1
|
Dou D, Zhang X, Wang J, Wumaier G, Qiao Y, Xie L, Jiang W, Sha W, Li W, Mei W, Zhang C, He H, Wang C, Wu L, Diao Y, Zhu L, Zhao Z, Chen Z, Xu Y, Li S, Li H. Design, synthesis, and biological evaluation of diphenyl ether substituted quinazolin-4-amine derivatives as potent EGFR L858R/T790M/C797S inhibitors. Eur J Med Chem 2024; 279:116858. [PMID: 39278125 DOI: 10.1016/j.ejmech.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a validated target for non-small-cell lung cancer (NSCLC). However, the treatment for EGFR-C797S mutation induced by third-generation EGFR inhibitors remains a concern. Therefore, the development of the fourth-generation EGFR inhibitors to overcome the EGFR-C797S mutation has great potential for clinical treatment. In this article, we designed and synthesized a series of diphenyl ether substituted quinazolin-4-amine derivatives that simultaneously occupy the ATP binding pocket and the allosteric site of EGFR. Among the newly synthesized compounds, 9d displayed excellent kinase activity against EGFRL858R/T790M/C797S with an IC50 value of 0.005 μM, and exhibited anti-proliferation activity in BaF3-EGFRL858R/T790M/C797S cells with the IC50 value of 0.865 μM. Furthermore, 9d could suppress phosphorylation of EGFR and induce cell apoptosis and cycle arrest at G2 phase in a dose-dependent manner in BaF3-EGFRL858R/T790M/C797S cells. More importantly, 9d displayed significant antitumor effects in BaF3-EGFRL858R/T790M/C797S xenograft mouse model (30 mg/kg, TGI = 71.14 %). All the results indicated compound 9d might be a novel fourth-generation EGFR inhibitor for further development in overcoming the EGFR-C797S resistance mutation.
Collapse
Affiliation(s)
- Dou Dou
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Xingsen Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yunjin Qiao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lijuan Xie
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenzhe Jiang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjie Sha
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjie Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenyi Mei
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Huan He
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Caolin Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingkang Wu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Behera R, Arora S, Ish P, Khanna G. Common epidermal growth factor receptor mutations in north Indian patients with non-small cell lung carcinoma: evidence from real-time polymerase chain reaction. Monaldi Arch Chest Dis 2024. [PMID: 39470226 DOI: 10.4081/monaldi.2024.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024] Open
Abstract
Lung carcinoma was the ace cause of cancer deaths globally in 2022, with non-small cell lung carcinoma (NSCLC) accounting for 81% of the burden. Due to promising tyrosine kinase inhibitor (TKI) trials, NSCLC patients harboring epidermal growth factor receptor (EGFR) gene mutations are of interest. Our aim was to determine EGFR mutation prevalence in north India and its histologic and demographic correlations. We investigated the frequency of EGFR mutations in 40 patients with histologically confirmed NSCLC using real-time polymerase chain reaction. A 15% mutation frequency was observed in the study sample, involving 32 males and 8 females with a median age of 59 years. Squamous cell carcinoma (SCC) patients had only EXON20 (T790M, exon20 insertion) mutations, while adenocarcinoma patients had mutations in both EXON20 (T790M) and 21 (L858R) with mutation frequencies of 22% and 10%, respectively. 28% of the SCC patients were non-smokers, and 60% of these non-smokers had an EGFR mutation. South Indian and Asian studies have identified EXON19 (19-Del) and EXON21 (L858R) mutations as "common mutations" that account for nearly 80-90% of all mutations and respond well to TKIs. Interestingly, "common mutations" were found seldom in our study population, while the uncommon variants constitute 83% of all mutations, which we assume is due to diverse Indian genetics and ethnicity and co-existing signature mutations that involve the tyrosine kinase domain of EXON20. We suggest future genome-wide association studies to identify plausible genetic polymorphisms responsible for interethnic differences in EGFR mutation, which will contribute to better treatment and prevention of NSCLCs.
Collapse
Affiliation(s)
- Rakesh Behera
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi
| | - Sheetal Arora
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi
| | - Pranav Ish
- Department of Pulmonary Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi
| | - Geetika Khanna
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi
| |
Collapse
|
4
|
Tong Y, Wan X, Yin C, Lei T, Gao S, Li Y, Du X. In-depth exploration of the focus issues of TKI combined with radiotherapy for EGFR-mutant lung adenocarcinoma patients with brain metastasis: a systematic analysis based on literature metrology, meta-analysis, and real-world observational data. BMC Cancer 2024; 24:1305. [PMID: 39443874 DOI: 10.1186/s12885-024-13071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND There is a growing interest in utilizing a combination of brain radiotherapy (RT) and tyrosine kinase inhibitors (TKIs) for patients diagnosed with brain metastases (BM) in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma (LAC). The current status of this treatment strategy remains a subject of debate. METHODS We initiated our study by conducting a comprehensive literature search using the SCI-expanded database of Web of Science Core Collection (WoSCC). We utilized the VOSPviewer software to analyze various aspects of the research, including the year of publication, authorship, keywords, and country.Subsequently, we performed an extensive and systematic literature search on popular online databases. Our primary outcome measures were overall survival (OS) and intracranial progression-free survival (iPFS), both quantified by hazard ratios (HRs). Additionally, for data verification, we included data from patients in non-small cell lung cancer with brain metastasis who underwent therapeutic intervention at the Cancer Prevention and Treatment Center of Sun Yat-sen University and the Radiotherapy Department of Hanzhong Central Hospital between August 2012 and November 2021. RESULTS The bibliometric analysis revealed an increasing trend in research focused on the combination of RT and TKIs for the management of lung cancer brain metastases over the previous decade. Then, nine studies consistent with the research direction were included for meta-analysis. The meta-analysis showed that the OS (HR = 0.81, 95% confidence interval: 0.69-0.94; P = 0.007) and iPFS (HR = 0.71, 95% confidence interval: 0.61-0.82; P < 0.001) of the combination therapy were significantly prolonged. Finally, 168 EGFR-mutated BM advanced LAC patients in the real world were verified, and the median iPFS of the combination therapy (n = 88 and EGFR-TKIs alone (n = 80) were 16.0 and 9.0 months, respectively, (P < 0.001). The median OS was 29.0 and 27.0 months, respectively, with no dramatic difference (P = 0.188). CONCLUSIONS Research on EGFR-mutant LAC brain metastasis has turned towards exploring optimal treatment strategies for this condition. Our meta-analysis and real-world data analysis consistently demonstrate that combination therapy offers a substantial improvement in patient survival compared to EGFR-TKI monotherapy. Notably, among patients undergoing salvage radiotherapy (RT), our subgroup analysis reveals that those initially treated with third-generation TKIs experience more significant benefits than those treated with first- or second-generation TKIs.
Collapse
Affiliation(s)
- Yalan Tong
- Radiotherapy Department, Hanzhong Central Hospital, Hanzhong, Shanxi, 723000, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaosha Wan
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110000, People's Republic of China
| | - Chang Yin
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, 110000, People's Republic of China
| | - Ting Lei
- Oncology Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People's Republic of China
| | - Shan Gao
- Radiotherapy Department, Hanzhong Central Hospital, Hanzhong, Shanxi, 723000, People's Republic of China.
| | - Yinghua Li
- Oncology Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116000, People's Republic of China.
| | - Xiaojing Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
5
|
Shetty SR, Debnath S, Majumdar K, Rajagopalan M, Ramaswamy A, Das A. Virtual screening, molecular dynamics simulations, and in vitro validation of EGFR inhibitors as breast cancer therapeutics. Bioorg Chem 2024; 153:107849. [PMID: 39368144 DOI: 10.1016/j.bioorg.2024.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
A high abundance of Epidermal Growth Factor Receptor (EGFR) in malignant cells makes them a prospective therapeutic target for basal breast tumors. Although EGFR inhibitors are in development as anticancer therapeutics, there exists limitations due to the dose-limiting cytotoxicity that limits their clinical utilization, thereby necessitating the advancement of effective inhibitors. In the present study, we have developed common pharmacophore hypotheses using 30 known EGFR inhibitors. The best pharmacophore hypothesis DHRRR_1 was utilized for virtual screening (VS) of the Phase database containing 4.3 × 106 fully prepared compounds. The top 1000 hits were further subjected to ADME filtration followed by structure-based VS and Molecular Dynamics (MD) simulation investigations. Based on pharmacophore hypothesis matching, XP glide score, interactions between ligands and active site residues, ADME properties, and MD simulations, the five best hits (SN-01 through SN-05) were preferred for in-vitro cytotoxicity studies. All the molecules except SN-02 exhibited cytotoxicity in Triple Negative Breast Cancer (TNBC) cells. These potential EGFR inhibitors effectively downregulated the EGF-induced proliferation, migration, in-vitro tumorigenic capability, and EGFR activation (pEGFR) in the TNBCs. Additionally, in combination with doxorubicin, the identified EGFR inhibitors significantly decreased the EGF-induced proliferation. SN-04, and SN-05 in the presence of a lower concentration of doxorubicin markedly increased the apoptotic markers expression in the TNBCs, an effect which was comparable to a higher concentration of doxorubicin treatment, alone. These observations suggest that both SN-04 and/or SN-05 can improve the efficacy of chemotherapeutic drug, doxorubicin at a lower concentration to avert the higher dose of chemotherapeutic-induced side effects during breast cancer treatment.
Collapse
Affiliation(s)
- Swathi R Shetty
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudhan Debnath
- Maharaja Bir Bikram College, Agartala, Tripura, India; Department of Chemistry, Netaji Subhash Mahavidyalaya, Udaipur, Tripura, India
| | | | - Muthukumaran Rajagopalan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, INDIA
| | - Amutha Ramaswamy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, INDIA
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500007 TS, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Ni H, Wang Z, Tang Y, Lu J, Zhu Z, Qiu Y, Chen Z, Wang Z. Tyrosine kinase inhibitors in the treatment of leptomeningeal carcinomatosis. Cell Biol Int 2024; 48:1450-1462. [PMID: 39136350 DOI: 10.1002/cbin.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024]
Abstract
Leptomeningeal carcinomatosis (LMC) is a devastating complication of advanced cancers, such as lung cancer and breast cancer, which is usually indicative of a poor prognosis. The current treatments for LMC include palliative care, with others aiming to prolong survival and relieve neurological symptoms. Traditional treatments for LMC include radiotherapy, systemic chemotherapy, and intrathecal injection. Furthermore, the application of molecularly targeted agents, such as antiepidermal growth factor receptor (anti-EGFR), antihuman epidermal growth factor receptor 2 (anti-HER2), and anti-PD-1 monoclonal antibody, have prolonged the survival of LMC patients. Targeted therapy with tyrosine kinase inhibitors has also been proven to be an effective treatment. Tyrosine kinases can be overactive or expressed at high levels in some cancer cells; therefore, the use of tyrosine kinase inhibitors may prevent the activation of tumor-related pathways, preventing cancer cell growth. The EGFR family are cell surface receptors directly related to tumor occurrence with tyrosine kinase activity; it is the most widely used target for tyrosine kinase inhibitors in the treatment of LMC. In this review, we introduced the clinical manifestation and diagnostic criteria of LMC, clarified the treatment mechanism of tyrosine kinase inhibitors for LMC with mutations in EGFR, HER2, or anaplastic lymphoma kinase, reviewed the current application of various generation tyrosine kinase inhibitors in patients with LMC, and discussed new clinical trials and the future directions of tyrosine kinase inhibitor therapy.
