary to the N-450 region, as previously suggested. Further investigation on this question, as well as the surveillance of new potentially emerging strains with non-standard length M-F NCR are strongly recommended as part of future strategies for measles elimination.
Collapse
Affiliation(s)
- Horacio Gil
- National Reference Laboratory for Measles and Rubella, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Aurora Fernández-García
- National Reference Laboratory for Measles and Rubella, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- * E-mail:
| | - María Mar Mosquera
- National Reference Laboratory for Measles and Rubella, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Judith M. Hübschen
- WHO European Regional Reference Laboratory for Measles and Rubella, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ana M. Castellanos
- National Reference Laboratory for Measles and Rubella, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Fernando de Ory
- National Reference Laboratory for Measles and Rubella, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Josefa Masa-Calles
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan E. Echevarría
- National Reference Laboratory for Measles and Rubella, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Beineke A, Baumgärtner W, Wohlsein P. Cross-species transmission of canine distemper virus-an update. One Health 2015; 1:49-59. [PMID: 28616465 PMCID: PMC5462633 DOI: 10.1016/j.onehlt.2015.09.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/13/2023] Open
Abstract
Canine distemper virus (CDV) is a pantropic morbillivirus with a worldwide distribution, which causes fatal disease in dogs. Affected animals develop dyspnea, diarrhea, neurological signs and profound immunosuppression. Systemic CDV infection, resembling distemper in domestic dogs, can be found also in wild canids (e.g. wolves, foxes), procyonids (e.g. raccoons, kinkajous), ailurids (e.g. red pandas), ursids (e.g. black bears, giant pandas), mustelids (e.g. ferrets, minks), viverrids (e.g. civets, genets), hyaenids (e.g. spotted hyenas), and large felids (e.g. lions, tigers). Furthermore, besides infection with the closely related phocine distemper virus, seals can become infected by CDV. In some CDV outbreaks including the mass mortalities among Baikal and Caspian seals and large felids in the Serengeti Park, terrestrial carnivores including dogs and wolves have been suspected as vectors for the infectious agent. In addition, lethal infections have been described in non-carnivore species such as peccaries and non-human primates demonstrating the remarkable ability of the pathogen to cross species barriers. Mutations affecting the CDV H protein required for virus attachment to host-cell receptors are associated with virulence and disease emergence in novel host species. The broad and expanding host range of CDV and its maintenance within wildlife reservoir hosts considerably hampers disease eradication.
Collapse
Affiliation(s)
- Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hanover, Germany
| |
Collapse
|
5
|
Wilkes RP, Sanchez E, Riley MC, Kennedy MA. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains. J Vet Diagn Invest 2014; 26:27-34. [PMID: 24532693 DOI: 10.1177/1040638713517232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.
Collapse
Affiliation(s)
- Rebecca P Wilkes
- 1Rebecca P. Wilkes, 2407 River Drive, Room A205, Knoxville, TN 37996.
| | | | | | | |
Collapse
|
6
|
Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S, Chaubey KK, Ly H. Peste des petits ruminants virus infection of small ruminants: a comprehensive review. Viruses 2014; 6:2287-327. [PMID: 24915458 PMCID: PMC4074929 DOI: 10.3390/v6062287] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/14/2022] Open
Abstract
Peste des petits ruminants (PPR) is caused by a Morbillivirus that belongs to the family Paramyxoviridae. PPR is an acute, highly contagious and fatal disease primarily affecting goats and sheep, whereas cattle undergo sub-clinical infection. With morbidity and mortality rates that can be as high as 90%, PPR is classified as an OIE (Office International des Epizooties)-listed disease. Considering the importance of sheep and goats in the livelihood of the poor and marginal farmers in Africa and South Asia, PPR is an important concern for food security and poverty alleviation. PPR virus (PPRV) and rinderpest virus (RPV) are closely related Morbilliviruses. Rinderpest has been globally eradicated by mass vaccination. Though a live attenuated vaccine is available against PPR for immunoprophylaxis, due to its instability in subtropical climate (thermo-sensitivity), unavailability of required doses and insufficient coverage (herd immunity), the disease control program has not been a great success. Further, emerging evidence of poor cross neutralization between vaccine strain and PPRV strains currently circulating in the field has raised concerns about the protective efficacy of the existing PPR vaccines. This review summarizes the recent advancement in PPRV replication, its pathogenesis, immune response to vaccine and disease control. Attempts have also been made to highlight the current trends in understanding the host susceptibility and resistance to PPR.
