1
|
Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T. Magic angle spinning NMR of viruses. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:21-40. [PMID: 25919197 PMCID: PMC4413014 DOI: 10.1016/j.pnmrs.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|
2
|
Madine J, Jack E, Stockley PG, Radford SE, Serpell LC, Middleton DA. Structural Insights into the Polymorphism of Amyloid-Like Fibrils Formed by Region 20−29 of Amylin Revealed by Solid-State NMR and X-ray Fiber Diffraction. J Am Chem Soc 2008; 130:14990-5001. [DOI: 10.1021/ja802483d] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jillian Madine
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Edward Jack
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Peter G. Stockley
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Sheena E. Radford
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - Louise C. Serpell
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| | - David A. Middleton
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K., Faculty of Life Sciences, University of Manchester, Manchester M60 1QD, U.K., Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K., and Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K
| |
Collapse
|
3
|
Goh GKM, Dunker AK, Uversky VN. Protein intrinsic disorder toolbox for comparative analysis of viral proteins. BMC Genomics 2008; 9 Suppl 2:S4. [PMID: 18831795 PMCID: PMC2559894 DOI: 10.1186/1471-2164-9-s2-s4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To examine the usefulness of protein disorder predictions as a tool for the comparative analysis of viral proteins, a relational database has been constructed. The database includes proteins from influenza A and HIV-related viruses. Annotations include viral protein sequence, disorder prediction, structure, and function. Location of each protein within a virion, if known, is also denoted. Our analysis reveals a clear relationship between proximity to the RNA core and the percentage of predicted disordered residues for a set of influenza A virus proteins. Neuraminidases (NA) and hemagglutinin (HA) of major influenza A pandemics tend to pair in such a way that both proteins tend to be either ordered-ordered or disordered-disordered by prediction. This may be the result of these proteins evolving from being lipid-associated. High abundance of intrinsic disorder in envelope and matrix proteins from HIV-related viruses likely represents a mechanism where HIV virions can escape immune response despite the availability of antibodies for the HIV-related proteins. This exercise provides an example showing how the combined use of intrinsic disorder predictions and relational databases provides an improved understanding of the functional and structural behaviour of viral proteins.
Collapse
Affiliation(s)
- Gerard Kian-Meng Goh
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
4
|
Gehman JD, Separovic F, Lu K, Mehta AK. Boltzmann statistics rotational-echo double-resonance analysis. J Phys Chem B 2007; 111:7802-11. [PMID: 17583943 DOI: 10.1021/jp072504q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new approach to rotational-echo double-resonance (REDOR) data analysis, analogous to Boltzmann maximum entropy statistics, is reported. This Boltzmann statistics REDOR (BS-REDOR) approach is useful for reconstructing an unbiased internuclear distance distribution for multiple internuclear distances from experimentally limited REDOR data sets on isolated spin pairs. The analysis is characterized by exploring reconstructions on model data and applied to both [1-(13)C,15N]-glycine and a long intramolecular distance in Abeta (16-22) peptide nanotubes. The approach also provides insight into the minimal number of REDOR data points required to allow faithful determination of dipolar couplings in systems with multiple internuclear distances.
Collapse
Affiliation(s)
- John D Gehman
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
5
|
Gan Z. Rotary resonance echo double resonance for measuring heteronuclear dipolar coupling under MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 183:235-41. [PMID: 16996758 DOI: 10.1016/j.jmr.2006.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/17/2006] [Accepted: 08/30/2006] [Indexed: 05/11/2023]
Abstract
A rotary resonance echo double resonance (R-REDOR) experiment is described for measuring heteronuclear dipolar coupling under magic-angle spinning. Rotary resonance reintroduces both dipolar coupling and chemical shift anisotropy with an rf field matching the spinning frequency. The resonance effect from chemical shift anisotropy can be refocused with a rotary resonance echo. The R-REDOR experiment thus measures the dephasing of the rotary resonance echo from the heteronuclear dipolar coupling to determine the dipolar coupling constant. The rotary resonance experiment is suitable for measuring dipolar coupling with quadrupolar nuclei because it applies the recoupling rf only to the observed spin-1/2. The rotary resonance scheme has the advantages of a long T2' and susceptible to spinning frequency fluctuation.