Collapse
Affiliation(s)
- Hanyu Ni
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Zilan Wang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yanbing Tang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaye Lu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zixiang Zhu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Youjia Qiu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhouqing Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Zhu J, Mei J, He Y, Zou Y, Hu X. Chlorogenic acid exhibits antitumor effect in patient-derived xenograft models and hydrogel-embedded tissue culture drug susceptibility test of tongue cancer. Heliyon 2024; 10:e37523. [PMID: 39309775 PMCID: PMC11416273 DOI: 10.1016/j.heliyon.2024.e37523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Chlorogenic acid (CGA) is one of the effective components of Chinese medicine plant such as honeysuckle and Eucommia ulmoides. CGA can inhibits various cancer types, but its effectivity against tongue cancer remains unknown. In the present study, we utilized patient-derived xenograft (PDX) models in conjunction with hydrogel-embedded drug sensitivity tests (HDST) to demonstrate the inhibitory effects of CGA on tongue cancer tissues in both in vivo and ex vivo experimental paradigms. Immunohistochemical (IHC) analysis and TUNEL staining revealed that CGA downregulated the expression of CD31 and Ki-67, while concurrently promoting apoptosis. Furthermore, the involvement of the EGFR-AKT-MMP9 signaling cascade in the tumor-suppressive effects of CGA was confirmed using network pharmacology analysis and immunofluorescent validation techniques. Overall, our findings indicate that CGA robustly inhibits tongue cancer in cellular and organismal models. The EGFR-AKT-MMP9 axis plays a highly significant role in mediating this bioactivity, thereby positioning CGA as a promising candidate for further investigation in oncology. The multifaceted therapeutic potential of CGA, as evidenced by its ability to disrupt angiogenesis, suppress cell proliferation, and induce apoptosis, underscores its value as a novel therapeutic agent for the treatment of tongue cancer.
Collapse
Affiliation(s)
- Jia Zhu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Jiaqi Mei
- Department of Hematology, University Hospitals and University of the Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanqiao He
- Nanchang Royo Biotech Co., Ltd, Nanchang, Jiangxi, China
- Center of Laboratory Animal Science, Nanchang University, Nanchang, Jiangxi, China
| | - Yan Zou
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| | - Xiaoping Hu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Oral Diseases, Nanchang, Jiangxi, China
- Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Yerramilli VS, Lin G, Reisinger JL, Hemmerlin RM, Lindberg SK, Plante K, Ross AH, Gericke A, Scarlata S. The scaffolding protein IQGAP1 enhances EGFR signaling by Promoting Oligomerization and Preventing Degradation. J Biol Chem 2024:107844. [PMID: 39357822 DOI: 10.1016/j.jbc.2024.107844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
IQGAP1 is a large, multi-domain scaffold that connects and modulates different signaling networks including the one initiated by epidermal growth factor (EGF). In this study, we have used live cell fluorescence imaging methods along with other biochemical techniques to follow the mechanisms used by IQGAP1 to enhance EGF signaling. We show that IQGAP1 enhances EGF signaling by promoting the oligomerization of its receptor, EGFR, upon EGF addition along with concurrent IQGAP oligomerization. Using cellular markers, we find that IQGAP1 promotes the plasma membrane localization of EGFR and promotes association to one of its phosphoinositide lipid pathway ligands, PI(3,4,5)P3. Additionally, we find that binding of EGFR to IQGAP1 protects EGFR from lysosomal degradation. Taken together, our results show that IQGAP1 enhances EGF-mediated pathway progression through mechanisms that augment simple scaffolding activities.
Collapse
Affiliation(s)
- V Siddartha Yerramilli
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01605, USA
| | - Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01605, USA
| | - Jessica L Reisinger
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01605, USA
| | - Rachel M Hemmerlin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01605, USA
| | - Samantha K Lindberg
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01605, USA
| | - Karin Plante
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01605, USA
| | - Alonzo H Ross
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01605, USA
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01605, USA.
| |
Collapse
|
9
|
Matuszewska J, Krawiec A, Radziemski A, Uruski P, Tykarski A, Mikuła-Pietrasik J, Książek K. Alterations of receptors and insulin-like growth factor binding proteins in senescent cells. Eur J Cell Biol 2024; 103:151438. [PMID: 38945074 DOI: 10.1016/j.ejcb.2024.151438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024] Open
Abstract
The knowledge about cellular senescence expands dynamically, providing more and more conclusive evidence of its triggers, mechanisms, and consequences. Senescence-associated secretory phenotype (SASP), one of the most important functional traits of senescent cells, is responsible for a large extent of their context-dependent activity. Both SASP's components and signaling pathways are well-defined. A literature review shows, however, that a relatively underinvestigated aspect of senescent cell autocrine and paracrine activity is the change in the production of proteins responsible for the reception and transmission of SASP signals, i.e., receptors and binding proteins. For this reason, we present in this article the current state of knowledge regarding senescence-associated changes in cellular receptors and insulin-like growth factor binding proteins. We also discuss the role of these alterations in senescence induction and maintenance, pro-cancerogenic effects of senescent cells, and aging-related structural and functional malfunctions.
Collapse
Affiliation(s)
- Julia Matuszewska
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Adrianna Krawiec
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Artur Radziemski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Paweł Uruski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Andrzej Tykarski
- Poznan University of Medical Sciences, Department of Hypertensiology, Długa 1/2 Str., Poznań 61-848, Poland
| | - Justyna Mikuła-Pietrasik
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland
| | - Krzysztof Książek
- Poznan University of Medical Sciences, Department of Pathophysiology of Ageing and Civilization Diseases, Święcickiego 4 Str., Poznań 60-781, Poland.
| |
Collapse
|
10
|
Wang Q, Zhu Y, Pei J. Targeting EGFR with molecular degraders as a promising strategy to overcome resistance to EGFR inhibitors. Future Med Chem 2024; 16:1923-1944. [PMID: 39206853 PMCID: PMC11485768 DOI: 10.1080/17568919.2024.2389764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal activation of EGFR is often associated with various malignant tumors, making it an important target for antitumor therapy. However, traditional targeted inhibitors have several limitations, such as drug resistance and side effects. Many studies have focused on the development of EGFR degraders to overcome this resistance and enhance the therapeutic effect on tumors. Proteolysis targeting chimeras (PROTAC) and Lysosome-based degradation techniques have made significant progress in degrading EGFR. This review provides a summary of the structural and function of EGFR, the resistance, particularly the research progress and activity of EGFR degraders via the proteasome and lysosome. Furthermore, this review aims to provide insights for the development of the novel EGFR degraders.
Collapse
Affiliation(s)
- Qiangfeng Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
11
|
Tang W, Hou H, Wang H, Gao X, Zhao F, Di Y, Ji S, Ling P, Wang F, Sun F, Tan H. Methotrexate-Loaded Chitosan Oligosaccharide-ES2 for Targeted Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44409-44427. [PMID: 39162197 DOI: 10.1021/acsami.4c06656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cancer presents a significant health threat, necessitating the development of more precise, efficient, and less damaging treatment approaches. To address this challenge, we employed the 1-ethyl-(3-dimethyl aminopropyl) carbodiimide/N-hydroxy succinimide (EDC/NHS) catalytic system and utilized quaternized chitosan oligosaccharide (HTCOSC) as a drug carrier to construct a nanoparticle delivery system termed HTCOSC-cRGD-ES2-MTX (CREM). This system specifically targets integrin αvβ3 on tumor cell surfaces and enables simultaneous loading of the antiangiogenic agent ES2 (IVRRADRAAVP) and the chemotherapy drug methotrexate (MTX). Due to its amphiphilic properties, CREM self-assembles into nanoparticles in aqueous solution, exhibiting an average diameter of 179.47 nm. Comparative studies demonstrated that CREM, in contrast to free ES2 and MTX-free nanoparticles (CRE), significantly suppressed the proliferation of EAhy926 endothelial cells and B16 melanoma cells in vitro, resulting in inhibition rates of 71.18 and 82.25%, respectively. Furthermore, CREM exhibited a hemolysis rate below 2%, indicating excellent in vitro antiangiogenic and antitumor activity as well as favorable blood compatibility. Additionally, both CRE and CREM demonstrated favorable tumor targeting capabilities through the specific binding action of cyclic RGD (cRGD) to integrin αvβ3. Further in vivo investigations revealed that CREM induced apoptosis in tumor cells via the mitochondrial apoptotic pathway and reduced the expression of angiogenic factors such as vascular endothelial growth factor (VEGF), thereby inhibiting tumor angiogenesis. This potent antitumor effect was evident through a tumor suppression rate of 80.19%. Importantly, histopathological staining (HE staining) demonstrated the absence of significant toxic side effects of CREM on various organs compared to MTX. In conclusion, the CREM nano drug delivery system synergistically enhances the therapeutic efficacy of antiangiogenic drugs and chemotherapeutic agents, thus offering a novel targeted approach for cancer treatment.
Collapse
Affiliation(s)
- Wen Tang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Huiwen Hou
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Hanlin Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Xinqing Gao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Feiyan Zhao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Yuhan Di
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
| | - Shengli Ji
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- ReaLi Tide Biological Technology (Weihai) Co., Ltd, Weihai 264207, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Feng Sun
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, Shandong, China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Qingdao 266237, China
- Shandong Provincial Technology Innovation Center of Carbohydrate, Shandong University, Qingdao 266237, China
- School of Pharmaceutical sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
12
|
Kang X, Li R, Li X, Xu X. EGFR mutations and abnormal trafficking in cancers. Mol Biol Rep 2024; 51:924. [PMID: 39167290 DOI: 10.1007/s11033-024-09865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor and a member of the ErbB receptor family. As a significant cancer driver, EGFR undergoes mutations such as gene amplification or overexpression in a wide range of malignant tumors and is closely associated with tumorigenesis. This review examines the aberrant expression of EGFR in several common cancers and summarizes the current therapeutic strategies developed for this receptor. Additionally, this review compares the differences in EGFR activation, internalization, endocytosis, and sorting in normal and cancer cells, and highlights some regulatory factors that influence its trafficking process.Kindly check and confirm the edit made in the title.Yes, correctAs per journal instructions structured abstract is mandatory kindly provideThe abstract format does not apply to Review articles.