Collapse
Affiliation(s)
- Naveen Kumar
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Sunil Maherchandani
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Sudhir Kumar Kashyap
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan 334001, India.
| | - Shoor Vir Singh
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004, India.
| | - Kundan Kumar Chaubey
- Virology Laboratory, Division of Animal Health, Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, UP 281122, India.
| | - Hinh Ly
- Veterinary and Biomedical Sciences Department, University of Minnesota, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA.
| |
Collapse
|
7
|
Sarute N, Pérez R, Aldaz J, Alfieri AA, Alfieri AF, Name D, Llanes J, Hernández M, Francia L, Panzera Y. Molecular typing of canine distemper virus strains reveals the presence of a new genetic variant in South America. Virus Genes 2014; 48:474-8. [PMID: 24647552 DOI: 10.1007/s11262-014-1054-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/03/2014] [Indexed: 11/29/2022]
Abstract
Canine distemper virus (CDV, Paramyxoviridae, Morbillivirus) is the causative agent of a severe infectious disease affecting terrestrial and marine carnivores worldwide. Phylogenetic relationships and the genetic variability of the hemagglutinin (H) protein and the fusion protein signal-peptide (Fsp) allow for the classification of field strains into genetic lineages. Currently, there are nine CDV lineages worldwide, two of them co-circulating in South America. Using the Fsp-coding region, we analyzed the genetic variability of strains from Uruguay, Brazil, and Ecuador, and compared them with those described previously in South America and other geographical areas. The results revealed that the Brazilian and Uruguayan strains belong to the already described South America lineage (EU1/SA1), whereas the Ecuadorian strains cluster in a new clade, here named South America 3, which may represent the third CDV lineage described in South America.
Collapse
Affiliation(s)
- Nicolás Sarute
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chulakasian S, Chang TJ, Tsai CH, Wong ML, Hsu WL. Translational enhancing activity in 5' UTR of peste des petits ruminants virus fusion gene. FEBS J 2013; 280:1237-48. [PMID: 23289829 DOI: 10.1111/febs.12115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 12/27/2012] [Accepted: 01/01/2013] [Indexed: 12/27/2022]
Abstract
The fusion gene of peste des petits ruminants virus (PPRV-F), a paramyxovirus, contains an unusual long 5' untranslated region (5' UTR) with a high GC content that is capable of folding into secondary structure proximally to the 5' cap. Sequence analysis further suggested that the proximal end of this UTR contains a nine-nucleotide sequence which could perfectly complement the 18S rRNA and might affect translation through mRNA-rRNA interaction. Based on these features, we examined the functional role of the proximal PPRV-F 5' UTR on translational efficiency compared with two other morbilliviruses. From reporter gene assays, PPRV-F 5' UTR functioned as a strong enhancer of translational efficiency independent of cell and gene specificity. Northern blot analysis of the accumulative RNA levels and mRNA stability suggested that elevated gene expression driven by PPRV-F 5' UTR was accompanied by an increased mRNA level and enhanced mRNA stability. Deletion analysis identified the complementary sequence and distal nucleotides necessary for the enhancing activity, and results suggest RNA structural conformation is important. Taken together, we conclude that the proximal PPRV-F 5' UTR functions as a translational enhancer by promoting translation efficiency and mRNA stability.