Collapse
Affiliation(s)
- Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA.
| |
Collapse
|
6
|
Garcia J, Dumy P, Rosen O, Anglister J. Stabilization of the Biologically Active Conformation of the Principal Neutralizing Determinant of HIV-1IIIB Containing a cis-Proline Surrogate: 1H NMR and Molecular Modeling Study. Biochemistry 2006; 45:4284-94. [PMID: 16566603 DOI: 10.1021/bi052615k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The V3 loop is part of the gp120 glycoprotein, an extracellular protein located on the membrane of the human immunodeficiency virus (HIV-1). This loop is significantly important in many biological processes of the virus and contains the principal neutralizing determinant (PND). The PND is one of the most variable regions of the envelope, and this is probably related to the ability of the HIV virus to escape the immunologic defenses of the target host. Particular attention has been paid to the central part of the V3 loop which contains a highly conserved GPGR/GPGQ sequence and represents the binding site for antibodies. Many attempts have been made to design synthetic peptides as mimics of the V3 loop capable of eliciting immune response. However, this strategy suffers from the great conformational flexibility small peptides have in solution, which together with bioavailability represents the most important limitation to the usefulness of synthetic peptides as drugs and as synthetic immunogens. The use of conformationally constrained peptides can alleviate this problem. Early works using NMR studies have shown that a V3(IIIB) loop-derived peptide is conformationally heterogeneous when free in water. Upon complexation with 0.5beta, a monoclonal neutralizing antibody specific for the HIV-1(IIIB) strain, it adopts a beta-hairpin conformation with the central proline forming a type VIb beta-turn. In this study, we report the design and characterization of a conformationally restricted peptide with a sequence identical to that previously described, but with thiazolidine derivatives replacing the proline. The affinity of the 2,2-dimethylthiazolidine derivative for 0.5beta demonstrates that this moiety can successfully be used to mimic the proline in a cis conformation. This peptide not only displays a high propensity to adopt a beta-hairpin conformation but also retains the type VIb RGPG beta-turn similar to that found in the native complex. These compounds could help in elaborating more efficient immunogens for HIV-1 synthetic vaccine development.
Collapse
Affiliation(s)
- Julian Garcia
- LEDSS, University Joseph Fourier of Grenoble, BP 53, 38041 Grenoble Cedex 9, France.
| | | | | | | |
Collapse
|
7
|
|
8
|
Watabe T, Kishino H, Okuhara Y, Kitazoe Y. Fold recognition of the human immunodeficiency virus type 1 V3 loop and flexibility of its crown structure during the course of adaptation to a host. Genetics 2005; 172:1385-96. [PMID: 16361230 PMCID: PMC1456290 DOI: 10.1534/genetics.105.051508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The third hypervariable (V3) region of the HIV-1 gp120 protein is responsible for many aspects of viral infectivity. The tertiary structure of the V3 loop seems to influence the coreceptor usage of the virus, which is an important determinant of HIV pathogenesis. Hence, the information about preferred conformations of the V3-loop region and its flexibility could be a crucial tool for understanding the mechanisms of progression from an initial infection to AIDS. Taking into account the uncertainty of the loop structure, we predicted the structural flexibility, diversity, and sequence fitness to the V3-loop structure for each of the sequences serially sampled during an asymptomatic period. Structural diversity correlated with sequence diversity. The predicted crown structure usage implied that structural flexibility depended on the patient and that the antigenic character of the virus might be almost uniform in a patient whose immune system is strong. Furthermore, the predicted structural ensemble suggested that toward the end of the asymptomatic period there was a change in the V3-loop structure or in the environment surrounding the V3 loop, possibly because of its proximity to the gp120 core.