Collapse
Affiliation(s)
- Xiang Kang
- The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Rendong Li
- The First Clinical Medical College, Nanchang University, Nanchang, 30006, China
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaolei Li
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, 330052, China
| | - Xinping Xu
- The Department of Respiratory and Critical Care Medicine, Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, 330052, China.
| |
Collapse
|
13
|
Lu Q, Yang Q, Zhao J, Li G, Zhang J, Jia C, Wan Y, Chen Y. The identification of heterogeneous reactive oxygen subtypes in esophageal squamous cell carcinoma to aid patient prognosis and immunotherapy. Heliyon 2024; 10:e35235. [PMID: 39165982 PMCID: PMC11334838 DOI: 10.1016/j.heliyon.2024.e35235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Esophageal cancer is increasingly recognized as a significant global malignancy. The main pathological subtype of this cancer is esophageal squamous cell carcinoma (ESCC), which displays a higher degree of malignancy and a poorer prognosis. Reactive oxygen species (ROS) play a critical role in modulating the immune response to tumors, and understanding the regulation of ROS in ESCC could lead to novel and improved therapeutic strategies for ESCC patients. Methods A consensus matrix derived from genes involved in the ROS pathway revealed two subtypes of ROS. These subtypes were categorized as ROS-active or ROS-suppressive based on their level of ROS activity. The heterogeneity among the different ROS subtypes was then explored from various perspectives, including gene function, immune response, genomic stability, and immunotherapy. In order to assess the prognosis and the potential benefits of immunotherapy, a ROS activity score (RAS) was developed using the identified ROS subtypes. In vitro experiments were performed to confirm the impact of core RAS genes on the proliferative activity of esophageal cancer cell lines. Results Two distinctive subtypes of ROS were identified. The first subtype, referred to as ROS-active, exhibited elevated ROS activity, enhanced involvement in cancer-associated immune pathways, and increased infiltration of effector immune cells. The second subtype, named ROS-suppressive, demonstrated weaker ROS activity but displayed more pronounced dysregulation in the cell cycle and a denser extracellular matrix, indicating malignant characteristics. Genomic stability, particularly in terms of copy number variation (CNV) events, differed between the two ROS subtypes. By developing a RAS model, reliable risk assessment for overall survival (OS) in patients with ESCC was achieved, and the model demonstrated strong predictive capabilities in real-world immunotherapy cohorts. Moreover, the core gene LDLRAD1 within the RAS model was found to enhance proliferative activity in esophageal cancer cell lines. Conclusion Based on the ROS pathway, we successfully identified two distinct subtypes in ESCC: the ROS-active subtype and the ROS-suppressive subtype. These subtypes were utilized to evaluate prognosis and the sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Qiang Lu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Guizhen Li
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - JiPeng Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Chenghui Jia
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, China
| | - Yi Wan
- Department of Health Service, Air Force Medical University, No.169 Changle West Road, Xi'an, 710032, China
| | - Yan Chen
- Department of Oncology, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| |
Collapse
|
14
|
Barrero M, Lazarenkov A, Blanco E, Palma LG, López-Rubio AV, Bauer M, Bigas A, Di Croce L, Sardina JL, Payer B. The interferon γ pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming. SCIENCE ADVANCES 2024; 10:eadj8862. [PMID: 39110794 PMCID: PMC11305397 DOI: 10.1126/sciadv.adj8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.
Collapse
Affiliation(s)
- Mercedes Barrero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis G. Palma
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | | | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Bigas
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José Luis Sardina
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
15
|
Zhu L, Yang X, Wu S, Dong R, Yan Y, Lin N, Zhang B, Tan B. Hepatotoxicity of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs). Drug Metab Rev 2024:1-16. [PMID: 39120430 DOI: 10.1080/03602532.2024.2388203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.
Collapse
Affiliation(s)
- Lulin Zhu
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xinxin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanshan Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Youyou Yan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nengming Lin
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Department of Pharmacy, Key Laboratory of Clinical CancerPharmacology andToxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
He R, Feng B, Zhang Y, Li Y, Wang D, Yu L. IGFBP7 promotes endothelial cell repair in the recovery phase of acute lung injury. Clin Sci (Lond) 2024; 138:797-815. [PMID: 38840498 PMCID: PMC11196208 DOI: 10.1042/cs20240179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
IGFBP7 has been found to play an important role in inflammatory diseases, such as acute lung injury (ALI). However, the role of IGFBP7 in different stages of inflammation remains unclear. Transcriptome sequencing was used to identify the regulatory genes of IGFBP7, and endothelial IGFBP7 expression was knocked down using Aplnr-Dre mice to evaluate the endothelial proliferation capacity. The expression of proliferation-related genes was detected by Western blotting and RT-PCR assays. In the present study, we found that knockdown of IGFBP7 in endothelial cells significantly decreases the expression of endothelial cell proliferation-related genes and cell number in the recovery phase but not in the acute phase of ALI. Mechanistically, using bulk-RNA sequencing and CO-IP, we found that IGFBP7 promotes phosphorylation of FOS and subsequently up-regulates YAP1 molecules, thereby promoting endothelial cell proliferation. This study indicated that IGFBP7 has diverse roles in different stages of ALI, which extends the understanding of IGFBP7 in different stages of ALI and suggests that IGFBP7 as a potential therapeutic target in ALI needs to take into account the period specificity of ALI.
Collapse
Affiliation(s)
- Rui He
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Feng
- Department of Respiratory Medicine, People’s Hospital of Tongnan District, Chongqing, China
| | - Yuezhou Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Li
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxing Wang
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Commission Key Laboratory for Respiratory Inflammation Damage and Precision Medicine
| | - Linchao Yu
- Department of Respiratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Health Commission Key Laboratory for Respiratory Inflammation Damage and Precision Medicine
| |
Collapse
|
17
|
Yuan L, Meng Y, Xiang J. SNX16 is required for hepatocellular carcinoma survival via modulating the EGFR-AKT signaling pathway. Sci Rep 2024; 14:13093. [PMID: 38849490 PMCID: PMC11161632 DOI: 10.1038/s41598-024-64015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Sorting nexin 16 (SNX16), a pivotal sorting nexin, emerges in tumor progression complexity, fueling research interest. However, SNX16's biological impact and molecular underpinnings in hepatocellular carcinoma (HCC) remain elusive. This study probes SNX16's function, clinical relevance via mRNA, and protein expression in HCC. Overexpression/knockdown assays of SNX16 were employed to elucidate impacts on HCC cell invasion, proliferation, and EMT. Additionally, the study delved into SNX16's regulation of the EGFR-AKT signaling cascade mechanism. SNX16 overexpression in HCC correlates with poor patient survival; enhancing proliferation, migration, invasion, and tumorigenicity, while SNX16 knockdown suppresses these processes. SNX16 downregulation curbs phospho-EGFR, dampening AKT signaling. EGFR suppression counters SNX16-overexpression-induced HCC proliferation, motility, and invasiveness. Our findings delineate SNX16's regulatory role in HCC, implicating it as a prospective therapeutic target.
Collapse
Affiliation(s)
- Lebin Yuan
- Department of General Surgery, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Yanqiu Meng
- Oncology Department, First Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiajia Xiang
- Molecular Centre Laboratory, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
18
|
Kariya Y, Honma M. Applications of model simulation in pharmacological fields and the problems of theoretical reliability. Drug Metab Pharmacokinet 2024; 56:100996. [PMID: 38797090 DOI: 10.1016/j.dmpk.2024.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 12/31/2023] [Indexed: 05/29/2024]
Abstract
The use of mathematical models has become increasingly prevalent in pharmacological fields, particularly in drug development processes. These models are instrumental in tasks such as designing clinical trials and assessing factors like efficacy, toxicity, and clinical practice. Various types of models have been developed and documented. Nevertheless, emphasizing the reliability of parameter values is crucial, as they play a pivotal role in shaping the behavior of the system. In some instances, parameter values reported previously are treated as fixed values, which can lead to convergence towards values that deviate substantially from those found in actual biological systems. This is especially true when parameter values are determined through fitting to limited observations. To mitigate this risk, the reuse of parameter values from previous reports should be approached with a critical evaluation of their validity. Currently, there is a proposal for a simultaneous search for plausible values for all parameters using comprehensive search algorithms in both pharmacokinetic and pharmacodynamic or systems pharmacological models. Implementing these methodologies can help address issues related to parameter determination. Furthermore, integrating these approaches with methods developed in the field of machine-learning field has the potential to enhance the reliability of parameter values and the resulting model outputs.
Collapse
Affiliation(s)
- Yoshiaki Kariya
- Education Center for Medical Pharmaceutics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Laboratory of Pharmaceutical Regulatory Sciences, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
19
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
20
|
Xu N, Wang J, Dai G, Lu T, Li S, Deng K, Song J. EfficientNet-Based System for Detecting EGFR-Mutant Status and Predicting Prognosis of Tyrosine Kinase Inhibitors in Patients with NSCLC. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1086-1099. [PMID: 38361006 PMCID: PMC11169294 DOI: 10.1007/s10278-024-01022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
We aimed to develop and validate a deep learning-based system using pre-therapy computed tomography (CT) images to detect epidermal growth factor receptor (EGFR)-mutant status in patients with non-small cell lung cancer (NSCLC) and predict the prognosis of advanced-stage patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors (TKI). This retrospective, multicenter study included 485 patients with NSCLC from four hospitals. Of them, 339 patients from three centers were included in the training dataset to develop an EfficientNetV2-L-based model (EME) for predicting EGFR-mutant status, and the remaining patients were assigned to an independent test dataset. EME semantic features were extracted to construct an EME-prognostic model to stratify the prognosis of EGFR-mutant NSCLC patients receiving EGFR-TKI. A comparison of EME and radiomics was conducted. Additionally, we included patients from The Cancer Genome Atlas lung adenocarcinoma dataset with both CT images and RNA sequencing data to explore the biological associations between EME score and EGFR-related biological processes. EME obtained an area under the curve (AUC) of 0.907 (95% CI 0.840-0.926) on the test dataset, superior to the radiomics model (P = 0.007). The EME and radiomics fusion model showed better (AUC, 0.941) but not significantly increased performance (P = 0.895) compared with EME. In prognostic stratification, the EME-prognostic model achieved the best performance (C-index, 0.711). Moreover, the EME-prognostic score showed strong associations with biological pathways related to EGFR expression and EGFR-TKI efficacy. EME demonstrated a non-invasive and biologically interpretable approach to predict EGFR status, stratify survival prognosis, and correlate biological pathways in patients with NSCLC.
Collapse
Affiliation(s)
- Nan Xu
- School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China
| | - Jiajun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Gang Dai
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, 230036, China
| | - Tao Lu
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Shu Li
- School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, USTC, Hefei, Anhui, 230036, China
| | - Jiangdian Song
- School of Health Management, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
21
|
Yao X, Zhang L, Sun S, Fu A, Ge Y. Progress of research on the relationship between efferocytosis and tumor. Front Oncol 2024; 14:1361327. [PMID: 38655133 PMCID: PMC11035832 DOI: 10.3389/fonc.2024.1361327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are genetic changes that develop in an organism as a result of many internal and external causes. They affect the biological behavior of cells, cause them to grow independently, and give rise to new, perpetually proliferating organisms. Recent research has supported the critical function of tumor-associated macrophages in the development, progression, and metastasis of tumors through efferocytosis. Yet, there is still much to learn about the mechanisms behind their contribution to tumor pathological processes. As a result, it's critical to actively investigate how cytosolic processes contribute to the growth of tumors and to create novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Yanlei Ge
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
22
|
Zhou Y, Peng S, Wang H, Cai X, Wang Q. Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products. Genes (Basel) 2024; 15:468. [PMID: 38674402 PMCID: PMC11049652 DOI: 10.3390/genes15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 04/28/2024] Open
Abstract
In recent years, the FDA has approved numerous anti-cancer drugs that are mutation-based for clinical use. These drugs have improved the precision of treatment and reduced adverse effects and side effects. Personalized therapy is a prominent and hot topic of current medicine and also represents the future direction of development. With the continuous advancements in gene sequencing and high-throughput screening, research and development strategies for personalized clinical drugs have developed rapidly. This review elaborates the recent personalized treatment strategies, which include artificial intelligence, multi-omics analysis, chemical proteomics, and computation-aided drug design. These technologies rely on the molecular classification of diseases, the global signaling network within organisms, and new models for all targets, which significantly support the development of personalized medicine. Meanwhile, we summarize chemical drugs, such as lorlatinib, osimertinib, and other natural products, that deliver personalized therapeutic effects based on genetic mutations. This review also highlights potential challenges in interpreting genetic mutations and combining drugs, while providing new ideas for the development of personalized medicine and pharmacogenomics in cancer study.