Collapse
Affiliation(s)
- Songkhla Chulakasian
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Anderson DE, Castan A, Bisaillon M, von Messling V. Elements in the canine distemper virus M 3' UTR contribute to control of replication efficiency and virulence. PLoS One 2012; 7:e31561. [PMID: 22348107 PMCID: PMC3278443 DOI: 10.1371/journal.pone.0031561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/13/2012] [Indexed: 01/23/2023] Open
Abstract
Canine distemper virus (CDV) is a negative-sense, single-stranded RNA virus within the genus Morbillivirus and the family Paramyxoviridae. The Morbillivirus genome is composed of six transcriptional units that are separated by untranslated regions (UTRs), which are relatively uniform in length, with the exception of the UTR between the matrix (M) and fusion (F) genes. This UTR is at least three times longer and in the case of CDV also highly variable. Exchange of the M-F region between different CDV strains did not affect virulence or disease phenotype, demonstrating that this region is functionally interchangeable. Viruses carrying the deletions in the M 3' UTR replicated more efficiently, which correlated with a reduction of virulence, suggesting that overall length as well as specific sequence motifs distributed throughout the region contribute to virulence.
Collapse
Affiliation(s)
- Danielle E. Anderson
- INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
- Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Alexandre Castan
- INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
| | | | - Veronika von Messling
- INRS-Institut Armand-Frappier, University of Quebec, Laval, Quebec, Canada
- Emerging Infectious Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
10
|
Goller KV, Fyumagwa RD, Nikolin V, East ML, Kilewo M, Speck S, Müller T, Matzke M, Wibbelt G. Fatal canine distemper infection in a pack of African wild dogs in the Serengeti ecosystem, Tanzania. Vet Microbiol 2010; 146:245-52. [DOI: 10.1016/j.vetmic.2010.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 11/28/2022]
|
11
|
Chulakasian S, Lee MS, Wang CY, Chiou SS, Lin KH, Lin FY, Hsu TH, Wong ML, Chang TJ, Hsu WL. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus. Virol J 2010; 7:122. [PMID: 20534175 PMCID: PMC2907576 DOI: 10.1186/1743-422x-7-122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 06/10/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine distemper virus (CDV) is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hence, it is worthy of developing a simple and rapid nucleotide-based assay for differentiation of wild-type CDV which is a cause of disease from attenuated CDVs after vaccination. High frequency variations have been found in the region spanning from the 3'-untranslated region (UTR) of the matrix (M) gene to the fusion (F) gene (designated M-F UTR) in a few CDV strains. To establish a differential diagnosis assay, an amplification refractory mutation analysis was established based on the highly variable region on M-F UTR and F regions. RESULTS Sequences of frequent polymorphisms were found scattered throughout the M-F UTR region; the identity of nucleic acid between local strains and vaccine strains ranged from 82.5% to 93.8%. A track of AAA residue located 35 nucleotides downstream from F gene start codon highly conserved in three vaccine strains were replaced with TGC in the local strains; that severed as target sequences for deign of discrimination primers. The method established in the present study successfully differentiated seven Taiwanese CDV field isolates, all belonging to the Asia-1 lineage, from vaccine strains. CONCLUSIONS The method described herein would be useful for several clinical applications, such as confirmation of nature CDV infection, evaluation of vaccination status and verification of the circulating viral genotypes.
Collapse
Affiliation(s)
- Songkhla Chulakasian
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 250 Kou Kuang Road, Taichung 402, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol 2008; 82:10510-8. [PMID: 18753197 DOI: 10.1128/jvi.01419-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Morbilliviruses, including measles and canine distemper virus (CDV), are nonsegmented, negative-stranded RNA viruses that cause severe diseases in humans and animals. The transcriptional units in their genomes are separated by untranslated regions (UTRs), which contain essential transcription and translation signals. Due to its increased length, the region between the matrix (M) protein and fusion (F) protein open reading frames is of particular interest. In measles virus, the entire F 5' region is untranslated, while several start codons are found in most other morbilliviruses, resulting in a long F protein signal peptide (Fsp). To characterize the role of this region in morbillivirus pathogenesis, we constructed recombinant CDVs, in which either the M-F UTR was replaced with that between the nucleocapsid (N) and phosphoprotein (P) genes, or 106 Fsp residues were deleted. The Fsp deletion alone had no effect in vitro and in vivo. In contrast, substitution of the UTR was associated with a slight increase in F gene and protein expression. Animals infected with this virus either recovered completely or experienced prolonged disease and death due to neuroinvasion. The combination of both changes resulted in a virus with strongly increased F gene and protein expression and complete attenuation. Taken together, our results provide evidence that the region between the morbillivirus M and F genes modulates virulence through transcriptional control of the F gene expression.
