1
|
Abstract
Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin. For metazoan H1, chromatin compaction requires its lysine-rich C-terminal domain, a domain that is buried between globular domains in the previously characterized yeast Saccharomyces cerevisiae linker histone Hho1p. Here, we discuss the functions of S. cerevisiae HMO1, an HMGB family protein unique in containing a terminal lysine-rich domain and in stabilizing genomic DNA. On ribosomal DNA (rDNA) and genes encoding ribosomal proteins, HMO1 appears to exert its role primarily by stabilizing nucleosome-free regions or "fragile" nucleosomes. During replication, HMO1 likewise appears to ensure low nucleosome density at DNA junctions associated with the DNA damage response or the need for topoisomerases to resolve catenanes. Notably, HMO1 shares with the mammalian linker histone H1 the ability to stabilize chromatin, as evidenced by the absence of HMO1 creating a more dynamic chromatin environment that is more sensitive to nuclease digestion and in which chromatin-remodeling events associated with DNA double-strand break repair occur faster; such chromatin stabilization requires the lysine-rich extension of HMO1. Thus, HMO1 appears to have evolved a unique linker histone-like function involving the ability to stabilize both conventional nucleosome arrays as well as DNA regions characterized by low nucleosome density or the presence of noncanonical nucleosomes.
Collapse
|
2
|
Kalashnikova AA, Rogge RA, Hansen JC. Linker histone H1 and protein-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:455-61. [PMID: 26455956 PMCID: PMC4775371 DOI: 10.1016/j.bbagrm.2015.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 01/11/2023]
Abstract
Linker histones H1 are ubiquitous chromatin proteins that play important roles in chromatin compaction, transcription regulation, nucleosome spacing and chromosome spacing. H1 function in DNA and chromatin structure stabilization is well studied and established. The current paradigm of linker histone mode of function considers all other cellular roles of linker histones to be a consequence from H1 chromatin compaction and repression. Here we review the multiple processes regulated by linker histones and the emerging importance of protein interactions in H1 functioning. We propose a new paradigm which explains the multi functionality of linker histones through linker histones protein interactions as a way to directly regulate recruitment of proteins to chromatin.
Collapse
Affiliation(s)
- Anna A Kalashnikova
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ryan A Rogge
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| |
Collapse
|
3
|
Millán-Ariño L, Izquierdo-Bouldstridge A, Jordan A. Specificities and genomic distribution of somatic mammalian histone H1 subtypes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:510-9. [DOI: 10.1016/j.bbagrm.2015.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/15/2022]
|
4
|
Flanagan TW, Files JK, Casano KR, George EM, Brown DT. Photobleaching studies reveal that a single amino acid polymorphism is responsible for the differential binding affinities of linker histone subtypes H1.1 and H1.5. Biol Open 2016; 5:372-80. [PMID: 26912777 PMCID: PMC4810752 DOI: 10.1242/bio.016733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mammals express six major somatic linker histone subtypes, all of which display dynamic binding to chromatin, characterized by transient binding at a given location followed by rapid translocation to a new site. Using photobleaching techniques, we systematically measured the exchange rate of all six mouse H1 subtypes to determine their relative chromatin-binding affinity. Two subtypes, H1.1 and H1.2, display binding affinities that are significantly lower than all other subtypes. Using in vitro mutagenesis, the differences in chromatin-binding affinities between H1.1 (lower binding affinity) and H1.5 (higher binding affinity) were mapped to a single amino acid polymorphism near the junction of the globular and C-terminal domains. Overexpression of H1.5 in density arrested fibroblasts did not affect cell cycle progression after release. By contrast, overexpression of H1.1 resulted in a more rapid progression through G1/S relative to control cells. These results provide structural insights into the proposed functional significance of linker histone heterogeneity. Summary: Mouse linker histone subtypes H1.1 and H1.5 bind to chromatin with different affinities due to a single amino acid polymorphism. Overexpression of H1.1 in fibroblasts accelerates cell cycle progression.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jacob K Files
- Clinton High School, Clinton, MS 39056, USA Spring Hill College, Mobile, AL 36608, USA
| | | | - Eric M George
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA Department of Physiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
5
|
Patil H, Wilks C, Gonzalez RW, Dhanireddy S, Conrad-Webb H, Bergel M. Mitotic Activation of a Novel Histone Deacetylase 3-Linker Histone H1.3 Protein Complex by Protein Kinase CK2. J Biol Chem 2015; 291:3158-72. [PMID: 26663086 PMCID: PMC4751364 DOI: 10.1074/jbc.m115.643874] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase 3 (HDAC3) and linker histone H1 are involved in both chromatin compaction and the regulation of mitotic progression. However, the mechanisms by which HDAC3 and H1 regulate mitosis and the factors controlling HDAC3 and H1 activity during mitosis are unclear. Furthermore, as of now, no association between class I, II, or IV (non-sirtuin) HDACs and linker histones has been reported. Here we describe a novel HDAC3-H1.3 complex containing silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and nuclear receptor corepressor 1 (N-CoR) that accumulated in synchronized HeLa cells in late G2 phase and mitosis. Nonetheless, the deacetylation activity by HDAC3 in the complex was evident only in mitotic complexes. HDAC3 associated with H1.3 was highly phosphorylated on Ser-424 only during mitosis. Isolation of inactive HDAC3-H1.3 complexes from late G2 phase cells, and phosphorylation of HDAC3 in the complexes at serine 424 by protein kinase CK2 (also known as casein kinase 2) activated the HDAC3 in vitro. In vivo, CK2α and CK2α' double knockdown cells demonstrated a significant decrease in HDAC3 Ser-424 phosphorylation during mitosis. HDAC3 and H1.3 co-localized in between the chromosomes, with polar microtubules and spindle poles during metaphase through telophase, and partially co-localized with chromatin during prophase and interphase. H1 has been reported previously to associate with microtubules and, therefore, could potentially function in targeting HDAC3 to the microtubules. We suggest that phosphorylation of HDAC3 in the complex by CK2 during mitosis activates the complex for a dual role: compaction of the mitotic chromatin and regulation of polar microtubules dynamic instability.
Collapse
Affiliation(s)
- Hemangi Patil
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Carrie Wilks
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Rhiannon W Gonzalez
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Sudheer Dhanireddy
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Heather Conrad-Webb
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Michael Bergel
- From the Department of Biology, Texas Woman's University, Denton, Texas 76204
| |
Collapse
|
6
|
Parseghian MH. What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery. AIMS BIOPHYSICS 2015; 2:724-772. [PMID: 31289748 PMCID: PMC6615755 DOI: 10.3934/biophy.2015.4.724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For the past 50 years, understanding the function of histone H1 heterogeneity has been mired in confusion and contradiction. Part of the reason for this is the lack of a working model that tries to explain the large body of data that has been collected about the H1 subtypes so far. In this review, a global model is described largely based on published data from the author and other researchers over the past 20 years. The intrinsic disorder built into H1 protein structure is discussed to help the reader understand that these histones are multi-conformational and adaptable to interactions with different targets. We discuss the role of each structural section of H1 (as we currently understand it), but we focus on the H1's C-terminal domain and its effect on each subtype's affinity, mobility and compaction of chromatin. We review the multiple ways these characteristics have been measured from circular dichroism to FRAP analysis, which has added to the sometimes contradictory assumptions made about each subtype. Based on a tabulation of these measurements, we then organize the H1 variants according to their ability to condense chromatin and produce nucleosome repeat lengths amenable to that compaction. This subtype variation generates a continuum of different chromatin states allowing for fine regulatory control and some overlap in the event one or two subtypes are lost to mutation. We also review the myriad of disparate observations made about each subtype, both somatic and germline specific ones, that lend support to the proposed model. Finally, to demonstrate its adaptability as new data further refines our understanding of H1 subtypes, we show how the model can be applied to experimental observations of telomeric heterochromatin in aging cells.