Collapse
Affiliation(s)
- Teruaki Watabe
- Center of Medical Information Science, Kochi University, Japan.
| | | | | | | |
Collapse
|
9
|
Uversky VN, Oldfield CJ, Dunker AK. Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 2005; 18:343-84. [PMID: 16094605 DOI: 10.1002/jmr.747] [Citation(s) in RCA: 660] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulation, recognition and cell signaling involve the coordinated actions of many players. To achieve this coordination, each participant must have a valid identification (ID) that is easily recognized by the others. For proteins, these IDs are often within intrinsically disordered (also ID) regions. The functions of a set of well-characterized ID regions from a diversity of proteins are presented herein to support this view. These examples include both more recently described signaling proteins, such as p53, alpha-synuclein, HMGA, the Rieske protein, estrogen receptor alpha, chaperones, GCN4, Arf, Hdm2, FlgM, measles virus nucleoprotein, RNase E, glycogen synthase kinase 3beta, p21(Waf1/Cip1/Sdi1), caldesmon, calmodulin, BRCA1 and several other intriguing proteins, as well as historical prototypes for signaling, regulation, control and molecular recognition, such as the lac repressor, the voltage gated potassium channel, RNA polymerase and the S15 peptide associating with the RNA polymerase S-protein. The frequent occurrence and the common use of ID regions in important protein functions raise the possibility that the relationship between amino acid sequence, disordered ensemble and function might be the dominant paradigm for the molecular recognition that serves as the basis for signaling and regulation by protein molecules.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Molecular Kinetics, 6201 La Pas Trail, Suite 160, Indianapolis, IN 46268, USA
| | | | | |
Collapse
|
10
|
Yang J, Prorok M, Castellino FJ, Weliky DP. Oligomeric beta-structure of the membrane-bound HIV-1 fusion peptide formed from soluble monomers. Biophys J 2004; 87:1951-63. [PMID: 15345571 PMCID: PMC1304598 DOI: 10.1529/biophysj.103.028530] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 06/01/2004] [Indexed: 11/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) fusion peptide serves as a useful model system for understanding viral/target cell fusion, at least to the lipid mixing stage. Previous solid-state NMR studies have shown that the peptide adopts an oligomeric beta-strand structure when associated with a lipid and cholesterol mixture close to that of membranes of host cells of the virus. In this study, this structure was further investigated using four different peptide constructs. In aqueous buffer solution, two of the constructs were primarily monomeric whereas the other two constructs had significant populations of oligomers/aggregates. NMR measurements for all membrane-associated peptide constructs were consistent with oligomeric beta-strand structure. Thus, constructs that are monomeric in solution can be converted to oligomers as a result of membrane association. In addition, samples prepared by very different methods had very similar NMR spectra, which indicates that the beta-strand structure is an equilibrium rather than a kinetically trapped structure. Lipid mixing assays were performed to assess the fusogenicities of the different constructs, and there was not a linear correlation between the solution oligomeric state and fusogenicity. However, the functional assays do suggest that small oligomers may be more fusogenic than either monomers or large aggregates.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
11
|
Sharpe S, Kessler N, Anglister JA, Yau WM, Tycko R. Solid-state NMR yields structural constraints on the V3 loop from HIV-1 Gp120 bound to the 447-52D antibody Fv fragment. J Am Chem Soc 2004; 126:4979-90. [PMID: 15080704 DOI: 10.1021/ja0392162] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-state NMR measurements were performed on the complex of an 18-residue peptide derived from the V3 loop sequence of the gp120 envelope glycoprotein of the HIV-1 MN strain with Fv fragments of the human anti-gp120 monoclonal antibody 447-52D in a frozen glycerol/water solution. The peptide was uniformly (15)N- and (13)C-labeled in a 7-residue segment containing the conserved GPGR motif in the epitope. (15)N and (13)C NMR chemical shift assignments for the labeled segment were obtained from two-dimensional (13)C-(13)C and (15)N-(13)C magic-angle spinning NMR spectra. Reductions in (13)C NMR line widths and changes in chemical shifts upon complex formation indicate the adoption of a well-defined, antibody-dependent structure. Intramolecular (13)C-(13)C distances in the complex, which constrain the peptide backbone and side chain conformations in the GPGR motif, were determined from an analysis of rotational resonance (RR) data. Structural constraints from chemical shifts and RR measurements are in good agreement with recent solution NMR and crystallographic studies of this system, although differences regarding structural ordering of certain peptide side chains are noted. These experiments explore and help delineate the utility of solid state NMR techniques as structural probes of peptide/protein complexes in general, potentially including membrane-associated hormone/receptor complexes.