Collapse
|
13
|
Borges MB, Caride E, Jabor AV, Malachias JMN, Freire MS, Homma A, Galler R. Study of the genetic stability of measles virus CAM-70 vaccine strain after serial passages in chicken embryo fibroblasts primary cultures. Virus Genes 2007; 36:35-44. [PMID: 18040767 DOI: 10.1007/s11262-007-0173-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 10/31/2007] [Indexed: 11/28/2022]
Abstract
To evaluate the genetic stability of the CAM-70 measles vaccine strain we have performed 10 serial passages of the seed lot virus FMS-7 in chicken embryo fibroblasts primary cultures (CEF) under production conditions. The nucleotide sequences of the seed lot virus, the virus from a vaccine vial (third passage) and from the 10th passage were determined and compared with each other and with sequences from other sources. The full genome analysis of the CAM-70 vaccine still considers it as the most divergent among all vaccine strains. The nucleotide sequence analyses of viral genomes from the three CAM-70 passage levels have demonstrated that they are identical. This study shows that the measles CAM-70 vaccine virus is highly adapted to its cultivation conditions and that its genetic stability contributes, in part, to the safety profile of the vaccine.
Collapse
Affiliation(s)
- Maria Beatriz Borges
- Bio-Manguinhos, Fundação Oswaldo Cruz, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil.
| | | | | | | | | | | | | |
Collapse
|
14
|
Baricevic M, Forcic D, Santak M, Mazuran R. A comparison of complete untranslated regions of measles virus genomes derived from wild-type viruses and SSPE brain tissues. Virus Genes 2006; 35:17-27. [PMID: 17039408 DOI: 10.1007/s11262-006-0035-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
We compared complete untranslated regions (UTRs) of two subacute sclerosing panencephalitis (SSPE) measles virus (MV) strains and two wild-type (wt) MV strains, all belonging to the same genotype (D6). In comparison to wt MVs of the same genotype, base changes were identified in the two SSPE measles virus strains at 27 and 33 noncoding positions, respectively. Majority of these residues are unique for each of the SSPE virus sequences in comparison to all other reported measles virus strain sequences. The location of some of these changes indicates that they may modify cis-acting regulatory sequences including gene-end signal of the P gene, H/L gene junction and Kozak consensus element of the L gene. Further, within the long UTR between M and F genes, deletions and insertions were identified. Thus, our study could be significant for additional investigation using reverse genetics and recombinant viruses, of possible influence of mutations in UTRs on establishment and maintenance of chronic progressive CNS disease caused by MV persistence.