Collapse
Affiliation(s)
- Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| | - Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| | - Huizhen Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| | - Xinyin Cai
- Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai 202103, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (S.P.); (H.W.)
| |
Collapse
|
23
|
Yu Z, Xu F, Zou J. Feasibility and safety of EGFR-TKI neoadjuvant therapy for EGFR-mutated NSCLC: A meta-analysis. Eur J Clin Pharmacol 2024; 80:505-517. [PMID: 38300281 DOI: 10.1007/s00228-024-03620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND The role of neoadjuvant epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) targeted therapy for EGFR-mutated non-small cell lung cancer (NSCLC) is unclear. Previous studies have shown that EGFR-TKIs have excellent anti-tumor activity. However, almost all studies on neoadjuvant EGFR-TKI treatment for EGFR-mutated NSCLC have been non-randomized controlled trials with small sample sizes and different methods of statistical analysis, which may lead to a lack of valid metrics to assess the feasibility and safety of neoadjuvant EGFR-TKI treatment. This meta-analysis aimed to assess the efficacy and safety of neoadjuvant EGFR-TKI treatment for NSCLC patients with EGFR mutations. METHODS Relevant studies were systematically searched in PubMed, Embase, and Web of Science databases. Results including objective response rate (ORR), complete resection rate (R0), downstaging rate, pathological complete response (PCR), major pathological response (MPR), progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were used for further analysis. RESULTS This meta-analysis ultimately included 11 studies involving 344 patients with EGFR-positive mutations in NSCLC. In terms of tumor response, the pooled ORR was 57% (95% CI: 42%-73%), and in the Osimertinib subgroup, the pooled ORR was 80% (95% CI: 63%-98%). Analysis of studies that reported a downstaging rate showed the pooled downstaging rate of 41% (95% CI: 9%-74%) and the pooled downstaging rate of 74% (95% CI: 22%-100%) in the Osimertinib subgroup. In terms of surgical outcomes, the pooled pCR rate was 3% (95% CI: 0%-7%), the pooled MPR rate was 11% (95% CI: 6%-17%), and the pooled R0 resection rate was 91% (95% CI: 85%-95%). The most common adverse events associated with neoadjuvant therapy were rash and diarrhea. The pooled incidence of any grade of rash was 47.1% (95% CI: 25.4%-69.3%), and the pooled incidence of grade ≥ 3 rash was 0.6% (95% CI: 0.0%-2.5%). The pooled incidence of diarrhea of any grade was 28.8% (95% CI: 14.4%-45.4%), with the pooled incidence of grade ≥ 3 diarrhea of 0.2% (95% CI: 0.0%-1.6%). The pooled incidence of ≥ grade 3 adverse events was significantly lower. CONCLUSIONS Our meta-analysis confirmed the efficacy and safety of neoadjuvant EGFR-TKIs for the treatment of NSCLC patients with EGFR-positive mutations and that third-generation EGFR-TKIs were superior to first- and second-generation EGFR-TKIs in terms of shrinking tumor volume and lowering tumor stage; however, future large-scale and multicenter randomized controlled trials are needed to confirm this conclusion. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023466731.
Collapse
Affiliation(s)
- Zhuchen Yu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Juntao Zou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
24
|
Epishkina A, Pakina V, Kutorkina E, Bogoslovskaya E, Tumutolova O, Tolstov M, Igrunkova A, Fedoseikin I, Blinova E, Semeleva E, Blinov D. A novel dihydroacridine derivative targets epidermal growth factor receptor-expressing cancer cells in vitro and in vivo. J Adv Pharm Technol Res 2024; 15:104-110. [PMID: 38903549 PMCID: PMC11186549 DOI: 10.4103/japtr.japtr_392_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 06/22/2024] Open
Abstract
Small molecules are considered a source of novel medicines targeting carcinogenic intracellular pathways including epidermal growth factor receptor (EGFR) signaling. The main goal of the study is to assess whether LHT-17-19 could be considered an effective target molecule against EGFR-expressing tumor cells in silico, in vitro, and in vivo. This was an in vivo, ex vivo, and in vivo experimental study. LHT-17-19 affinity to EGFR's kinase domain was assessed by the ligand's molecular docking. EGFR-expressing Hs746T human gastric cancer cell culture and patient-derived organoid (PDO) model of EGFR-positive breast cancer (BC) were used for in vitro assessment of the molecule anticancer property. IC50 and GI50 indexes were estimated using MTT- and MTS-based tests, respectively. Anticancer activity of LHT-17-19 against EGFR-expressing mutant lung carcinoma was studied on patient-derived xenograft (PDX) model established in 10 humanized BALB/c male mice. Continuous variables were presented as a mean ± standard deviation. Intergroup differences were assessed by two-way t-test. Kaplan-Meier's curves were used for survival analysis. High affinity of LHT-17-19 for the EGFR kinase domain with dG score -7.9 kcal/mol, EDoc-5.45 kcal/mol, and Ki 101.24 uM was due to intermolecular π-σ bonds formation and the ligand intramolecular transformation. LHT-17-19 induced anti-EGFR-expressing gastric cancer cells cytotoxicity with IC50 0.32 µM (95% confidence interval [CI] 0.11-0.54 µM). The derivative inhibited growth of EGFR-expressing BC PDO with GI50 16.25 µM (95% CI 4.44-28.04 µM). 2 mg/kg LHT-17-19 intravenously daily during 7 days inhibited PDX tumor growth and metastatic activity, prolonged animals' survival, and eliminated EGFR-mutant lung cancer cells from residual tumor's node. LHT-17-19 may be considered a molecular platform for further search of promising molecules, EGFR-expressing cancer cell inhibitors.
Collapse
Affiliation(s)
- Anna Epishkina
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
- Medical Department, Unim LLC Mephi, Russia
| | - Viktoria Pakina
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Ekaterina Kutorkina
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Evgeniia Bogoslovskaya
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Oksana Tumutolova
- Department of Pharmacology and Pharmaceutics, Ogarev National Research Mordovia State University, Saransk, Russia
| | - Matvey Tolstov
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Aleksandra Igrunkova
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Ilya Fedoseikin
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
| | - Ekaterina Blinova
- Department of Clinical Pharmacology and Internal Diseases Propaedeutic, Sechenov University Mephi, Russia
- Department of Fundamental Medicine, National Research Nuclear University Mephi, Russia
| | - Elena Semeleva
- Department of Pharmacology and Pharmaceutics, Ogarev National Research Mordovia State University, Saransk, Russia
| | - Dmitrii Blinov
- Department of Molecular and Clinical Pharmacology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
25
|
Zhou J, Qiao C, Gao Y, Wang H, Li J, Yang S, Chai K, Zhao T, Wu J. Exploring the mechanism of action of Shuangyang houbitong granules in the treatment of acute pharyngitis based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e37674. [PMID: 38552049 PMCID: PMC10977574 DOI: 10.1097/md.0000000000037674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Acute pharyngitis (AP) refers to the acute inflammation of the pharynx, characterized by swelling and pain in the throat. Shuangyang houbitong granules (SHG), a traditional Chinese medicine compound, have been found to be effective in providing relief from symptoms associated with AP. METHODS The chemical components of SHG were screened using Traditional Chinese Medicine Systems Pharmacology database, HERB database, and China National Knowledge Infrastructure. The targets of the granules were predicted using SwissTargetPrediction database. A network was constructed based on the targets of AP obtained from Genecards database, and protein-protein interaction analysis was performed on the intersection targets using STRING database. Key targets were screened for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and the binding activity of components and targets was predicted using AutoDockTools-1.5.7. RESULTS A total of 65 components of SHG that met the screening criteria were retrieved, resulting in 867 corresponding targets. Additionally, 1086 AP target genes were retrieved, and 272 gene targets were obtained from the intersection as potential targets for SHG in the treatment of AP. Molecular docking results showed that the core components genkwanin, acacetin, apigenin, quercetin can stably bind to the core targets glyceraldehyde 3-phosphate dehydrogenase, interleukin 6, tumor necrosis factor, serine/threonine protein kinase, tumor protein 53, and epidermal growth factor receptor. CONCLUSION The research results preliminarily predict and verify the mechanism of action of SHG in the treatment of AP, providing insights for further in-depth research.
Collapse
Affiliation(s)
- Jiying Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanqi Qiao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Gao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyun Yang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Keyan Chai
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Zhao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Rayati M, Mansouri V, Ahmadbeigi N. Gene therapy in glioblastoma multiforme: Can it be a role changer? Heliyon 2024; 10:e27087. [PMID: 38439834 PMCID: PMC10909773 DOI: 10.1016/j.heliyon.2024.e27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal cancers with a poor prognosis. Over the past century since its initial discovery and medical description, the development of effective treatments for this condition has seen limited progress. Despite numerous efforts, only a handful of drugs have gained approval for its treatment. However, these treatments have not yielded substantial improvements in both overall survival and progression-free survival rates. One reason for this is its unique features such as heterogeneity and difficulty of drug delivery because of two formidable barriers, namely the blood-brain barrier and the tumor-blood barrier. Over the past few years, significant developments in therapeutic approaches have given rise to promising novel and advanced therapies. Target-specific therapies, such as monoclonal antibodies (mAbs) and small molecules, stand as two important examples; however, they have not yielded a significant improvement in survival among GBM patients. Gene therapy, a relatively nascent advanced approach, holds promise as a potential treatment for cancer, particularly GBM. It possesses the potential to address the limitations of previous treatments and even newer advanced therapies like mAbs, owing to its distinct properties. This review aims to elucidate the current status and advancements in gene therapy for GBM treatment, while also presenting its future prospects.