Collapse
Affiliation(s)
- Simon Sharpe
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | | | | | | | | |
Collapse
|
12
|
Smith LJ, Boulineau FP, Raftery D, Wei A. Frozen-solution conformational analysis by REDOR spectroscopy. J Am Chem Soc 2004; 125:14958-9. [PMID: 14653709 DOI: 10.1021/ja036526b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Frozen-solution conformational analysis (FrSCA) can be performed on organic compounds using REDOR spectroscopy. REDOR measurements on frozen aqueous solutions of 13C-methyl beta-15N-aminoglucoside indicate a bimodal distribution of conformations in a 68:32 ratio, with 13C-15N distances of 4.31 and 3.55 A, respectively. The high resolution and straightforward sample preparation make FrSCA an attractive alternative to solution-based NMR methods of conformational analysis.
Collapse
Affiliation(s)
- Luis J Smith
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, USA
| | | | | | | |
Collapse
|
13
|
Stanfield RL, Ghiara JB, Ollmann Saphire E, Profy AT, Wilson IA. Recurring conformation of the human immunodeficiency virus type 1 gp120 V3 loop. Virology 2003; 315:159-73. [PMID: 14592768 DOI: 10.1016/s0042-6822(03)00525-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The crystal structure of the human immunodeficiency virus type 1 (HIV-1) neutralizing, murine Fab 83.1 in complex with an HIV-1 gp120 V3 peptide has been determined to 2.57 A resolution. The conformation of the V3 loop peptide in complex with Fab 83.1 is very similar to V3 conformations seen previously with two other neutralizing Fabs, 50.1 and 59.1. The repeated identification of this same V3 conformation in complex with three very different, neutralizing antibodies indicates that it is a highly preferred structure for V3 loops on some strains of the HIV-1 virus.
Collapse
Affiliation(s)
- Robyn L Stanfield
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
14
|
Yang J, Weliky DP. Solid-State Nuclear Magnetic Resonance Evidence for Parallel and Antiparallel Strand Arrangements in the Membrane-Associated HIV-1 Fusion Peptide. Biochemistry 2003; 42:11879-90. [PMID: 14529300 DOI: 10.1021/bi0348157] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV-1 fusion peptide serves as a useful model system for understanding viral/target cell fusion, at least to the lipid-mixing stage. Previous solid-state NMR studies have shown that the membrane-bound HIV-1 fusion peptide adopts an extended conformation in a lipid mixture close to that of host cells of the virus. In the present study, solid-state NMR REDOR methods were applied for detection of oligomeric beta strand structure. The samples were prepared under fusogenic conditions and contained equimolar amounts of two peptides, one with selective [(13)C]carbonyl labeling and the other with selective [(15)N]amide labeling. In the REDOR measurements, observation of reduced (13)C intensity due to hydrogen-bonded amide (15)N provides strong experimental evidence of oligomer formation by the membrane-associated peptide. Comparison of REDOR spectra on samples that were labeled at different residue positions suggests that there are both parallel and antiparallel arrangements of peptide strands. In the parallel arrangement, interpeptide hydrogen bonding decreases toward the C-terminus, while in the antiparallel arrangement, hydrogen bonds are observed along the entire length of residues which was probed (Gly-5 to Gly-16). For the parallel arrangement, these observations are consistent with the model in which the apolar N-terminal and central regions of the peptides penetrate into the membrane and hydrogen bond with one another while the polar C-terminus of the peptide is outside the membrane and hydrogen bonds with water. These measurements show that, at least at the end state of fusion, the peptide can adopt an oligomeric beta strand structure.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
15
|