Collapse
Affiliation(s)
- Marijana Baricevic
- Molecular Biomedicine Unit, Institute of Immunology Inc.,, Rockefeller street 10, 10000, Zagreb, Croatia
| | | | | | | |
Collapse
|
15
|
Takeda M, Ohno S, Seki F, Nakatsu Y, Tahara M, Yanagi Y. Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J Virol 2006; 79:14346-54. [PMID: 16254369 PMCID: PMC1280205 DOI: 10.1128/jvi.79.22.14346-14354.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles is still a major cause of mortality mainly in developing countries. The causative agent, measles virus (MeV), is an enveloped virus having a nonsegmented negative-sense RNA genome, and belongs to the genus Morbillivirus of the family Paramyxoviridae. One feature of the moribillivirus genomes is that the M and F genes have long untranslated regions (UTRs). The M and F mRNAs of MeV have 426-nucleotide-long 3' and 583-nucleotide-long 5' UTRs, respectively. Though these long UTRs occupy as much as approximately 6.4% of the virus genome, their function remains unknown. To elucidate the role of the long UTRs in the context of virus infection, we used the reverse genetics based on the virulent strain of MeV, and generated a series of recombinant viruses having alterations or deletions in the long UTRs. Our results showed that these long UTRs per se were not essential for MeV replication, but that they regulated MeV replication and cytopathogenicity by modulating the productions of the M and F proteins. The long 3' UTR of the M mRNA was shown to have the ability to increase the M protein production, promoting virus replication. On the other hand, the long 5' UTR of the F mRNA was found to possess the capacity to decrease the F protein production, inhibiting virus replication and yet greatly reducing cytopathogenicity. We speculate that the reduction in cytopathogenicity may be advantageous for MeV fitness and survival in nature.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Pardo IDR, Johnson GC, Kleiboeker SB. Phylogenetic characterization of canine distemper viruses detected in naturally infected dogs in North America. J Clin Microbiol 2005; 43:5009-17. [PMID: 16207955 PMCID: PMC1248462 DOI: 10.1128/jcm.43.10.5009-5017.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In 2004, six puppies and one adult dog from a total of four premises were subjected to necropsy evaluation. For five of the seven dogs, disease caused by canine distemper virus (CDV) infection was suspected based on clinical signs. In all of the dogs, a diagnosis of CDV infection was established by the presence of compatible gross and histologic lesions, immunohistochemical labeling for CDV antigen, and detection of CDV RNA by reverse transcription-PCR. To further characterize the CDV strains detected in the four cases, complete gene sequences were determined for the hemagglutinin (H) and fusion (F) protein genes, while partial gene sequencing was performed for the phosphoprotein gene. A total of 4,508 bases were sequenced for the CDV strains detected from each of the four cases. Two cases were found to have identical sequences except for 2 bases in the intergenic region of the F and H genes. Phylogenetic analysis strongly suggested an evolutionary relationship between sequences detected in these two cases and those of phocine distemper virus 2 and two other strains of CDV not previously detected in the continental United States. Clear phylogenetic relationships were not established for viruses detected in the two additional cases; however, one strain showed similarity to CDV strains detected in a panda from China. Importantly, the three CDV strains detected were demonstrated to be genetically distinct from known vaccine strains and strains previously reported in the continental United States.
Collapse
Affiliation(s)
- Ingrid D R Pardo
- Veterinary Medical Diagnostic Laboratory, Department of Veterinary Pathobiology, University of Missouri, 1600 E. Rollins, Columbia, MO 65211, USA
| | | | | |
Collapse
|
17
|
Bailey D, Banyard A, Dash P, Ozkul A, Barrett T. Full genome sequence of peste des petits ruminants virus, a member of the Morbillivirus genus. Virus Res 2005; 110:119-24. [PMID: 15845262 DOI: 10.1016/j.virusres.2005.01.013] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 01/25/2005] [Accepted: 01/25/2005] [Indexed: 11/17/2022]
Abstract
Peste des petits ruminants virus (PPRV) causes an acute febrile illness in small ruminant species, mostly sheep and goats. PPRV is a member of the Morbillivirus genus which includes measles, rinderpest (cattle plague), canine distemper, phocine distemper and the morbilliviruses found in whales, porpoises and dolphins. Full length genome sequences for these morbilliviruses are available and reverse genetic rescue systems have been developed for the viruses of terrestrial mammals, with the exception of PPRV. This paper presents the first published full length genome sequence for PPRV. The genome was found to be consistent with the rule-of-six and open reading frames (ORFs) were identified that encoded the eight proteins characteristic of morbilliviruses. At the nucleotide (nt) level, the full length genome of PPRV was most similar to that of rinderpest, the other ruminant morbillivirus. However, at the protein level five of the six structural proteins and the V protein showed a greater similarity to the dolphin morbillivirus (DMV) while only the C and L proteins showed a high relationship to rinderpest.