Collapse
Affiliation(s)
- Mohammad Rayati
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadbeigi
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Liu J, Lu Y, Liu Y, Zhang W, Xian S, Wang S, Zheng Z, Lin R, Jin M, Zhang M, Qian W, Tang J, Lu B, Yang Y, Liu Z, Qu M, Ma H, Wu X, Chang Z, Zhang J, Zhang Y. A gene signature linked to fibroblast differentiation for prognostic prediction of mesothelioma. Cell Biosci 2024; 14:33. [PMID: 38462627 PMCID: PMC10926647 DOI: 10.1186/s13578-023-01180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/05/2023] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Malignant mesothelioma is a type of infrequent tumor that is substantially related to asbestos exposure and has a terrible prognosis. We tried to produce a fibroblast differentiation-related gene set for creating a novel classification and prognostic prediction model of MESO. METHOD Three databases, including NCBI-GEO, TCGA, and MET-500, separately provide single-cell RNA sequencing data, bulk RNA sequencing profiles of MESO, and RNA sequencing information on bone metastatic tumors. Dimensionality reduction and clustering analysis were leveraged to acquire fibroblast subtypes in the MESO microenvironment. The fibroblast differentiation-related genes (FDGs), which were associated with survival and subsequently utilized to generate the MESO categorization and prognostic prediction model, were selected in combination with pseudotime analysis and survival information from the TCGA database. Then, regulatory network was constructed for each MESO subtype, and candidate inhibitors were predicted. Clinical specimens were collected for further validation. RESULT A total of six fibroblast subtypes, three differentiation states, and 39 FDGs were identified. Based on the expression level of FDGs, three MESO subtypes were distinguished in the fibroblast differentiation-based classification (FDBC). In the multivariate prognostic prediction model, the risk score that was dependent on the expression level of several important FDGs, was verified to be an independently effective prognostic factor and worked well in internal cohorts. Finally, we predicted 24 potential drugs for the treatment of MESO. Moreover, immunohistochemical staining and statistical analysis provided further validation. CONCLUSION Fibroblast differentiation-related genes (FDGs), especially those in low-differentiation states, might participate in the proliferation and invasion of MESO. Hopefully, the raised clinical subtyping of MESO would provide references for clinical practitioners.
Collapse
Affiliation(s)
- Jun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital Affiliated to Tongji University, 507 Zheng Min Road, Shanghai, 200433, China
| | - Yuwei Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, 200092, China
| | - Zixuan Zheng
- Tongji University School of Medicine, Shanghai, 200092, China
| | - Ruoyi Lin
- Tongji University School of Medicine, Shanghai, 200092, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengyi Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weijin Qian
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jieling Tang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bingnan Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiting Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zichang Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingyu Qu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haonan Ma
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinru Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengyan Chang
- Department of Pathology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, 301 Yanchang Road, Shanghai, 200072, China.
| | - Jie Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 Gaoke West Road, Shanghai, 201204, China.
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
28
|
Gross F, Mancini A, Breton B, Kobayashi H, Pereira PHS, Le Gouill C, Bouvier M, Schann S, Leroy X, Sabbagh L. EGFR signaling and pharmacology in oncology revealed with innovative BRET-based biosensors. Commun Biol 2024; 7:250. [PMID: 38429428 PMCID: PMC10907714 DOI: 10.1038/s42003-024-05965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
Mutations of receptor tyrosine kinases (RTKs) are associated with the development of many cancers by modifying receptor signaling and contributing to drug resistance in clinical settings. We present enhanced bystander bioluminescence resonance energy transfer-based biosensors providing new insights into RTK biology and pharmacology critical for the development of more effective RTK-targeting drugs. Distinct SH2-specific effector biosensors allow for real-time and spatiotemporal monitoring of signal transduction pathways engaged upon RTK activation. Using EGFR as a model, we demonstrate the capacity of these biosensors to differentiate unique signaling signatures, with EGF and Epiregulin ligands displaying differences in efficacy, potency, and responses within different cellular compartments. We further demonstrate that EGFR single point mutations found in Glioblastoma or non-small cell lung cancer, impact the constitutive activity of EGFR and response to tyrosine kinase inhibitor. The BRET-based biosensors are compatible with microscopy, and more importantly characterize the next generation of therapeutics directed against RTKs.
Collapse
Affiliation(s)
- Florence Gross
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada
| | - Arturo Mancini
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada
| | - Billy Breton
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Hiroyuki Kobayashi
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Pedro Henrique Scarpelli Pereira
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, and Department of Biochemistry and Molecular Medicine, University of Montreal, 2950 Chemin de Polytechnique, Montreal, Quebec, H3T 1J4, Canada
| | - Stephan Schann
- Domain Therapeutics SA, 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg-Illkirch, France
| | - Xavier Leroy
- Domain Therapeutics SA, 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg-Illkirch, France
| | - Laurent Sabbagh
- Domain Therapeutics North America Inc., 7171 Frederick-Banting, Saint-Laurent, Quebec, H4S 1Z9, Canada.
| |
Collapse
|
29
|
Yang X, Yang B, Li D, Pan W, Tong Q, Wang L, Chen D, Fu C. Thromboembolic Events Associated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Pharmacovigilance Analysis of the US FDA Adverse Event Reporting System (FAERS) Database. Clin Drug Investig 2024; 44:199-207. [PMID: 38376794 DOI: 10.1007/s40261-024-01346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND OBJECTIVES Although thromboembolic events (TEEs) have been reported with the use of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), their association remains largely unknown. In this study, we aimed to provide a comprehensive review of TEEs associated with EGFR-TKIs. METHODS We collected EGFR-TKIs (gefitinib, erlotinib, afatinib, and osimertinib) adverse reaction reports from 2015 Q1 to 2023 Q1 from the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. Disproportionality analysis was conducted to identify thromboembolic adverse events associated with EGFR-TKIs by comparing them with the overall FAERS database according to the reporting odds ratio (ROR). Associated factors were explored using univariate logistic regression. RESULTS We identified 1068 reports of TEEs associated with EGFR-TKIs (1.24% accounts for all TEEs). Affected patients were females (49.72%) and those older than 65 years (41.20%). The reported TEE case fatality was 30.24%. The median time to onset (TTO) of all cases was 39 days [interquartile range (IQR) 11-161], and the median TTO of fatalities [31 days (IQR 10-116)] was significantly shorter than that of non-fatal cases [46 days (IQR 12-186)]. CONCLUSION This study yielded three key findings. Firstly, EGFR-TKIs seem to exhibit prothrombotic effects, elevating the risk of TEEs. Secondly, the clinical outcomes of TEEs associated with EGFR-TKIs were poor. Thirdly, most TEEs occurred within the initial 3 months, and fatal cases occurred earlier than non-fatal cases.
Collapse
Affiliation(s)
- Xiongwen Yang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Bo Yang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Dan Li
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Wei Pan
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Qin Tong
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lili Wang
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Danjun Chen
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Chengxiao Fu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China.
- Clinical Pharmacology Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
30
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
31
|
Wang H, Zhang X, Liu J, Chen W, Guo X, Wang Y, Wang Y, Xing H, Liang T, Shi Y, Liu D, Yang T, Xia Y, Li J, Wu J, Liu Q, Qu T, Guo S, Li H, Zhang K, Li Y, Jin S, Zhao D, Wang Y, Ma W. Clinical roles of EGFR amplification in diffuse gliomas: a real-world study using the 2021 WHO classification of CNS tumors. Front Neurosci 2024; 18:1308627. [PMID: 38595969 PMCID: PMC11002900 DOI: 10.3389/fnins.2024.1308627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/12/2024] [Indexed: 04/11/2024] Open
Abstract
Background The 2021 World Health Organization Classification of Central Nervous System Tumors updates glioma subtyping and grading system, and incorporates EGFR amplification (Amp) as one of diagnostic markers for glioblastoma (GBM). Purpose This study aimed to describe the frequency, clinical value and molecular correlation of EGFR Amp in diffuse gliomas based on the latest classification. Methods We reviewed glioma patients between 2011 and 2022 at our hospital, and included 187 adult glioma patients with available tumor tissue for detection of EGFR Amp and other 59 molecular markers of interest. Clinical, radiological and pathological data was analyzed based on the status of EGFR Amp in different glioma subtypes. Results 163 gliomas were classified as adult-type diffuse gliomas, and the number of astrocytoma, oligodendroglioma and GBM was 41, 46, and 76. EGFR Amp was more common in IDH-wildtype diffuse gliomas (66.0%) and GBM (85.5%) than IDH-mutant diffuse gliomas (32.2%) and its subtypes (astrocytoma, 29.3%; oligodendroglioma, 34.8%). EGFR Amp did not stratify overall survival (OS) in IDH-mutant diffuse gliomas and astrocytoma, while was significantly associated with poorer OS in IDH-wildtype diffuse gliomas, histologic grade 2 and 3 IDH-wildtype diffuse astrocytic gliomas and GBM. Conclusion Our study validated EGFR Amp as a diagnostic marker for GBM and still a useful predictor for shortened OS in this group.
Collapse
Affiliation(s)
- Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahui Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- "4+4" Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- "4+4" Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, China
| |
Collapse
|
32
|
Wang Q, Tang Y, Dai A, Li T, Pei Y, Zhang Z, Hu X, Chen T, Chen Q. VNP20009-Abvec-Igκ-MIIP suppresses ovarian cancer progression by modulating Ras/MEK/ERK signaling pathway. Appl Microbiol Biotechnol 2024; 108:218. [PMID: 38372808 PMCID: PMC10876780 DOI: 10.1007/s00253-024-13047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Ovarian cancer poses a significant threat to women's health, with conventional treatment methods encountering numerous limitations, and the emerging engineered bacterial anti-tumor strategies offer newfound hope for ovarian cancer treatment. In this study, we constructed the VNP20009-Abvec-Igκ-MIIP (VM) engineered strain and conducted initial assessments of its in vitro growth performance and the expression capability of migration/invasion inhibitory protein (MIIP). Subsequently, ID8 ovarian cancer cells and mouse cancer models were conducted to investigate the impact of VM on ovarian cancer. Our results revealed that the VM strain demonstrated superior growth performance, successfully invaded ID8 ovarian cancer cells, and expressed MIIP, consequently suppressing cell proliferation and migration. Moreover, VM specifically targeted tumor sites and expressed MIIP which further reduced the tumor volume of ovarian cancer mice (p < 0.01), via the downregulation of epidermal growth factor receptor (EGFR), Ras, p-MEK, and p-ERK. The downregulation of the PI3K/AKT signaling pathway and the decrease in Bcl-2/Bax levels also indicated VM's apoptotic potency on ovarian cancer cells. In summary, our research demonstrated that VM exhibits promising anti-tumor effects both in vitro and in vivo, underscoring its potential for clinical treatment of ovarian cancer. KEY POINTS: • This study has constructed an engineered strain of Salmonella typhimurium capable of expressing anticancer proteins • The engineered bacteria can target and colonize tumor sites in vivo • VM can inhibit the proliferation, migration, and invasion of ovarian cancer cells.
Collapse
Affiliation(s)
- Qian Wang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Yuwen Tang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Ang Dai
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Tiange Li
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Yulin Pei
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Zuo Zhang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Xinyue Hu
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, No. 1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China.
| | - Qi Chen
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Donghu District, Nanchang City, 330000, Jiangxi Province, China.
| |
Collapse
|
33
|
Sarı U, Zaman F. Effects of rosmarinic acid and doxorubicine on an ovarian adenocarsinoma cell line (OVCAR3) via the EGFR pathway. Acta Cir Bras 2024; 39:e390524. [PMID: 38324801 PMCID: PMC10852540 DOI: 10.1590/acb390524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 02/09/2024] Open
Abstract
PURPOSE We aimed to reveal the effects of rosmarinic acid (RA), which has come to the forefront with its antitumor and antioxidant properties in many studies recently in the ovarian adenocarcinoma cell line, on the epidermal growth factor receptor (EFGR) signaling pathway in the presence of doxorubicin (DOX). METHODS Ovarian adenocarcinoma cell line (OVCAR3) and human skin keratinocyte cell line human skin keratinocyte cell line (HaCaT) were used as control. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was applied to determine the effect of RA and DOX on the proliferation of OVCAR3 and HaCaT cells. Bcl2 expression and epidermal growth factor receptor (EGFR) and western blot analysis were performed to determine the expression levels of the markers. RESULTS It was determined that RA (IC50 = 437.6 μM) and DOX (IC50 = 0.08 μM) have the ability to inhibit the proliferation of OVCAR3 cells and induce apoptosis in a 72-hour time and dose-dependent manner. Western blot showed that the expression level of Bcl-2 and EGFR in OVCAR3 cells was down-regulated by RA and DOX. CONCLUSIONS Apoptosis in OVCAR3 cells can potentially be induced by RA via the EGFR pathway, and RA may be a potent agent for cancer therapy.