Collapse
|
7
|
Izzo A, Schneider R. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:486-95. [PMID: 26348411 DOI: 10.1016/j.bbagrm.2015.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/07/2015] [Accepted: 09/02/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Linker histone H1 is a structural component of chromatin. It exists as a family of related proteins known as variants and/or subtypes. H1.1, H1.2, H1.3, H1.4 and H1.5 are present in most somatic cells, whereas other subtypes are mainly expressed in more specialized cells. SCOPE OF REVIEW H1 subtypes have been shown to have unique functions in chromatin structure and dynamics. This can occur at least in part via specific post-translational modifications of distinct H1 subtypes. However, while core histone modifications have been extensively studied, our knowledge of H1 modifications and their molecular functions has remained for a long time limited to phosphorylation. In this review we discuss the current state of knowledge of linker histone H1 modifications and where possible highlight functional differences in the modifications of distinct H1 subtypes. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE H1 histones are intensely post-translationally modified. These modifications are located in the N- and C-terminal tails as well as within the globular domain. Recently, advanced mass spectrometrical analysis revealed a large number of novel histone H1 subtype specific modification sites and types. H1 modifications include phosphorylation, acetylation, methylation, ubiquitination, and ADP ribosylation. They are involved in the regulation of all aspects of linker histone functions, however their mechanism of action is often only poorly understood. Therefore systematic functional characterization of H1 modifications will be necessary in order to better understand their role in gene regulation as well as in higher-order chromatin structure and dynamics.
Collapse
Affiliation(s)
- Annalisa Izzo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404 Illkirch, France
| | - Robert Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, INSERM U 964, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
8
|
Mayor R, Izquierdo-Bouldstridge A, Millán-Ariño L, Bustillos A, Sampaio C, Luque N, Jordan A. Genome distribution of replication-independent histone H1 variants shows H1.0 associated with nucleolar domains and H1X associated with RNA polymerase II-enriched regions. J Biol Chem 2015; 290:7474-91. [PMID: 25645921 DOI: 10.1074/jbc.m114.617324] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Unlike core histones, the linker histone H1 family is more evolutionarily diverse, and many organisms have multiple H1 variants or subtypes. In mammals, the H1 family includes seven somatic H1 variants; H1.1 to H1.5 are expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Using ChIP-sequencing data and cell fractionation, we have compared the genomic distribution of H1.0 and H1X in human breast cancer cells, in which we previously observed differential distribution of H1.2 compared with the other subtypes. We have found H1.0 to be enriched at nucleolus-associated DNA repeats and chromatin domains, whereas H1X is associated with coding regions, RNA polymerase II-enriched regions, and hypomethylated CpG islands. Further, H1X accumulates within constitutive or included exons and retained introns and toward the 3' end of expressed genes. Inducible H1X knockdown does not affect cell proliferation but dysregulates a subset of genes related to cell movement and transport. In H1X-depleted cells, the promoters of up-regulated genes are not occupied specifically by this variant, have a lower than average H1 content, and, unexpectedly, do not form an H1 valley upon induction. We conclude that H1 variants are not distributed evenly across the genome and may participate with some specificity in chromatin domain organization or gene regulation.
Collapse
Affiliation(s)
- Regina Mayor
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Andrea Izquierdo-Bouldstridge
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Lluís Millán-Ariño
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Alberto Bustillos
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Cristina Sampaio
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Neus Luque
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| | - Albert Jordan
- From the Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia 08028 Spain
| |
Collapse
|
9
|
González-Romero R, Ausio J. dBigH1, a second histone H1 in Drosophila, and the consequences for histone fold nomenclature. Epigenetics 2014; 9:791-7. [PMID: 24622397 DOI: 10.4161/epi.28427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recently, Pérez-Montero and colleagues (Developmental cell, 26: 578-590, 2013) described the occurrence of a new histone H1 variant (dBigH1) in Drosophila. The presence of unusual acidic amino acid patches at the N-terminal end of dBigH1 is in contrast to the arginine patches that exist at the N- and C-terminal domains of other histone H1-related proteins found in the sperm of some organisms. This departure from the strictly lysine-rich composition of the somatic histone H1 raises a question about the true definition of its protein members. Their minimal essential requirements appear to be the presence of a lysine- and alanine-rich, intrinsically disordered C-terminal domain, with a highly helicogenic potential upon binding to the linker DNA regions of chromatin. In metazoans, specific targeting of these regions is further achieved by a linker histone fold domain (LHFD), distinctively different from the characteristic core histone fold domain (CHFD) of the nucleosome core histones.
Collapse
Affiliation(s)
| | - Juan Ausio
- Department of Biochemistry and Microbiology; University of Victoria; Victoria, BC, Canada
| |
Collapse
|
10
|
Millán-Ariño L, Islam ABMMK, Izquierdo-Bouldstridge A, Mayor R, Terme JM, Luque N, Sancho M, López-Bigas N, Jordan A. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2. Nucleic Acids Res 2014; 42:4474-93. [PMID: 24476918 PMCID: PMC3985652 DOI: 10.1093/nar/gku079] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine–cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains. For instance, H1.0 and H1X are enriched at gene-rich chromosomes, whereas H1.2 is depleted. In short, histone H1 is not uniformly distributed along the genome and there are differences between variants, H1.2 being the one showing the most specific pattern and strongest correlation with low gene expression.
Collapse
Affiliation(s)
- Lluís Millán-Ariño
- Department of Molecular Genomics, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, E-08028 Spain, Research Programme on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, E-08003 Spain, Department of Genetic Engineering, Biotechnology, University of Dhaka, Dhaka-1000, Bangladesh, Centro de Investigación Príncipe Felipe, Valencia, E-46012 Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, E-08010 Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Parseghian MH. Hitchhiker antigens: Inconsistent ChIP results, questionable immunohistology data, and poor antibody performance may have a common factor. Biochem Cell Biol 2013; 91:378-94. [DOI: 10.1139/bcb-2013-0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Questionable data and poor antibody performance may have a common factor: antigens “hitchhiking” on the very antibodies designed to target them. Here I focus on histone hitchhikers and their antibodies, given the impact of chromatin immunoprecipitation on our understanding of DNA regulation. Caused by a lack of stringency during antibody purification, hitchhikers will impede important advances in chromatin research and therapeutics derived from that research, if similar circumstances in the study of lupus decades ago are any guide. Evidence of this phenomenon is reviewed, purification modifications for antibody manufacturing are suggested, and a histone hitchhiker detection procedure is provided.