Collapse
Affiliation(s)
- Dalan Bailey
- Pirbright Laboratory, Institute for Animal Health, Ash Road, Woking, Surrey GU24 ONF, UK
| | | | | | | | | |
Collapse
|
18
|
Lednicky JA, Dubach J, Kinsel MJ, Meehan TP, Bocchetta M, Hungerford LL, Sarich NA, Witecki KE, Braid MD, Pedrak C, Houde CM. Genetically distant American Canine distemper virus lineages have recently caused epizootics with somewhat different characteristics in raccoons living around a large suburban zoo in the USA. Virol J 2004; 1:2. [PMID: 15507154 PMCID: PMC524033 DOI: 10.1186/1743-422x-1-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 09/02/2004] [Indexed: 11/16/2022] Open
Abstract
Background Mortality rates have differed during distemper outbreaks among free-ranging raccoons (Procyon lotor) living around a large Chicago-area zoo, and appeared higher in year 2001 than in 1998 and 2000. We hypothesized that a more lethal variant of the local Canine distemper virus (CDV) lineage had emerged in 2001, and sought the genetic basis that led to increased virulence. However, a more complex model surfaced during preliminary analyses of CDV genomic sequences in infected tissues and of virus isolated in vitro from the raccoons. Results Phylogenetic analyses of subgenomic CDV fusion (F) -, phosphoprotein (P) -, and complete hemagglutinin (H) – gene sequences indicated that distinct American CDV lineages caused the distemper epizootics. The 1998 outbreak was caused by viruses that are likely from an old CDV lineage that includes CDV Snyder Hill and Lederle, which are CDV strains from the early 1950's. The 2000 and 2001 viruses appear to stem from the lineage of CDV A75/17, which was isolated in the mid 1970's. Only the 2001 viruses formed large syncytia in brain and/or lung tissue, and during primary isolation in-vitro in Vero cells, demonstrating at least one phenotypic property by which they differed from the other viruses. Conclusions Two different American CDV lineages caused the raccoon distemper outbreaks. The 1998 viruses are genetically distant to the 2000/2001 viruses. Since CDV does not cause persistent infections, the cycling of different CDV lineages within the same locale suggests multiple reintroductions of the virus to area raccoons. Our findings establish a precedent for determining whether the perceived differences in mortality rates are actual and attributable in part to inherent differences between CDV strains arising from different CDV lineages.
Collapse
Affiliation(s)
- John A Lednicky
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | - Jean Dubach
- Animal Molecular Genetics, Brookfield Zoo, Brookfield, Illinois 60513, USA
| | - Michael J Kinsel
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Loyola University Medical Center, Maywood, Illinois 60513, USA
| | - Thomas P Meehan
- Department of Animal Health, Veterinary Services, Brookfield Zoo, Brookfield, Illinois 60513, USA
| | - Maurizio Bocchetta
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60513, USA
| | - Laura L Hungerford
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Nicolene A Sarich
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | - Kelley E Witecki
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | - Michael D Braid
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | - Casandra Pedrak
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | - Christiane M Houde
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| |
Collapse
|
19
|
von Messling V, Cattaneo R. Amino-terminal precursor sequence modulates canine distemper virus fusion protein function. J Virol 2002; 76:4172-80. [PMID: 11932382 PMCID: PMC155104 DOI: 10.1128/jvi.76.9.4172-4180.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fusion (F) proteins of most paramyxoviruses are classical type I glycoproteins with a short hydrophobic leader sequence closely following the translation initiation codon. The predicted reading frame of the canine distemper virus (CDV) F protein is more complex, with a short hydrophobic sequence beginning 115 codons downstream of the first AUG. To verify if the sequence between the first AUG and the hydrophobic region is translated, we produced a specific antiserum that indeed detected a short-lived F protein precursor that we named PreF(0). A peptide resulting from PreF(0) cleavage was identified and named Pre, and its half-life was measured to be about 30 min. PreF(0) cleavage was completed before proteolytic activation of F(0) into its F(1) and F(2) subunits by furin. To test the hypothesis that the Pre peptide may influence protein activity, we compared the function of F proteins synthesized with that peptide to that of F proteins synthesized with a shorter amino-terminal signal sequence. F proteins synthesized with the Pre peptide were more stable and less active. Thus, the Pre peptide modulates the function of the CDV F protein. Interestingly, a distinct two-hit activation process has been recently described for human respiratory syncytial virus, another paramyxovirus.