Collapse
Affiliation(s)
- Umut Sarı
- Umut Sarı Clinic – Department of Gynecology and Obstetrics – Istanbul, Turkey
| | - Fuat Zaman
- Diyarlife Hospital – Department of Obstetrics and Gynecology – Diyarbakır, Turkey
| |
Collapse
|
34
|
Pasta A, Calabrese F, Djahandideh Sheijani S, Furnari M, Giannini EG, Grillo F, Marabotto E, Mastracci L, Murdaca G, Negrini S, Savarino EV, Savarino V, Zentilin P. Expression of epidermal growth factor receptor (EGFR) in systemic sclerosis patients (SSc) and gastro-oesophageal reflux disease (GORD). Immunol Lett 2024; 265:31-36. [PMID: 38171474 DOI: 10.1016/j.imlet.2023.106834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/15/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Systemic sclerosis (SSc) affects the connective tissue and leads to an abnormal fibrotic process in the skin and internal organs. Epidermal Growth Factor Receptor (EGFR) is able to induce cell proliferation and differentiation, and its expression is increased in SSc patients with pulmonary artery hypertension and in skin biopsies in patients with scleroderma. To date, no data on esophageal expression of EGFR are available in SSc patients. We aimed to evaluate whether the pro-fibrogenic pathways of SSc may affect EGFR expression in the esophagus. METHODS A retrospective analysis included patients with SSc and control subjects suffering from gastroesophageal reflux symptoms. Endoscopic assessment and histopathologic analyses were performed in all subjects and the presence of microscopic esophagitis was used to distinguish patients with normal esophageal mucosa and subjects with non-erosive reflux disease. EGFR expression was measured in all subjects. RESULTS A total of 35 patients with SSc were included, while the control group included 67 non-SSc patients. EGFR expression at the Z-line was higher in SSc patients than non-SSc patients in absence of microscopic esophagitis (median 65 %, IQR 56-71 % vs 42 %, IQR 37-54 %, p < 0.001). Microscopic esophagitis was found in 60 % of patients with SSc and 62.7 % of control patients, and EGFR expression was significantly higher in patients presenting microscopic esophagitis both in SSc and non-SSc patients. CONCLUSION The EGFR hyperexpression may be due to SSc and/or reflux-related damage in patients with microscopic esophagitis. Further studies are warranted to answer open questions and provide a possible role of EGFR in terms of diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Andrea Pasta
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, Genoa, Italy
| | - Francesco Calabrese
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, Genoa, Italy
| | | | - Manuele Furnari
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, Genoa, Italy
| | - Edoardo G Giannini
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, Genoa, Italy
| | - Federica Grillo
- Department of Surgical Sciences and Integrated Diagnostics, Pathological Anatomy Unit, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Marabotto
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, Genoa, Italy
| | - Luca Mastracci
- Department of Surgical Sciences and Integrated Diagnostics, Pathological Anatomy Unit, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Internal Medicine Unit, University of Genoa, Genoa, Italy
| | - Simone Negrini
- Department of Internal Medicine, Clinical Immunology and Translational Medicine Unit, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology, and Gastroenterology, University of Padua, Padua, Italy; Gastroenterology Unit, Azienda Ospedale Università Padova, Padua, Italy
| | - Vincenzo Savarino
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, Genoa, Italy
| | - Patrizia Zentilin
- Department of Internal Medicine, Gastroenterology Unit, University of Genoa, Genoa, Italy.
| |
Collapse
|
35
|
Sayin AZ, Abali Z, Senyuz S, Cankara F, Gursoy A, Keskin O. Conformational diversity and protein-protein interfaces in drug repurposing in Ras signaling pathway. Sci Rep 2024; 14:1239. [PMID: 38216592 PMCID: PMC10786864 DOI: 10.1038/s41598-023-50913-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
We focus on drug repurposing in the Ras signaling pathway, considering structural similarities of protein-protein interfaces. The interfaces formed by physically interacting proteins are found from PDB if available and via PRISM (PRotein Interaction by Structural Matching) otherwise. The structural coverage of these interactions has been increased from 21 to 92% using PRISM. Multiple conformations of each protein are used to include protein dynamics and diversity. Next, we find FDA-approved drugs bound to structurally similar protein-protein interfaces. The results suggest that HIV protease inhibitors tipranavir, indinavir, and saquinavir may bind to EGFR and ERBB3/HER3 interface. Tipranavir and indinavir may also bind to EGFR and ERBB2/HER2 interface. Additionally, a drug used in Alzheimer's disease can bind to RAF1 and BRAF interface. Hence, we propose a methodology to find drugs to be potentially used for cancer using a dataset of structurally similar protein-protein interface clusters rather than pockets in a systematic way.
Collapse
Affiliation(s)
- Ahenk Zeynep Sayin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey
| | - Zeynep Abali
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Simge Senyuz
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Fatma Cankara
- Graduate School of Science and Engineering, Computational Sciences and Engineering, Koc University, 34450, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, 34450, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koc University, Rumeli Feneri Yolu Sariyer, 34450, Istanbul, Turkey.
| |
Collapse
|
36
|
Zhang QY, Xu LL, Zhong MT, Chen YK, Lai MQ, Wang Q, Xie XL. Gestational GenX and PFOA exposures induce hepatotoxicity, metabolic pathway, and microbiome shifts in weanling mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168059. [PMID: 37884144 DOI: 10.1016/j.scitotenv.2023.168059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Ammonium perfluoro (2-methyl-3-oxahexanoate) (GenX), a replacement for perfluorooctanoic acid (PFOA), has been detected in multiple environmental media and biological samples worldwide. Accumulated evidence implies that GenX exposure might exert adverse health effects, although the underlying mechanisms have not been fully revealed. In this study, pregnant BALB/c mice were exposed to GenX (2 mg/kg/day), PFOA (1 mg/kg/day), or Milli-Q water by gavage from the first day of gestation (GD0) until GD21. Necropsy and tissue collection were conducted in pups at 4 weeks of age. PFOA and GenX induced similar histopathological changes in both the liver and the intestinal mucosa, accompanied by higher serum levels of alanine and aspartate aminotransferase. Moreover, the capacity of hepatic glycogen storage and intestinal mucus secretion were significantly decreased, suggesting dysfunction of liver metabolism and the intestinal mucosal barrier. A total of 637 and 352 differentially expressed genes (DEGs) were identified in the liver tissues of GenX and PFOA group, respectively. Most of the enriched pathways from the DEGs by KEGG enrichment analysis were metabolism-associated. Moreover, overexpression of CYP4A14, Sult2a1, Cpt1b, Acaa1b, Igfbp1, Irs-2 and decreased expression of Gys2 were observed in livers of GenX exposed pups, supporting the hypothesis that there was metabolic disruption. Furthermore, DNA damage and cell cycle arrest proteins (Gadd45β, p21, Ppard) were significantly increased, while cell proliferation-related proteins (Cyclin E, Myc, EGFR) were decreased by gestational GenX exposure in the pups' liver. In addition, imbalance of gut microbiota and dysfunction of the intestinal mucosa barrier might contribute to hepatotoxicity at least in part. Taken together, our results suggested that gestational GenX exposure triggered metabolic disorder, which might be responsible for the hepatotoxicity in the pups in addition to dysfunction of the intestinal mucosa barrier. This study enriches the mechanisms of GenX-induced developmental hepatotoxicity by associating metabolic disorder with intestinal homeostasis.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
37
|
Tripathi P, Kumari R, Pathak R. Drugging the undruggable: Advances in targeting KRAS signaling in solid tumors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:1-39. [PMID: 38663957 DOI: 10.1016/bs.ircmb.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cancer remains the leading cause of global mortality, prompting a paradigm shift in its treatment and outcomes with the advent of targeted therapies. Among the most prevalent mutations in RAS-driven cancers, Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations account for approximately 86% of cases worldwide, particularly in lung, pancreatic, and colon cancers, contributing to poor prognosis and reduced overall survival. Despite numerous efforts to understand the biology of KRAS mutants and their pivotal role in cancer development, the lack of well-defined drug-binding pockets has deemed KRAS an "undruggable" therapeutic target, presenting significant challenges for researchers and clinicians alike. Through significant biochemical and technological advances, the last decade has witnessed promising breakthroughs in targeted therapies for KRAS-mutated lung, colon, and pancreatic cancers, marking a critical turning point in the field. In this chapter, we provide an overview of the characteristics of KRAS mutations across various solid tumors, highlighting ongoing cutting-edge research on the immune microenvironment, the development of KRAS-driven mice models, and the recent progress in the exploration of specific KRAS mutant-targeted therapeutic approaches. By comprehensive understanding of the intricacies of KRAS signaling in solid tumors and the latest therapeutic developments, this chapter will shed light on the potential for novel therapeutic strategies to combat KRAS-driven tumors and improve patient outcomes.
Collapse
Affiliation(s)
- Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Rajni Kumari
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States.
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States.
| |
Collapse
|
38
|
Chen W, Que Q, Zhong R, Lin Z, Yi Q, Wang Q. Assessing TGF-β Prognostic Model Predictions for Chemotherapy Response and Oncogenic Role of FKBP1A in Liver Cancer. Curr Pharm Des 2024; 30:3131-3152. [PMID: 39185649 DOI: 10.2174/0113816128326151240820105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The Transforming Growth Factor-Beta (TGF-β) signaling pathway plays a crucial role in the pathogenesis of diseases. This study aimed to identify differentially expressed TGF-β-related genes in liver cancer patients and to correlate these findings with clinical features and immune signatures. METHODS The TCGA-STAD and LIRI-JP cohorts were utilized for a comprehensive analysis of TGF-β- related genes. Differential gene expression, functional enrichment, survival analysis, and machine learning techniques were employed to develop a prognostic model based on a TGF-β-related gene signature (TGFBRS). RESULTS We developed a prognostic model for liver cancer based on the expression levels of nine TGF-β- related genes. The model indicates that higher TGFBRS values are associated with poorer prognosis, higher tumor grades, more advanced pathological stages, and resistance to chemotherapy. Additionally, the TGFBRS-High subtype was characterized by elevated levels of immune-suppressive cells and increased expression of immune checkpoint molecules. Using a Gradient Boosting Decision Tree (GBDT) machine learning approach, the FKBP1A gene was identified as playing a significant role in liver cancer. Notably, knocking down FKBP1A significantly inhibited the proliferation and metastatic capabilities of liver cancer cells both in vitro and in vivo. CONCLUSION Our study highlights the potential of TGFBRS in predicting chemotherapy responses and in shaping the tumor immune microenvironment in liver cancer. The results identify FKBP1A as a promising molecular target for developing preventive and therapeutic strategies against liver cancer. Our findings could potentially guide personalized treatment strategies to improve the prognosis of liver cancer patients.