Collapse
|
12
|
Chromatin dynamics during lytic infection with herpes simplex virus 1. Viruses 2013; 5:1758-86. [PMID: 23863878 PMCID: PMC3738960 DOI: 10.3390/v5071758] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 12/26/2022] Open
Abstract
Latent HSV-1 genomes are chromatinized with silencing marks. Since 2004, however, there has been an apparent inconsistency in the studies of the chromatinization of the HSV-1 genomes in lytically infected cells. Nuclease protection and chromatin immunoprecipitation assays suggested that the genomes were not regularly chromatinized, having only low histone occupancy. However, the chromatin modifications associated with transcribed and non-transcribed HSV-1 genes were those associated with active or repressed transcription, respectively. Moreover, the three critical HSV-1 transcriptional activators all had the capability to induce chromatin remodelling, and interacted with critical chromatin modifying enzymes. Depletion or overexpression of some, but not all, chromatin modifying proteins affected HSV-1 transcription, but often in unexpected manners. Since 2010, it has become clear that both cellular and HSV-1 chromatins are highly dynamic in infected cells. These dynamics reconcile the weak interactions between HSV-1 genomes and chromatin proteins, detected by nuclease protection and chromatin immunoprecipitation, with the proposed regulation of HSV-1 gene expression by chromatin, supported by the marks in the chromatin in the viral genomes and the abilities of the HSV-1 transcription activators to modulate chromatin. It also explains the sometimes unexpected results of interventions to modulate chromatin remodelling activities in infected cells.
Collapse
|
13
|
The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep 2013; 3:2142-54. [PMID: 23746450 DOI: 10.1016/j.celrep.2013.05.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/19/2013] [Accepted: 05/03/2013] [Indexed: 12/27/2022] Open
Abstract
Human cells contain five canonical, replication-dependent somatic histone H1 subtypes (H1.1, H1.2, H1.3, H1.4, and H1.5). Although they are key chromatin components, the genomic distribution of the H1 subtypes is still unknown, and their role in chromatin processes has thus far remained elusive. Here, we map the genomic localization of all somatic replication-dependent H1 subtypes in human lung fibroblasts using an integrative DNA adenine methyltransferase identification (DamID) analysis. We find in general that H1.2 to H1.5 are depleted from CpG-dense regions and active regulatory regions. H1.1 shows a DamID binding profile distinct from the other subtypes, suggesting a unique function. H1 subtypes can mark specific domains and repressive regions, pointing toward a role for H1 in three-dimensional genome organization. Our work integrates H1 subtypes into the epigenome maps of human cells and provides a valuable resource to refine our understanding of the significance of H1 and its heterogeneity in the control of genome function.
Collapse
|
14
|
Abstract
Members of histone H1 family bind to nucleosomal and linker DNA to assist in stabilization of higher-order chromatin structures. Moreover, histone H1 is involved in regulation of a variety of cellular processes by interactions with cytosolic and nuclear proteins. Histone H1, composed of a series of subtypes encoded by distinct genes, is usually differentially expressed in specialized cells and frequently non-randomly distributed in different chromatin regions. Moreover, a role of specific histone H1 subtype might be also modulated by post-translational modifications and/or presence of polymorphic isoforms. While the significance of covalently modified histone H1 subtypes has been partially recognized, much less is known about the importance of histone H1 polymorphic variants identified in various plant and animal species, and human cells as well. Recent progress in elucidating amino acid composition-dependent functioning and interactions of the histone H1 with a variety of molecular partners indicates a potential role of histone H1 polymorphic variation in adopting specific protein conformations essential for chromatin function. The histone H1 allelic variants might affect chromatin in order to modulate gene expression underlying some physiological traits and, therefore could modify the course of diverse histone H1-dependent biological processes. This review focuses on the histone H1 allelic variability, and biochemical and genetic aspects of linker histone allelic isoforms to emphasize their likely biological relevance.
Collapse
|
15
|
Eirín-López JM. A computer lab exploring evolutionary aspects of chromatin structure and dynamics for an undergraduate chromatin course*. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 41:95-102. [PMID: 23401152 DOI: 10.1002/bmb.20667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/02/2012] [Indexed: 06/01/2023]
Abstract
The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a vast body of knowledge to the classroom. With this aim, the present work describes a multidisciplinary computer lab designed to introduce undergraduate students to the dynamic nature of chromatin, within the context of the one semester course "Chromatin: Structure, Function and Evolution." This exercise is organized in three parts including (a) molecular evolutionary biology of histone families (using the H1 family as example), (b) histone structure and variation across different animal groups, and (c) effect of histone diversity on nucleosome structure and chromatin dynamics. By using freely available bioinformatic tools that can be run on common computers, the concept of chromatin dynamics is interactively illustrated from a comparative/evolutionary perspective. At the end of this computer lab, students are able to translate the bioinformatic information into a biochemical context in which the relevance of histone primary structure on chromatin dynamics is exposed. During the last 8 years this exercise has proven to be a powerful approach for teaching chromatin structure and dynamics, allowing students a higher degree of independence during the processes of learning and self-assessment.
Collapse
Affiliation(s)
- José M Eirín-López
- CHROMEVOL Group, Department of Cellular and Molecular Biology, University of A Coruña, E15071 A Coruña, Spain.
| |
Collapse
|
16
|
Soldi M, Bonaldi T. The proteomic investigation of chromatin functional domains reveals novel synergisms among distinct heterochromatin components. Mol Cell Proteomics 2013; 12:764-80. [PMID: 23319141 PMCID: PMC3591667 DOI: 10.1074/mcp.m112.024307] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains has been held back by the challenge of enriching distinguishable, homogeneous regions for subsequent mass spectrometry analysis. Here we describe a modified protocol for chromatin immunoprecipitation combined with quantitative proteomics based on stable isotope labeling by amino acids in cell culture to identify known and novel histone modifications, variants, and complexes that specifically associate with silent and active chromatin domains. Our chromatin proteomics strategy revealed unique functional interactions among various chromatin modifiers, suggesting new regulatory pathways, such as a heterochromatin-specific modulation of DNA damage response involving H2A.X and WICH, both enriched in silent domains. Chromatin proteomics expands the arsenal of tools for deciphering how all the distinct protein components act together to enforce a given region-specific chromatin status.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, Milan, Italy
| | | |
Collapse
|
17
|
Kosterin OE, Bogdanova VS, Kechin AA, Zaytseva OO, Yadrikhinskiy AK. Polymorphism in a histone H1 subtype with a short N-terminal domain in three legume species (Fabaceae, Fabaeae). Mol Biol Rep 2012; 39:10681-95. [PMID: 23053965 DOI: 10.1007/s11033-012-1959-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
Abstract
A number of alleles of an orthologous gene His6 encoding histone H1 subtype f (H1-6 in pea) accumulated in chromatin of old tissues were sequenced in three legume species: seven alleles in Pisum sativum, four in Vicia unijuga and eight in Lathyrus gmelinii. In the total of 19 alleles sequenced in the three species, 29 non-synonymous substitutions and six indels were found in the coding region; most of amino acid substitutions (26 of 29) and all indels occurred in the C-terminal hydrophilic domain of the encoded protein. All species were polymorphic for some non-synonymous substitutions, V. unijuga was also polymorphic for one and P. sativum for two indels. Three near-isogenic lines of P. sativum bearing different alleles showed differences in many quantitative traits; that in the growth dynamic could be tentatively attributed to the allelic substitution of subtype H1-6. The frequencies of four electromorphs in a sampled locality of V. unijuga were found to be close to those observed 25 years ago, although their rapid change in the past was supposed in the previous study.