Collapse
|
20
|
Frölich K, Czupalla O, Haas L, Hentschke J, Dedek J, Fickel J. Epizootiological investigations of canine distemper virus in free-ranging carnivores from Germany. Vet Microbiol 2000; 74:283-92. [PMID: 10831852 DOI: 10.1016/s0378-1135(00)00192-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Canine distemper virus (CDV) infects a broad range of carnivores. To assess whether wild carnivores may play a role in the epidemiology of CDV in domestic dogs in Germany, the seroprevalence of CDV was determined. In sera from red foxes (30 of 591 (5%)) and stone martens (2 of 10 (20%)) antiviral antibodies were detected using a neutralization assay, whereas sera of raccoons, two mink, one pine marten and one raccoon dog were negative. In foxes, there was a significantly higher prevalence in urban and suburban compared to rural regions. When testing lung and spleen tissue samples (fox, badger, stone marten, polecat, raccoon dog) 13 of 253 (5.1%) foxes, 2 of 13 (15.4%) stone martens and 2 of 6 (33%) badgers were virus positive using RT-PCR. Phylogenetic analysis based on partial sequences of the F gene revealed a distinct relatedness to canine CDV isolates. Together, the data support the concept of transmission of CDV between domestic dogs and wild carnivores.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Wild
- Antibodies, Monoclonal
- Antibodies, Viral/blood
- Base Sequence
- Carnivora
- DNA Primers/chemistry
- DNA, Viral/chemistry
- Distemper/epidemiology
- Distemper/transmission
- Distemper/virology
- Distemper Virus, Canine/classification
- Distemper Virus, Canine/isolation & purification
- Distemper Virus, Canine/pathogenicity
- Dogs
- Foxes
- Germany/epidemiology
- Molecular Sequence Data
- Neutralization Tests/veterinary
- Phylogeny
- RNA, Viral/chemistry
- RNA, Viral/isolation & purification
- Raccoons
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Seroepidemiologic Studies
Collapse
Affiliation(s)
- K Frölich
- Institute for Zoo Biology and Wildlife Research Berlin, Alfred-Kowalke-Strasse 17, D-10252, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Haas L, Liermann H, Harder TC, Barrett T, Löchelt M, von Messling V, Baumgärtner W, Greiser-Wilke I. Analysis of the H gene, the central untranslated region and the proximal coding part of the F gene of wild-type and vaccine canine distemper viruses. Vet Microbiol 1999; 69:15-8. [PMID: 10515263 DOI: 10.1016/s0378-1135(99)00081-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This paper summarizes the results of the genetic analysis of several parts of the genome of canine distemper virus (CDV) field isolates and vaccine viruses. The haemagglutinin (H) gene analysis showed that recent viruses did not differ significantly from vaccine strains. The analysis of the long untranslated region between the matrix (M) and fusion (F) gene revealed distinct genetic heterogeneity. The putative F protein start codon AUG461 of vaccine strain Onderstepoort was found to be mutated in all wild-type isolates and in another vaccine strain. The proximal coding part of the F gene was well conserved. Phylogenetic analysis of this segment showed the presence of several cocirculating CDV genotypes.
Collapse
Affiliation(s)
- L Haas
- Institute of Virology, Veterinary School Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|