Nishimura K, Kim S, Zhang L, Cross TA. The closed state of a H+ channel helical bundle combining precise orientational and distance restraints from solid state NMR. Biochemistry 2002; 41:13170-7. [PMID: 12403618 DOI: 10.1021/bi0262799] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An interhelical distance has been precisely measured by REDOR solid-state NMR spectroscopy in the transmembrane tetrameric bundle of M2-TMP, from the M2 proton channel of the influenza A viral coat. The high-resolution structure of the helical backbone has been determined using orientational restraints from uniformly aligned peptide preparations in hydrated dimyristoylphosphatidylcholine bilayers. Here, the distance between (15)N(pi) labeled His37 and (13)C(gamma) labeled Trp41 is determined to be less than 3.9 A. Such a short distance, in combination with the known tilt and rotational orientation of the individual helices, permits not only a determination of which specific side chain pairings give rise to the interaction, but also the side chain torsion angles and restraints for the tetrameric bundle can also be characterized. The resulting proton channel structure is validated in a variety of ways. Both histidine and tryptophan side chains are oriented in toward the pore where they can play a significant functional role. The channel appears to be closed by the proximity of the four indoles consistent with electrophysiology and mutagenesis studies of the intact protein at pH 7.0 and above. The pore maintains its integrity to the N terminal side of the membrane, and at the same time, a cavity is generated that appears adequate for binding amantadine. Finally, the observation of a 2 kHz coupling in the PISEMA spectrum of (15)N(pi)His37 validates the orientation of the His37 side chain based on the observed REDOR distance.
Collapse
Affiliation(s)
- Katsuyuki Nishimura
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | | | | | | |
Collapse
|
16
|
Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z. Intrinsically disordered protein. J Mol Graph Model 2002; 19:26-59. [PMID: 11381529 DOI: 10.1016/s1093-3263(00)00138-8] [Citation(s) in RCA: 1760] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proteins can exist in a trinity of structures: the ordered state, the molten globule, and the random coil. The five following examples suggest that native protein structure can correspond to any of the three states (not just the ordered state) and that protein function can arise from any of the three states and their transitions. (1) In a process that likely mimics infection, fd phage converts from the ordered into the disordered molten globular state. (2) Nucleosome hyperacetylation is crucial to DNA replication and transcription; this chemical modification greatly increases the net negative charge of the nucleosome core particle. We propose that the increased charge imbalance promotes its conversion to a much less rigid form. (3) Clusterin contains an ordered domain and also a native molten globular region. The molten globular domain likely functions as a proteinaceous detergent for cell remodeling and removal of apoptotic debris. (4) In a critical signaling event, a helix in calcineurin becomes bound and surrounded by calmodulin, thereby turning on calcineurin's serine/threonine phosphatase activity. Locating the calcineurin helix within a region of disorder is essential for enabling calmodulin to surround its target upon binding. (5) Calsequestrin regulates calcium levels in the sarcoplasmic reticulum by binding approximately 50 ions/molecule. Disordered polyanion tails at the carboxy terminus bind many of these calcium ions, perhaps without adopting a unique structure. In addition to these examples, we will discuss 16 more proteins with native disorder. These disordered regions include molecular recognition domains, protein folding inhibitors, flexible linkers, entropic springs, entropic clocks, and entropic bristles. Motivated by such examples of intrinsic disorder, we are studying the relationships between amino acid sequence and order/disorder, and from this information we are predicting intrinsic order/disorder from amino acid sequence. The sequence-structure relationships indicate that disorder is an encoded property, and the predictions strongly suggest that proteins in nature are much richer in intrinsic disorder than are those in the Protein Data Bank. Recent predictions on 29 genomes indicate that proteins from eucaryotes apparently have more intrinsic disorder than those from either bacteria or archaea, with typically > 30% of eucaryotic proteins having disordered regions of length > or = 50 consecutive residues.