Collapse
Affiliation(s)
- Oleg E Kosterin
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentyev Ave 10, Novosibirsk, Russia, 630090.
| | | | | | | | | |
Collapse
|
18
|
Berry WL, Shin S, Lightfoot SA, Janknecht R. Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol 2012; 41:1701-6. [PMID: 22948256 DOI: 10.3892/ijo.2012.1618] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 07/06/2012] [Indexed: 11/05/2022] Open
Abstract
Estrogen receptor α (ERα) plays a pivotal role in the genesis of the majority of breast tumors. Consequently, endocrine therapy is now routinely utilized in the clinic for the treatment of ERα-positive breast cancer patients. However, how ERα activity becomes dysregulated in breast cancer cells remains to be elucidated. The aim of this study was to show that the histone demethylase JMJD2A, also known as KDM4A, is capable of forming a complex with ERα in vivo. Moreover, wild-type JMJD2A, but not a catalytically impaired mutant, was able to strongly coactivate ERα-mediated transcription. Consistently, the downregulation of JMJD2A in human T47D breast cancer cells led to a decreased expression of cyclin D1, a prominent ERα target gene and cell cycle regulator. The downregulation of JMJD2A induced a reduction in the growth of T47D cells. In addition, we found that JMJD2A is overexpressed in human breast tumors both at the mRNA and protein level. Taken together, these data indicate that the overexpression of JMJD2A may contribute to breast tumor formation by stimulating ERα activity and that JMJD2A may be a breast-relevant oncoprotein. As such, small molecule drugs targeting the catalytic center of JMJD2A might be useful in breast cancer adjuvant therapy.
Collapse
Affiliation(s)
- William L Berry
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
19
|
Zaytseva OO, Bogdanova VS, Kosterin OE. Phylogenetic reconstruction at the species and intraspecies levels in the genus Pisum (L.) (peas) using a histone H1 gene. Gene 2012; 504:192-202. [PMID: 22613846 DOI: 10.1016/j.gene.2012.05.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/20/2012] [Accepted: 05/12/2012] [Indexed: 10/28/2022]
Abstract
A phylogenetic analysis of the genus Pisum (peas), embracing diverse wild and cultivated forms, which evoke problems with species delimitation, was carried out based on a gene coding for histone H1, a protein that has a long and variable functional C-terminal domain. Phylogenetic trees were reconstructed on the basis of the coding sequence of the gene His5 of H1 subtype 5 in 65 pea accessions. Early separation of a clear-cut wild species Pisum fulvum is well supported, while cultivated species Pisum abyssinicum appears as a small branch within Pisum sativum. Another robust branch within P. sativum includes some wild and almost all cultivated representatives of P. sativum. Other wild representatives form diverse but rather subtle branches. In a subset of accessions, PsbA-trnH chloroplast intergenic spacer was also analysed and found less informative than His5. A number of accessions of cultivated peas from remote regions have a His5 allele of identical sequence, encoding an electrophoretically slow protein product, which earlier attracted attention as likely positively selected in harsh climate conditions. In PsbA-trnH, a 8bp deletion was found, which marks cultivated representatives of P. sativum.
Collapse
Affiliation(s)
- Olga O Zaytseva
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentyev ave. 10, Novosibirsk, Russia
| | | | | |
Collapse
|
20
|
Öberg C, Izzo A, Schneider R, Wrange Ö, Belikov S. Linker Histone Subtypes Differ in Their Effect on Nucleosomal Spacing In Vivo. J Mol Biol 2012; 419:183-97. [DOI: 10.1016/j.jmb.2012.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/17/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
|
21
|
Regulation of tumor suppressor p53 and HCT116 cell physiology by histone demethylase JMJD2D/KDM4D. PLoS One 2012; 7:e34618. [PMID: 22514644 PMCID: PMC3326058 DOI: 10.1371/journal.pone.0034618] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/02/2012] [Indexed: 12/12/2022] Open
Abstract
JMJD2D, also known as KDM4D, is a histone demethylase that removes methyl moieties from lysine 9 on histone 3 and from lysine 26 on histone 1.4. Here, we demonstrate that JMJD2D forms a complex with the p53 tumor suppressor in vivo and interacts with the DNA binding domain of p53 in vitro. A luciferase reporter plasmid driven by the promoter of p21, a cell cycle inhibitor and prominent target gene of p53, was synergistically activated by p53 and JMJD2D, which was dependent on JMJD2D catalytic activity. Likewise, overexpression of JMJD2D induced p21 expression in U2OS osteosarcoma cells in the absence and presence of adriamycin, an agent that induces DNA damage. Furthermore, downregulation of JMJD2D inhibited cell proliferation in wild-type and even more so in p53−/− HCT116 colon cancer cells, suggesting that JMJD2D is a pro-proliferative molecule. JMJD2D depletion also induced more strongly apoptosis in p53−/− compared to wild-type HCT116 cells. Collectively, our results demonstrate that JMJD2D can stimulate cell proliferation and survival, suggesting that its inhibition may be helpful in the fight against cancer. Furthermore, our data imply that activation of p53 may represent a mechanism by which the pro-oncogenic functions of JMJD2D become dampened.
Collapse
|
22
|
Mechetner L, Sood R, Nguyen V, Gagnon P, Parseghian MH. The effects of hitchhiker antigens co-eluting with affinity-purified research antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2583-94. [DOI: 10.1016/j.jchromb.2011.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 06/30/2011] [Accepted: 07/10/2011] [Indexed: 10/17/2022]
|
23
|
Nevels M, Nitzsche A, Paulus C. How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol 2011; 21:154-80. [PMID: 21538665 DOI: 10.1002/rmv.690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpesvirus infections of humans can cause a broad variety of symptoms ranging from mild afflictions to life-threatening disease. During infection, the large double-stranded DNA genomes of all herpesviruses are transcribed, replicated and encapsidated in the host cell nucleus, where DNA is typically structured and manoeuvred through nucleosomes. Nucleosomes individually assemble DNA around core histone octamers to form 'beads-on-a-string' chromatin fibres. Herpesviruses have responded to the advantages and challenges of chromatin formation in biologically unique ways. Although herpesvirus DNA is devoid of histones within nucleocapsids, nuclear viral genomes most likely form irregularly arranged or unstable nucleosomes during productive infection, and regular nucleosomal arrays resembling host cell chromatin in latently infected cells. Besides variations in nucleosome density, herpesvirus chromatin 'bead strings' undergo dynamic changes in histone composition and modification during the different stages of productive replication, latent infection and reactivation from latency, raising the likely possibility that epigenetic processes may dictate, at least in part, the outcome of infection and ensuing pathogenesis. Here, we summarise and discuss several new and important aspects regarding the nucleosome-based mechanisms that regulate herpesvirus chromatin structure and function in infected cells. Special emphasis is given to processes of histone deposition, histone variant exchange and covalent histone modification in relation to the transcription from the viral genome during productive and latent infections by human cytomegalovirus and herpes simplex virus type 1. We also present an overview on emerging histone-directed antiviral strategies that may be developed into 'epigenetic therapies' to improve current prevention and treatment options targeting herpesvirus infection and disease.