Collapse
Affiliation(s)
- Weimei Chen
- Department of Blood Transfusion, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Qinghe Que
- Department of Blood Transfusion, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Rongrong Zhong
- Department of Emergency, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Zhou Lin
- Department of Burn Plastic Surgery and Wound Repair Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Qiaolan Yi
- Department of Clinical Laboratory, Longyan First Affiliated Hospital of Fujian Medical University, Longyan City, Fujian Province, 364000, China
| | - Qingshui Wang
- Second Affiliated Hospital of Fujian University of Traditional Chinese Medical University Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
39
|
Linguanti F, Abenavoli EM, Calabretta R, Berti V, Lopci E. ImmunoPET Targeting Receptor Tyrosine Kinase: Clinical Applications. Cancers (Basel) 2023; 15:5886. [PMID: 38136430 PMCID: PMC10741542 DOI: 10.3390/cancers15245886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Receptor tyrosine kinases, or RTKs, are one large family of cell surface receptors involved in signal transduction, which represent an integral part of the signaling pathways. They play a crucial role in most important cellular processes, starting with the cell cycle, proliferation and differentiation, as well as cell migration, metabolism and survival. The introduction of ImmunoPET evaluating the expression of RTKs by specific monoclonal antibodies (mAbs) or antibody fragments is regarded as a promising tool for imaging treatment efficacy and developing anticancer therapeutics. Our review focuses mainly on the current clinical research regarding ImmunoPET targeting RTKs, with particular interest in the epidermal growth factor family, or HER family, and vascular endothelial-derived growth factor/receptor.
Collapse
Affiliation(s)
- Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (V.B.)
- Nuclear Medicine Department, Ospedale San Donato, 52100 Arezzo, Italy
| | | | - Raffaella Calabretta
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Valentina Berti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (V.B.)
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
40
|
Fan M, Hu L, Shi S, Song X, He H, Qi B. Design, synthesis and biological evaluation of EGFR kinase inhibitors that spans the orthosteric and allosteric sites. Bioorg Med Chem 2023; 96:117534. [PMID: 37952262 DOI: 10.1016/j.bmc.2023.117534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Acquired drug resistance occurred in the treatment of non-small-cell lung cancer is a persistent challenge, especially in EGFR mutant type. In this study, we present design, synthesis and biological evaluation of novel quinazoline and pyrrolopyrimidine derivatives that simultaneously occupy the orthosteric and allosteric sites of EGFR. Among them, compound A-7 was confirmed as a potential EGFRL858R/T790M/C797S and EGFRDel19/T790M/C797S inhibitor. Docking study indicated that compound A-7 could simultaneously occupy two binding sites of EGFR and form three key H-bonds with the residues Met793, Lys745 and Met766 in two regions.
Collapse
Affiliation(s)
- Mengmeng Fan
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Liping Hu
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Shengmin Shi
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xiaomeng Song
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Huan He
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China.
| | - Baohui Qi
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
41
|
Jeon J, Jang SY, Kwak EJ, Lee SH, Byun JY, Kim YY, Ahn YG, Singh P, Moon K, Kim IS. Design and synthesis of 4th generation EGFR inhibitors against human triple (Del19/T790M/C797S) mutation. Eur J Med Chem 2023; 261:115840. [PMID: 37783102 DOI: 10.1016/j.ejmech.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Epidermal growth factor receptor (EGFR)-targeted therapy is used to treat EGFR mutation-induced non-small cell lung cancer (NSCLC). However, its efficacy does not last beyond a certain period due to the development of primary and secondary resistance. First and second-generation inhibitors (e.g., gefitinib, erlotinib, and afatinib) induce EGFR T790M mutations, while third-generation inhibitors (e.g., osimertinib) induce C797S as a major target resistance mutation. Therefore, the C797S mutation is being actively researched. In this study, we investigated the structure-activity relationship of several synthesized compounds as fourth-generation inhibitors against the C797S mutation. We identified a compound 13k that displayed nanomolar potency and high selectivity. Moreover, we used a triple mutant xenograft mouse model to evaluate the in vivo efficacy of 13k in inhibiting EGFR C797S, which demonstrated exceptional profiles and satisfactory EGFR C797S inhibition efficacy. Based on its excellent in vitro and in vivo profiles, compound 13k can be considered a promising candidate for treating EGFR C797S mutations.
Collapse
Affiliation(s)
- Jiyoung Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Sun Young Jang
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Eun Joo Kwak
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Sun Hoe Lee
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Joo-Yun Byun
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Yu-Yon Kim
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Young Gil Ahn
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
42
|
Jachowski A, Marcinkowski M, Szydłowski J, Grabarczyk O, Nogaj Z, Marcin Ł, Pławski A, Jagodziński PP, Słowikowski BK. Modern therapies of nonsmall cell lung cancer. J Appl Genet 2023; 64:695-711. [PMID: 37698765 PMCID: PMC10632224 DOI: 10.1007/s13353-023-00786-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Lung cancer (LC), particularly nonsmall cell lung cancer (NSCLC), is one of the most prevalent types of neoplasia worldwide, regardless of gender, with the highest mortality rates in oncology. Over the years, treatment for NSCLC has evolved from conventional surgery, chemotherapy, and radiotherapy to more tailored and minimally invasive approaches. The use of personalised therapies has increased the expected efficacy of treatment while simultaneously reducing the frequency of severe adverse effects (AEs). In this review, we discuss established modern approaches, including immunotherapy and targeted therapy, as well as experimental molecular methods like clustered regularly interspaced short palindromic repeat (CRISPR) and nanoparticles. These emerging methods offer promising outcomes and shorten the recovery time for various patients. Recent advances in the diagnostic field, including imaging and genetic profiling, have enabled the implementation of these methods. The versatility of these modern therapies allows for multiple treatment options, such as single-agent use, combination with existing conventional treatments, or incorporation into new regimens. As a result, patients can survive even in the advanced stages of NSCLC, leading to increased survival indicators such as overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Andrzej Jachowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Mikołaj Marcinkowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Jakub Szydłowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Oskar Grabarczyk
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Zuzanna Nogaj
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Łaz Marcin
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32 Street, 60-479, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland
| | - Bartosz Kazimierz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, Święcickiego 6 Street, 60-781, Poznań, Poland.
| |
Collapse
|
43
|
Cao Y, Efetov SK, He M, Fu Y, Beeraka NM, Zhang J, Zhang X, Bannimath N, Chen K. Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:19. [DOI: https:/doi.org/10.1007/s00005-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/28/2023] [Indexed: 09/20/2024]
|
44
|
Karachrysafi S, Georgiou P, Kavvadas D, Papafotiou F, Isaakidou S, Grammatikakis IE, Papamitsou T. Immunohistochemical study of MMP-2, MMP-9, EGFR and IL-8 in decidual and trophoblastic specimens of recurrent pregnancy loss cases. J Matern Fetal Neonatal Med 2023; 36:2218523. [PMID: 37258409 DOI: 10.1080/14767058.2023.2218523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND AIM Unexplained recurrent pregnancy loss has been a a challenging research task to experts since there is no explicit pathophysiological mechanism and therefore, the treatment remains elusive. Immunological imbalance and morphological abnormalities are under investigation. This study aims to evaluate the implication of MMP-2, MMP-9, EGFR, and IL-8 in recurrent pregnancy loss cases. MATERIALS & METHODS The study was carried out through comparison among two groups; the unexplained miscarriage group which consisted of 22 women, and the control group consisted of 18 women, who had electively terminated their pregnancies. Both groups were in the first trimester of gestation. The specimens included the trophoblast, decidua basalis, and decidua parietalis. The study was conducted via immunohistochemical methods. Antibodies were used against MMP-2, MMP-9, EGFR, and IL-8. The results were presented at a contingency table and were statistically analyzed with the Chi-Square Test (X2). RESULTS There were remarkable disparities in some cases in the comparison of the two groups. MMP-9 was detected significantly high in recurrent pregnancy loss (RPL) cases, both on trophoblastic and decidual specimens (p-value < .00001), MMP-2 displayed no difference among the two groups (mild to moderate detection on trophoblast and almost negative on decidual tissues). EGFR was highly detected in trophoblastic tissue (p-value = .014). IL-8 detection was particularly different in both trophoblast and decidua parietalis of the two groups (p-value < .01). CONCLUSION The study revealed both morphological and immunological dysregulations that might participate in the RPL pathogenesis.
Collapse
Affiliation(s)
- Sofia Karachrysafi
- Histology and Embryology Laboratory, Medical School, Faculty of Health, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Polyxeni Georgiou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Kavvadas
- Histology and Embryology Laboratory, Medical School, Faculty of Health, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Foteini Papafotiou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Isaakidou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Theodora Papamitsou
- Histology and Embryology Laboratory, Medical School, Faculty of Health, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
45
|
Bhandari SV, Kuthe PV, Patil SM, Nagras OG, Sarkate AP, Chaudhari SY, Surve SV. Molecular Docking, Pharmacokinetic and Molecular Simulation Analysis of Novel Mono-Carbonyl Curcumin Analogs as L858R/T790M/C797S Mutant EGFR Inhibitors. Chem Biodivers 2023; 20:e202301081. [PMID: 37793119 DOI: 10.1002/cbdv.202301081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Curcumin, an anticancer natural compound with multiple pharmacological activities, has a weak pharmacokinetic and instability due to diketone moiety. Curcumin's stability challenges can be overcome by removing the diketone moiety and shortening the 7-carbon chain, resulting in mono-carbonyl analogs. Cancer proliferation is caused by the activation of Epidermal Growth Factor (EGFR) pathways. Current available EGFR inhibitors have an issue of resistance. AIM Thus, we aimed to design new mono-carbonyl curcumin derivatives and analyse their drug likeness properties. Further, to investigate them on three distinct crystal structures, namely two wild-type and L858R/T790M/C797S mutant generations for EGFR inhibitory activity. METHOD Ten New Molecular Entities (NME's) were designed using literature survey. These molecules were subjected to comparative molecular docking, on the EGFR crystal structures viz. wild-type (PDB: 1M17 and 4I23) and L858R/T790M/C797S mutant (PDB: 6LUD) using Schrodinger software. The molecules were also tested for Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties. The docked complex of the hit molecule was studied for molecular simulation. RESULT AND DISCUSSION In molecular docking studies, NMEs 1, 2, and 3 were found to have good binding affinity with 1st , 2nd , and 3rd generation EGFR crystal structures and a greater dock score than standard curcumin. All molecules have shown a good ADMET profile. Since L858R/T790M/C797S is currently being explored more, we decided to take the best molecule, NME 3, for molecular dynamics with 6LUD, and the results were compared with those of the co-crystallized ligand S4 (Osimertinib). It was found that the Relative mean square standard deviation (RMSD) (1.8 Å), Relative mean standard Fluctuation (RMSF) (1.45 Å) and radius of gyration (4.87 Å) values of NME 3 were much lower than those of reference S4. All these confirm that our designed NME 3 is more stable than reference S4. CONCLUSION NME 1 and NME 2 have shown better binding against wild type of EGFR. NME 3 have shown comparable binding and more stability as compared to Osimertinib against L858R/T790M/C797S mutated protein structure. The hit compound can be further explored for its Molecular mechanics with generalised Born and surface area solvation (MM-GBSA) and discrete Fourier transform (DFT) studies to find out the energy and atomic level study. In the future, this molecule could be taken for wet lab studies and can be tested for mutated EGFR inhibitory activity.