Collapse
Affiliation(s)
- A K Dunker
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Blanco FJ, Hess S, Pannell LK, Rizzo NW, Tycko R. Solid-state NMR data support a helix-loop-helix structural model for the N-terminal half of HIV-1 Rev in fibrillar form. J Mol Biol 2001; 313:845-59. [PMID: 11697908 DOI: 10.1006/jmbi.2001.5067] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rev is a 116 residue basic protein encoded by the genome of human immunodeficiency virus type 1 (HIV-1) that binds to multiple sites in the Rev response element (RRE) of viral mRNA transcripts in nuclei of host cells, leading to transport of incompletely spliced and unspliced viral mRNA to the cytoplasm of host cells in the latter phases of the HIV-1 life cycle. Rev is absolutely required for viral replication. Because Rev aggregates and fibrillizes in solution at concentrations required for crystal growth or liquid state NMR measurements, high-resolution structural characterization of full-length Rev has not been possible. Previously, circular dichroism studies have shown that approximately 50 % of the Rev sequence adopts helical secondary structure, predicted to correspond to a helix-loop-helix structural motif in the N-terminal half of the protein. We describe the application of solid-state NMR techniques to Rev fibrils as a means of obtaining site-specific, atomic-level structural constraints without requiring a high degree of solubility or crystallinity. Solid-state NMR measurements, using the double-quantum chemical shift anisotropy and constant-time double-quantum-filtered dipolar recoupling techniques, provide constraints on the phi and psi backbone dihedral angles at sites in which consecutive backbone carbonyl groups are labeled with (13)C. Quantitative analysis of the solid-state NMR data, by comparison with numerical simulations, indicates helical phi and psi angles at residues Leu13 and Val16 in the predicted helix 1 segment, and at residues Arg39, Arg 42, Arg43, and Arg44 in the predicted helix 2 segment. These data represent the first site-specific structural constraints from NMR spectroscopy on full-length Rev, and support the helix-loop-helix structural model for its N-terminal half.
Collapse
Affiliation(s)
- F J Blanco
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | | | | | |
Collapse
|
18
|
Tycko R. Solid-state nuclear magnetic resonance techniques for structural studies of amyloid fibrils. Methods Enzymol 2001; 339:390-413. [PMID: 11462823 DOI: 10.1016/s0076-6879(01)39324-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Tycko R. Biomolecular solid state NMR: advances in structural methodology and applications to peptide and protein fibrils. Annu Rev Phys Chem 2001; 52:575-606. [PMID: 11326075 DOI: 10.1146/annurev.physchem.52.1.575] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Solid state nuclear magnetic resonance (NMR) methods can provide atomic-level structural constraints on peptides and proteins in forms that are not amenable to characterization by other high-resolution structural techniques, owing to insolubility, high molecular weight, noncrystallinity, or other characteristics. Important examples include peptide and protein fibrils and membrane-bound peptides and proteins. Recent advances in solid state NMR methodology aimed at structural problems in biological systems are reviewed. The power of these methods is illustrated by experimental results on amyloid fibrils and other protein fibrils.
Collapse
Affiliation(s)
- R Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| |
Collapse
|
20
|
Abstract
Amyloid fibrils are intrinsically noncrystalline, insoluble, high-molecular-weight aggregates of peptides and proteins, with considerable biomedical and biophysical significance. Solid-state NMR techniques are uniquely capable of providing high-resolution, site-specific structural constraints for amyloid fibrils, at the level of specific interatomic distances and torsion angles. So far, a relatively small number of solid-state NMR studies of amyloid fibrils have been reported. These have addressed issues about the supramolecular organization of beta-sheets in the fibrils and the peptide conformation in the fibrils, and have concentrated on the beta-amyloid peptide of Alzheimer's disease. Many additional applications of solid-state NMR to amyloid fibrils from a variety of sources are anticipated in the near future, as these systems are ideally suited for the technique and are of widespread current interest.
Collapse
Affiliation(s)
- R Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| |
Collapse
|