Collapse
Affiliation(s)
- Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Germany.
| | | | | |
Collapse
|
24
|
Trollope AF, Sapojnikova N, Thorne AW, Crane-Robinson C, Myers FA. Linker histone subtypes are not generalized gene repressors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:642-52. [DOI: 10.1016/j.bbagrm.2010.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/26/2010] [Accepted: 08/20/2010] [Indexed: 01/24/2023]
|
25
|
Camins A, Sureda FX, Junyent F, Verdaguer E, Folch J, Pelegri C, Vilaplana J, Beas-Zarate C, Pallàs M. Sirtuin activators: designing molecules to extend life span. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:740-9. [PMID: 20601277 DOI: 10.1016/j.bbagrm.2010.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/31/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
Abstract
Resveratrol (RESV) exerts important pharmacological effects on human health: in addition to its beneficial effects on type 2 diabetes and cardiovascular diseases, it also modulates neuronal energy homeostasis and shows antiaging properties. Although it clearly has free radical scavenger properties, the mechanisms involved in these beneficial effects are not fully understood. In this regard, one area of major interest concerns the effects of RESV on the activity of sirtuin 1 (SIRT1), an NAD(+)-dependent histone deacetylase that has been implicated in aging. Indeed, the role of SIRT1 is currently the subject of intense research due to the antiaging properties of RESV, which increases life span in various organisms ranging from yeast to rodents. In addition, when RESV is administered in experimental animal models of neurological disorders, it has similar beneficial effects to caloric restriction. SIRT1 activation could thus constitute a potential strategic target in neurodegenerative diseases and in disorders involving disturbances in glucose homeostasis, as well as in dyslipidaemias or cardiovascular diseases. Therefore, small SIRT1 activators such as SRT501, SRT2104, and SRT2379, which are currently undergoing clinical trials, could be potential drugs for the treatment of type 2 diabetes, obesity, and metabolic syndrome, among other disorders. This review summarises current knowledge about the biological functions of SIRT1 in aging and aging-associated diseases and discusses its potential as a pharmacological target.
Collapse
Affiliation(s)
- Antoni Camins
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina (IBUB), Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Khan SN, Khan AU. Role of histone acetylation in cell physiology and diseases: An update. Clin Chim Acta 2010; 411:1401-11. [PMID: 20598676 DOI: 10.1016/j.cca.2010.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/04/2010] [Accepted: 06/16/2010] [Indexed: 01/06/2023]
Abstract
Although the role of histone acetylation in gene regulation has been the subject of many reviews, their impact on cell physiology and pathological states of proliferation, differentiation and genome stability in eukaryotic cells remain to be elucidated. Therefore, this review will discuss the molecular, physiological and biochemical aspects of histone acetylation and focus on the interplay of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in different disease states. Current treatment strategies are mostly limited to enzyme inhibitors, though potential lies in targeting other imperative chromatin remodeling factors involved in gene regulation.
Collapse
Affiliation(s)
- Shahper N Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
27
|
Raghuram N, Carrero G, Stasevich TJ, McNally JG, Th'ng J, Hendzel MJ. Core histone hyperacetylation impacts cooperative behavior and high-affinity binding of histone H1 to chromatin. Biochemistry 2010; 49:4420-31. [PMID: 20411992 DOI: 10.1021/bi100296z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Linker histones stabilize higher order chromatin structures and limit access to proteins involved in DNA-dependent processes. Core histone acetylation is thought to modulate H1 binding. In the current study, we employed kinetic modeling of H1 recovery curves obtained during fluorescence recovery after photobleaching (FRAP) experiments to determine the impact of core histone acetylation on the different variants of H1. Following brief treatments with histone deacetylase inhibitor, most variants showed no change in H1 dynamics. A change in mobility was detected only when longer treatments were used to induce high levels of histone acetylation. This hyperacetylation imparted marked changes in the dynamics of low-affinity H1 population, while conferring variant-specific changes in the mobility of H1 molecules that were strongly bound. Both the C-terminal domain (CTD) and globular domain were responsible for this differential response to TSA. Furthermore, we found that neither the CTD nor the globular domain, by themselves, undergoes a change in kinetics following hyperacetylation. This led us to conclude that hyperacetylation of core histones affects the cooperative nature of low-affinity H1 binding, with some variants undergoing a predicted decrease of almost 2 orders of magnitude.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, University of Alberta, 11560 University Avenue NW, Edmonton, Alberta, Canada T6G 1Z2
| | | | | | | | | | | |
Collapse
|
28
|
Weiss T, Hergeth S, Zeissler U, Izzo A, Tropberger P, Zee BM, Dundr M, Garcia BA, Daujat S, Schneider R. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics Chromatin 2010; 3:7. [PMID: 20334638 PMCID: PMC2860349 DOI: 10.1186/1756-8935-3-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/24/2010] [Indexed: 01/17/2023] Open
Abstract
Background The linker histone H1 has a key role in establishing and maintaining higher order chromatin structure and in regulating gene expression. Mammals express up to 11 different H1 variants, with H1.2 and H1.4 being the predominant ones in most somatic cells. Like core histones, H1 has high levels of covalent modifications; however, the full set of modifications and their biological role are largely unknown. Results In this study, we used a candidate screen to identify enzymes that methylate H1 and to map their corresponding methylation sites. We found that the histone lysine methyltransferases G9a/KMT1C and Glp1/KMT1D methylate H1.2 in vitro and in vivo, and we mapped this novel site to lysine 187 (H1.2K187) in the C-terminus of H1. This H1.2K187 methylation is variant-specific. The main target for methylation by G9a in H1.2, H1.3, H1.5 and H1.0 is in the C-terminus, whereas H1.4 is preferentially methylated at K26 (H1.4K26me) in the N-terminus. We found that the readout of these marks is different; H1.4K26me can recruit HP1, but H1.2K187me cannot. Likewise, JMJD2D/KDM4 only reverses H1.4K26 methylation, clearly distinguishing these two methylation sites. Further, in contrast to C-terminal H1 phosphorylation, H1.2K187 methylation level is steady throughout the cell cycle. Conclusions We have characterised a novel methylation site in the C-terminus of H1 that is the target of G9a/Glp1 both in vitro and in vivo. To our knowledge, this is the first demonstration of variant-specific histone methylation by the same methyltransferases, but with differing downstream readers, thereby supporting the hypothesis of H1 variants having specific functions.
Collapse
Affiliation(s)
- Thomas Weiss
- MPI for Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS One 2009; 4:e0007243. [PMID: 19794910 PMCID: PMC2748705 DOI: 10.1371/journal.pone.0007243] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/07/2009] [Indexed: 12/16/2022] Open
Abstract
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors.