Collapse
Affiliation(s)
- Shashikant V Bhandari
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Pranali V Kuthe
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Shital M Patil
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Om G Nagras
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| | - Aniket P Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004, Maharashtra, India
| | - Somdatta Y Chaudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Yamunanagar, Sector 21, Nigdi, Pune, 411044, Maharashtra, India
| | - Sandip V Surve
- Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune, 411001, Maharashtra, India
| |
Collapse
|
46
|
van der Hulst HJ, Jansen RW, Vens C, Bos P, Schats W, de Jong MC, Martens RM, Bodalal Z, Beets-Tan RGH, van den Brekel MWM, de Graaf P, Castelijns JA. The Prediction of Biological Features Using Magnetic Resonance Imaging in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:5077. [PMID: 37894447 PMCID: PMC10605807 DOI: 10.3390/cancers15205077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) is an indispensable, routine technique that provides morphological and functional imaging sequences. MRI can potentially capture tumor biology and allow for longitudinal evaluation of head and neck squamous cell carcinoma (HNSCC). This systematic review and meta-analysis evaluates the ability of MRI to predict tumor biology in primary HNSCC. Studies were screened, selected, and assessed for quality using appropriate tools according to the PRISMA criteria. Fifty-eight articles were analyzed, examining the relationship between (functional) MRI parameters and biological features and genetics. Most studies focused on HPV status associations, revealing that HPV-positive tumors consistently exhibited lower ADCmean (SMD: 0.82; p < 0.001) and ADCminimum (SMD: 0.56; p < 0.001) values. On average, lower ADCmean values are associated with high Ki-67 levels, linking this diffusion restriction to high cellularity. Several perfusion parameters of the vascular compartment were significantly associated with HIF-1α. Analysis of other biological factors (VEGF, EGFR, tumor cell count, p53, and MVD) yielded inconclusive results. Larger datasets with homogenous acquisition are required to develop and test radiomic-based prediction models capable of capturing different aspects of the underlying tumor biology. Overall, our study shows that rapid and non-invasive characterization of tumor biology via MRI is feasible and could enhance clinical outcome predictions and personalized patient management for HNSCC.
Collapse
Affiliation(s)
- Hedda J. van der Hulst
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, 6211 LK Maastricht, The Netherlands
| | - Robin W. Jansen
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Conchita Vens
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- School of Cancer Science, University of Glasgow, Glasgow G61 1QH, UK
| | - Paula Bos
- Department of Radiation Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Winnie Schats
- Scientific Information Service, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marcus C. de Jong
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Roland M. Martens
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Zuhir Bodalal
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, 6211 LK Maastricht, The Netherlands
| | - Regina G. H. Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, 6211 LK Maastricht, The Netherlands
- Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Michiel W. M. van den Brekel
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Otolaryngology and Head & Neck Surgery, Amsterdam UMC Location University of Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Pim de Graaf
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, 1081 HV Amsterdam, The Netherlands
| | - Jonas A. Castelijns
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
47
|
Peng J, Li P, Li Y, Quan J, Yao Y, Duan J, Liu X, Li H, Yuan D, Wang X. PFKP is a prospective prognostic, diagnostic, immunological and drug sensitivity predictor across pan-cancer. Sci Rep 2023; 13:17399. [PMID: 37833332 PMCID: PMC10576092 DOI: 10.1038/s41598-023-43982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphofructokinase, platelet (PFKP) is a rate-limiting enzyme of glycolysis that plays a decisive role in various human physio-pathological processes. PFKP has been reported to have multiple functions in different cancer types, including lung cancer and breast cancer. However, no systematic pancancer analysis of PFKP has been performed; this type of analysis could elucidate the clinical value of PFKP in terms of diagnosis, prognosis, drug sensitivity, and immunological correlation. Systematic bioinformation analysis of PFKP was performed based on several public datasets, including The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), Genotype-Tissue Expression Project (GTEx), and Human Protein Atlas (HPA). Prospective carcinogenesis of PFKP across cancers was estimated by expression analysis, effect on patient prognosis, diagnosis significance evaluation, and immunity regulation estimation. Then, pancancer functional enrichment of PFKP was also assessed through its effect on the signaling score and gene expression profile. Finally, upstream expression regulation of PFKP was explored by promoter DNA methylation and transcription factor (TF) prediction. Our analysis revealed that high expression of PFKP was found in most cancer types. Additionally, a high level of PFKP displayed a significant correlation with poor prognosis in patients across cancers. The diagnostic value of PFKP was performed based on its positive correlation with programmed cell death-ligand 1 (PD-L1). We also found an obvious immune-regulating effect of PFKP in most cancer types. PFKP also had a strong negative correlation with several cancer drugs. Finally, ectopic expression of PFKP may depend on DNA methylation and several predicated transcription factors, including the KLF (KLF transcription factor) and Sp (Sp transcription factor) families. This pancancer analysis revealed that a high expression level of PFKP might be a useful biomarker and predictor in most cancer types. Additionally, the performance of PFKP across cancers also suggested its meaningful role in cancer immunity regulation, even in immunotherapy and drug resistance. Overall, PFKP might be explored as an auxiliary monitor for pancancer early prognosis and diagnosis.
Collapse
Affiliation(s)
- Jian Peng
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Pingping Li
- Comprehensive Liver Cancer Center, The Fifth Medical Center of the PLA General Hospital, Beijing, 100039, China
| | - Yuan Li
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jichuan Quan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100020, China
| | - Yanwei Yao
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junfang Duan
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xuemei Liu
- Department of Respiratory and Critical Care Medicine, Second People's Hospital of Taiyuan, Taiyuan, 030002, Shanxi, China
| | - Hao Li
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Dajiang Yuan
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Xiaoru Wang
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
48
|
Zhang NY, Hou DY, Hu XJ, Liang JX, Wang MD, Song ZZ, Yi L, Wang ZJ, An HW, Xu W, Wang H. Nano Proteolysis Targeting Chimeras (PROTACs) with Anti-Hook Effect for Tumor Therapy. Angew Chem Int Ed Engl 2023; 62:e202308049. [PMID: 37486792 DOI: 10.1002/anie.202308049] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Proteolysis targeting chimera (PROTAC) is an emerging pharmacological modality with innovated post-translational protein degradation capabilities. However, off-target induced unintended tissue effects and intrinsic "hook effect" hinder PROTAC biotechnology to be maturely developed. Herein, an intracellular fabricated nano proteolysis targeting chimeras (Nano-PROTACs) modality with a center-spoke degradation network for achieving efficient dose-dependent protein degradation in tumor is reported. The PROTAC precursors are triggered by higher GSH concentrations inside tumor cells, which subsequently in situ self-assemble into Nano-PROTACs through intermolecular hydrogen bond interactions. The fibrous Nano-PROTACs can form effective polynary complexes and E3 ligases degradation network with multi-binding sites, achieving dose-dependent protein degradation with "anti-hook effect". The generality and efficacy of Nano-PROTACs are validated by degrading variable protein of interest (POI) such as epidermal growth factor receptor (EGFR) and androgen receptor (AR) in a wide-range dose-dependent manner with a 95 % degradation rate and long-lasting potency up to 72 h in vitro. Significantly, Nano-PROTACs achieve in vivo dose-dependent protein degradation up to 79 % and tumor growth inhibition in A549 and LNCap xenograft mice models, respectively. Taking advantages of in situ self-assembly strategy, the Nano-PROTACs provide a generalizable platform to promote precise clinical translational application of PROTAC.
Collapse
Affiliation(s)
- Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Da-Yong Hou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Xing-Jie Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Xiao Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhang-Zhi Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Jia Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wanhai Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150001, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
49
|
Yan H, Lu S, Zhang S. The cluster D-trace loss for differential network analysis. J Appl Stat 2023; 51:1843-1860. [PMID: 39071251 PMCID: PMC11271130 DOI: 10.1080/02664763.2023.2245178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/29/2023] [Indexed: 07/30/2024]
Abstract
A growing literature suggests that gene expression can be greatly altered in disease conditions, and identifying those changes will improve the understanding of complex diseases such as cancers or diabetes. A prevailing direction in the analysis of gene expression studies the changes in gene pathways which include sets of related genes. Therefore, introducing structured exploration to differential analysis of gene expression networks may lead to meaningful discoveries. The topic of this paper is differential network analysis, which focuses on capturing the differences between two or more precision matrices. We discuss the connection between the thresholding method and the D-trace loss method on differential network analysis in the case that the precision matrices share the common connected components. Based on this connection, we further propose the cluster D-trace loss method which directly estimates the differential network and achieves model selection consistency. Simulation studies demonstrate its improved performance and computational efficiency. Finally, the usefulness of our proposed estimator is demonstrated by a real-data analysis on non-small cell lung cancer.
Collapse
Affiliation(s)
- Han Yan
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing, People's Republic of China
- Pazhou Lab, Guangzhou, People's Republic of China
| | - Shuhan Lu
- Department of Mathematics, University of California, Los Angeles, CA, USA
| | - Sanguo Zhang
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing, People's Republic of China
- Pazhou Lab, Guangzhou, People's Republic of China
| |
Collapse
|
50
|
Cao Y, Efetov SK, He M, Fu Y, Beeraka NM, Zhang J, Zhang X, Bannimath N, Chen K. Updated Clinical Perspectives and Challenges of Chimeric Antigen Receptor-T Cell Therapy in Colorectal Cancer and Invasive Breast Cancer. Arch Immunol Ther Exp (Warsz) 2023; 71:19. [PMID: 37566162 DOI: 10.1007/s00005-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023]
Abstract
In recent years, the incidence of colorectal cancer (CRC) and breast cancer (BC) has increased worldwide and caused a higher mortality rate due to the lack of selective anti-tumor therapies. Current chemotherapies and surgical interventions are significantly preferred modalities to treat CRC or BC in advanced stages but the prognosis for patients with advanced CRC and BC remains dismal. The immunotherapy technique of chimeric antigen receptor (CAR)-T cells has resulted in significant clinical outcomes when treating hematologic malignancies. The novel CAR-T therapy target antigens include GUCY2C, CLEC14A, CD26, TEM8/ANTXR1, PDPN, PTK7, PODXL, CD44, CD19, CD20, CD22, BCMA, GD2, Mesothelin, TAG-72, CEA, EGFR, B7H3, HER2, IL13Ra2, MUC1, EpCAM, PSMA, PSCA, NKG2D. The significant aim of this review is to explore the recently updated information pertinent to several novel targets of CAR-T for CRC, and BC. We vividly described the challenges of CAR-T therapies when treating CRC or BC. The immunosuppressive microenvironment of solid tumors, the shortage of tumor-specific antigens, and post-treatment side effects are the major hindrances to promoting the development of CAR-T cells. Several clinical trials related to CAR-T immunotherapy against CRC or BC have already been in progress. This review benefits academicians, clinicians, and clinical oncologists to explore more about the novel CAR-T targets and overcome the challenges during this therapy.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Sergey K Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Narasimha M Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh, 515721, India
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Xinliang Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Namitha Bannimath
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, #1 Jianshedong Str., Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|