Collapse
|
30
|
Site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different processes during the cell cycle. Chromosoma 2009; 118:693-709. [PMID: 19609548 DOI: 10.1007/s00412-009-0228-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 02/04/2023]
Abstract
The cell cycle-associated phosphorylation of histone H1.5 is manifested as three discrete phosphorylated forms, occurring exclusively on Ser(17), Ser(172), and Ser(188) during interphase. During late G2 and mitosis the up-phosphorylation occurs exclusively on threonine at either Thr(137) or Thr(154) to build the tetraphosphorylated forms of H1.5, whereas the pentaphosphorylated forms result from phosphorylation at Thr(10). To determine the kinetic and spatial distribution of histone H1 phosphorylation within the nucleus of synchronized Hela cells we localized three distinct phosphorylation sites of histone subtype H1.5 using affinity-purified polyclonal antibodies generated against phosphorylated Ser(17), Ser(172), and Thr(10). Immunofluorescence labeling of synchronized HeLa cells using the specific antibodies revealed that phosphorylation of H1.5 Ser(17) appeared early in G1 at discrete speckles followed by phosphorylation of Ser(172). Thr(10) phosphorylation started during prophase, showed highest phosphorylation levels during metaphase, and disappeared clearly before chromatin decondensation occurred. Experiments using the kinase inhibitor staurosporine indicate the involvement of different kinases at the various phospho-sites. Colocalization studies revealed that Ser(172) phosphorylation of H1.5 and H1.2 does colocalize to DNA replication and transcription sites. These results favor the idea that the various site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different functions during the cell cycle.
Collapse
|
31
|
Orthaus S, Klement K, Happel N, Hoischen C, Diekmann S. Linker histone H1 is present in centromeric chromatin of living human cells next to inner kinetochore proteins. Nucleic Acids Res 2009; 37:3391-406. [PMID: 19336418 PMCID: PMC2691837 DOI: 10.1093/nar/gkp199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 01/04/2023] Open
Abstract
The vertebrate kinetochore complex assembles at the centromere on alpha-satellite DNA. In humans, alpha-satellite DNA has a repeat length of 171 bp slightly longer than the DNA in the chromatosome containing the linker histone H1. The centromere-binding protein CENP-B binds specifically to alpha-satellite DNA with properties of a centromeric-linker histone. Here, we analysed if linker histone H1 is present at or excluded from centromeric chromatin by CENP-B. By immunostaining we detected the presence, but no enrichment or depletion of five different H1 subtypes at centromeric chromatin. The binding dynamics of H1 at centromeric sites were similar to that at other locations in the genome. These dynamics did not change in CENP-B depleted cells, suggesting that CENP-B and H1 co-exist in centromeric chromatin with no or little functional overlap. By bimolecular fluorescence complementation (BiFC) and Förster resonance energy transfer (FRET), we revealed that the linker histone H1 subtypes H1 degrees and H1.2 bind to centromeric chromatin in interphase nuclei in direct neighbourhood to inner kinetochore proteins.
Collapse
Affiliation(s)
- S. Orthaus
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - K. Klement
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - N. Happel
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - C. Hoischen
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| | - S. Diekmann
- Leibniz-Institute for Age Research - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena and Department of Molecular Biology, Institute for Biochemistry and Molecular Cell Biology, University Goettingen, Humboldtallee 23, D-37073 Goettingen, Germany
| |
Collapse
|
32
|
Eirín-López JM, González-Romero R, Dryhurst D, Méndez J, Ausió J. Long-Term Evolution of Histone Families: Old Notions and New Insights into Their Mechanisms of Diversification Across Eukaryotes. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Happel N, Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 2008; 431:1-12. [PMID: 19059319 DOI: 10.1016/j.gene.2008.11.003] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 10/31/2008] [Accepted: 11/02/2008] [Indexed: 01/21/2023]
Abstract
The lysine-rich H1 histone family in mammals includes eleven different subtypes, and thus it is the most divergent class of histone proteins. The central globular H1 domain asymmetrically interacts with DNA at the exit or entry end of the nucleosomal core DNA, and the C-terminal domain has a major impact on the linker DNA conformation and chromatin condensation. H1 histones are thus involved in the formation of higher order chromatin structures, and they modulate the accessibility of regulatory proteins, chromatin remodeling factors and histone modification enzymes to their target sites. The major posttranslational modification of H1 histones is phosphorylation, which reaches a peak during G2 and mitosis. Phosphorylation is, however, also involved in the control of DNA replication and it contributes to the regulation of gene expression. Disruption of linker histone genes, initially performed in order to delineate subtype-specific functions, revealed that disruption of one or two H1 subtype genes is quantitatively compensated by an increased expression of other subtypes. This suggests a functional redundancy among H1 subtypes. However, the inactivation of three subtypes and the reduction of the H1 moiety in half finally resulted in a phenotypic effect. On the other hand, studies on the role of particular subtypes at specific developmental stages in lower eukaryotes, but also in vertebrates suggest that specific subtypes of H1 participate in particular systems of gene regulation.
Collapse
Affiliation(s)
- Nicole Happel
- Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | |
Collapse
|
34
|
Abstract
The linker histone H1 binds to the DNA entering and exiting the nucleosomal core particle and has an important role in establishing and maintaining higher order chromatin structures. H1 forms a complex family of related proteins with distinct species, tissue and developmental specificity. In higher eukaryotes all H1 variants have the same general structure, consisting of a central conserved globular domain and less conserved N-terminal and C-terminal tails. These tails are moderately conserved among species, but differ among variants, suggesting a specific function for each H1 variant. Due to compensatory mechanisms and to the lack of proper tools, it has been very difficult to study the biological role of individual variants in chromatin-mediated processes. Our knowledge about H1 variants is indeed limited, and in vitro and in vivo observations have often been contradictory. Therefore, H1 variants were considered to be functionally redundant. However, recent knockout studies and biochemical analyses in different organisms have revealed exciting new insights into the specificity and mechanisms of actions of the H1 family members. Here, we collect and compare the available literature about H1 variants and discuss possible specific roles that challenge the concept of H1 being a mere structural component of chromatin and a general repressor of transcription.
Collapse
Affiliation(s)
- Annalisa Izzo
- Max Planck Institute for Immunobiology, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | |
Collapse
|
35
|
Stoldt S, Wenzel D, Schulze E, Doenecke D, Happel N. G1 phase-dependent nucleolar accumulation of human histone H1x. Biol Cell 2007; 99:541-52. [PMID: 17868027 DOI: 10.1042/bc20060117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION H1 histones are a protein family comprising several subtypes. Although specific functions of the individual subtypes could not be determined so far, differential roles are indicated by varied nuclear distributions as well as differential expression patterns of the H1 subtypes. Although the group of replication-dependent H1 subtypes is synthesized during S phase, the replacement H1 subtype, H1 degrees , is also expressed in a replication-independent manner in non-proliferating cells. Recently we showed, by protein biochemical analysis, that the ubiquitously expressed subtype H1x is enriched in the micrococcal nuclease-resistant part of chromatin and that, although it shares common features with H1 degrees , its expression is differentially regulated, since, in contrast to H1 degrees , growth arrest or induction of differentiation did not induce an accumulation of H1x. RESULTS In the present study, we show that H1x exhibits a cell-cycle-dependent change of its nuclear distribution. This H1 subtype showed a nucleolar accumulation during the G(1) phase, and it was evenly distributed in the nucleus during S phase and G(2). Immunocytochemical analysis of the intranucleolar distribution of H1x indicated that it is located mainly in the condensed nucleolar chromatin. In addition, we demonstrate that the amount of H1x protein remained nearly unchanged during S phase progression, which is in contrast to the replication-dependent subtypes. CONCLUSION These results suggest that the differential localization of H1x provides a mechanism for a control of H1x activity by means of shuttling between nuclear subcompartments instead of a controlled turnover of the protein.
Collapse
Affiliation(s)
- Stefan Stoldt
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
36
|
Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P. Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biol 2007; 5:22. [PMID: 17498293 PMCID: PMC1890542 DOI: 10.1186/1741-7007-5-22] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 05/11/2007] [Indexed: 11/10/2022] Open
Abstract
Background Histone H1 is involved in the formation and maintenance of chromatin higher order structure. H1 has multiple isoforms; the subtypes differ in timing of expression, extent of phosphorylation and turnover rate. In vertebrates, the amino acid substitution rates differ among subtypes by almost one order of magnitude, suggesting that each subtype might have acquired a unique function. We have devised a competitive assay to estimate the relative binding affinities of histone H1 mammalian somatic subtypes H1a-e and H1° for long chromatin fragments (30–35 nucleosomes) in physiological salt (0.14 M NaCl) at constant stoichiometry. Results The H1 complement of native chromatin was perturbed by adding an additional amount of one of the subtypes. A certain amount of SAR (scaffold-associated region) DNA was present in the mixture to avoid precipitation of chromatin by excess H1. SAR DNA also provided a set of reference relative affinities, which were needed to estimate the relative affinities of the subtypes for chromatin from the distribution of the subtypes between the SAR and the chromatin. The amounts of chromatin, SAR and additional H1 were adjusted so as to keep the stoichiometry of perturbed chromatin similar to that of native chromatin. H1 molecules freely exchanged between the chromatin and SAR binding sites. In conditions of free exchange, H1a was the subtype of lowest affinity, H1b and H1c had intermediate affinities and H1d, H1e and H1° the highest affinities. Subtype affinities for chromatin differed by up to 19-fold. The relative affinities of the subtypes for chromatin were equivalent to those estimated for a SAR DNA fragment and a pUC19 fragment of similar length. Avian H5 had an affinity ~12-fold higher than H1e for both DNA and chromatin. Conclusion H1 subtypes freely exchange in vitro between chromatin binding sites in physiological salt (0.14 M NaCl). The large differences in relative affinity of the H1 subtypes for chromatin suggest that differential affinity could be functionally relevant and thus contribute to the functional differentiation of the subtypes. The conservation of the relative affinities for SAR and non-SAR DNA, in spite of a strong preference for SAR sequences, indicates that differential affinity alone cannot be responsible for the heterogeneous distribution of some subtypes in cell nuclei.
Collapse
Affiliation(s)
- Mary Orrego
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Universidad Autónoma de Manizales. Colombia
| | - Imma Ponte
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alicia Roque
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Natascha Buschati
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Xavier Mora
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pedro Suau
- Departamento de Bioquímica y Biología Molecular, Facultad de BiocienciasUniversidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
37
|
Jerzmanowski A. SWI/SNF chromatin remodeling and linker histones in plants. ACTA ACUST UNITED AC 2007; 1769:330-45. [PMID: 17292979 DOI: 10.1016/j.bbaexp.2006.12.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Revised: 12/15/2006] [Accepted: 12/31/2006] [Indexed: 12/13/2022]
Abstract
In yeast and mammals, ATP-dependent chromatin remodeling complexes belonging to the SWI/SNF family play critical roles in the regulation of transcription, cell proliferation, differentiation and development. Homologs of conserved subunits of SWI/SNF-type complexes, including several putative ATPases and other core subunits, have been identified in plants. Here I summarize recent insights in structural organization and functional diversification of putative plant SWI/SNF-type chromatin remodeling complexes and discuss in a broader evolutionary perspective the similarities and differences between plant and yeast/animal SWI/SNF remodeling. I also summarize the current view of localization in nucleosome and dynamic behaviour in chromatin of linker (H1) histones and discuss significance of recent findings indicating that in both plants and mammals histone H1 is involved in determining patterns of DNA methylation at selected loci.
Collapse
Affiliation(s)
- Andrzej Jerzmanowski
- Laboratory of Plant Molecular Biology, Warsaw University and Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
38
|
Parseghian MH, Luhrs KA. Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem Cell Biol 2007; 84:589-604. [PMID: 16936831 DOI: 10.1139/o06-082] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although they are one of the oldest family of proteins known (first described in 1884 by Kossel), histones continue to surprise researchers with their ever expanding roles in biology. In the past 25 years, the view of core histone octamers as a simple spool around which DNA in the nucleus is wound and linker histones as mere fasteners clipping it all together has transformed into the realization that histones play a vital role in transcriptional regulation. Through post-translational modifications, histones control the accessibility of transcription factors and a host of other proteins to multiple, conceivably thousands of, genes at once. While researchers have spent decades deciphering the role of histones in the overall structure of chromatin, it might surprise some to find that an entirely separate faction of scientists have focused on the role of histones beyond the confines of the nuclear envelope. In the past decade, there has been an accumulation of observations that suggest that histones can be found at the mitochondrion during the onset of apoptotic signaling and even at the cell surface, acting as a receptor for bacterial and viral proteins. More provocatively, immunologists are becoming convinced that they can also be found in the lumen of several tissues, acting as antimicrobial agents--critical components of an ancient innate immune system. Perhaps nowhere is this observation as dramatic as in the ability of neutrophils to entrap bacterial pathogens by casting out "nets" of DNA and histones that not only act as a physical barrier, but also display bactericidal activity. As our views regarding the role of histones inside and outside the cell evolve, some have begun to develop therapies that either utilize or target histones in the fight against cancer, microbial infection, and autoimmune disease. It is our goal here to begin the process of merging the dichotomous lives of histones both within and without the nuclear membrane.
Collapse
Affiliation(s)
- Missag H Parseghian
- Peregrine Pharmaceuticals, Inc, Research and Development, 14272 Franklin Avenue, Tustin, CA 92780, USA.
| | | |
Collapse
|
39
|
Van Walleghen DM, Parseghian MH. Toxicity and biodistribution of an iodine-131-radiolabelled tumour necrosis-targeting antibody in non-tumour-bearing domestic felines. Vet Comp Oncol 2006; 4:9-20. [DOI: 10.1111/j.1476-5810.2006.00086.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Abstract
The members of the H1 histone family can be classified into three groups, which are the main class subtypes expressed in somatic cells, the developmental- and tissue-specific subtypes, and the replacement subtype H1(o). Until now, the subtype H1x was not classified, since it has not yet been thoroughly examined. The results of this study show that H1x shares similarities but also exhibits slight differences in its biochemical behaviour in comparison to the main class H1 histones. In HeLa cells it is located in the nucleus and partially associated with nucleosomes. Nevertheless, it is, like H1(o), mainly located in chromatin regions that are not affected by micrococcal nuclease digestion. Further common features of H1x and the replacement histone H1(o) are that the genes of both subtypes are solitarily located and give rise to polyadenylated mRNA. However, comparison of the inducibility of their expression revealed that their genes are regulated differentially.
Collapse
Affiliation(s)
- Nicole Happel
- Institute for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
41
|
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 2004; 16:93-105. [PMID: 15469825 DOI: 10.1016/j.molcel.2004.08.031] [Citation(s) in RCA: 670] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 11/30/2022]
Abstract
We characterized human SirT1, one of the human homologs of the budding yeast Sir2p, an NAD+-dependent histone deacetylase involved in establishing repressive chromatin and increased life span. SirT1 deacetylates histone polypeptides with a preference for histone H4 lysine 16 (H4-K16Ac) and H3 lysine 9 (H3-K9Ac) in vitro. RNAi-mediated decreased expression of SirT1 in human cells causes hyperacetylation of H4-K16 and H3-K9 in vivo. SirT1 interacts with and deacetylates histone H1 at lysine 26. Using an inducible system directing expression of SirT1 fused to the Gal4-DNA binding domain and a Gal4-reporter integrated in euchromatin, Gal4-SirT1 expression resulted in the deacetylation of H4-K16 and H3-K9, recruitment of H1 within the promoter vicinity, drastically reduced reporter expression, and loss of H3-K79 methylation, a mark restricting silenced chromatin. We propose a model for SirT1-mediated heterochromatin formation that includes deacetylation of histone tails, recruitment and deacetylation of histone H1, and spreading of hypomethylated H3-K79 with resultant silencing.
Collapse
Affiliation(s)
- Alejandro Vaquero
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
42
|
The linker histones. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Kowalski A, Pałyga J, Górnicka-Michalska E. Identification of histone H1.z components in a Muscovy duck (Cairina moschata L.) population. Comp Biochem Physiol B Biochem Mol Biol 2004; 137:151-7. [PMID: 14698921 DOI: 10.1016/j.cbpc.2003.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The general patterns of histone H1 proteins from erythrocyte nuclei of Muscovy duck individuals were similar to those of Pekin type ducks both in acetic acid-urea and 2D polyacrylamide gels. We show here that Muscovy duck histone H1.z in the tested population was represented by three different electromorphs, each presumably encoded by a distinct allelic gene. Accordingly, we have identified six phenotypes consisting of the homodimeric and heterodimeric combinations of the three isoforms. The frequency of the presumptive alleles ranged from 0.506 for the main allele z1 to 0.379 for allele z2 and only 0.113 for the rarest allele z3. In addition to a standard set of somatic H1 variants, an unusual protein X, absent in other avian species, was also revealed.
Collapse
Affiliation(s)
- A Kowalski
- Department of Genetics, Swietokrzyska Academy, ul. Swietokrzyska 15, 25-406 Kielce, Poland.
| | | | | |
Collapse
|
44
|
Ausió J, Abbott D. The role of histone variability in chromatin stability and folding. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
45
|
Alami R, Fan Y, Pack S, Sonbuchner TM, Besse A, Lin Q, Greally JM, Skoultchi AI, Bouhassira EE. Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci U S A 2003; 100:5920-5. [PMID: 12719535 PMCID: PMC156302 DOI: 10.1073/pnas.0736105100] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Indexed: 01/26/2023] Open
Abstract
Posttranslational modifications and remodeling of nucleosomes are critical factors in the regulation of transcription. Higher-order folding of chromatin also is likely to contribute to the control of gene expression, but the absence of a detailed description of the structure of the chromatin fiber has impaired progress in this area. Mammalian somatic cells contain a set of H1 linker-histone subtypes, H1 (0) and H1a to H1e, that bind to nucleosome core particles and to the linker DNA between nucleosomes. To determine whether the H1 histone subtypes play differential roles in the regulation of gene expression, we combined mice lacking specific H1 histone subtypes with mice carrying transgenes subject to position effects. Because position effects result from the unique chromatin structure created by the juxtaposition of regulatory elements in the transgene and at the site of integration, transgenes can serve as exquisitely sensitive indicators of chromatin structure. We report that some, but not all, linker histones can attenuate or accentuate position effects. The results suggest that the linker-histone subtypes play differential roles in the control of gene expression and that the sequential arrangement of the linker histones on the chromatin fiber might regulate higher-order chromatin structure and fine-tune expression levels.
Collapse
Affiliation(s)
- Raouf Alami
- Department of Medicine, Division of Hematology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Winokur ST, Barrett K, Martin JH, Forrester JR, Simon M, Tawil R, Chung SA, Masny PS, Figlewicz DA. Facioscapulohumeral muscular dystrophy (FSHD) myoblasts demonstrate increased susceptibility to oxidative stress. Neuromuscul Disord 2003; 13:322-33. [PMID: 12868502 DOI: 10.1016/s0960-8966(02)00284-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Facioscapulohumeral muscular dystrophy is an autosomal dominant disorder resulting from an unusual genetic mechanism. The mutation, a deletion of 3.3 kb subtelomeric repeats, appears to disrupt the regional regulation of 4q35 g ene expression. The specific gene(s)responsible for facioscapulohumeral muscular dystrophy have not been identified. However, the 'vacuolar/necrotic' phenotype exhibited by facioscapulohumeral muscular dystrophy myoblasts suggests that aberrant gene expression occurs early in facioscapulohumeral muscular dystrophy muscle development. In order to test this hypothesis, global gene expression profiling and in vitro characterization of facioscapulohumeral muscular dystrophy and control myoblasts were carried out. Genes involved in several cellular processes such as oxidative stress were found to be dysregulated. In vitro studies confirmed this susceptibility to oxidative stress, as proliferative stage facioscapulohumeral muscular dystrophy myoblasts exhibit greatly reduced viability when exposed to the oxidative stressor paraquat. This effect was not seen in either normal or disease control myoblasts, or in any of the cell lines upon differentiation to multinucleated myotubes. Immunocytochemical studies of the cyclin dependent kinase inhibitor p21 demonstrated increased expression in facioscapulohumeral muscular dystrophy myoblasts, suggesting an early cell cycle arrest. Another process distinguishing facioscapulohumeral muscular dystrophy from controls involves the transcription of extracellular matrix components. Expression of elastin, decorin, lumican and the extracellular matrix remodeling factor TIMP3 were reduced in facioscapulohumeral muscular dystrophy myoblasts. These studies suggest that facioscapulohumeral muscular dystrophy muscular dystrophy results from a defect in early myogenesis, manifested as increased susceptibility to oxidative stress, morphological aberrations and early cell cycle arrest.
Collapse
Affiliation(s)
- Sara T Winokur
- Department of Biological Chemistry, 240D, Medical Sciences I, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Raimondi L, D'Asaro M, Proia P, Nastasi T, Di Liegro I. RNA-binding ability of PIPPin requires the entire protein. J Cell Mol Med 2003; 7:35-42. [PMID: 12767259 PMCID: PMC6740078 DOI: 10.1111/j.1582-4934.2003.tb00200.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Post-transcriptional fate of eukaryotic mRNAs depends on association with different classes of RNA-binding proteins (RBPs). Among these proteins, the cold-shock domain (CSD)-containing proteins, also called Y-box proteins, play a key role in controlling the recruitment of mRNA to the translational machinery, in response to environmental cues, both in development and in differentiated cells. We recently cloned a rat cDNA encoding a new CSD-protein that we called PIPPin. This protein also contains two putative double-stranded RNA-binding motifs (PIP(1) and PIP(2)) flanking the central CSD, and is able to bind mRNAs encoding H1 degrees and H3.3 histone variants. In order to clarify the role of each domain in the RNA-binding activity of PIPPin, we constructed a number of different recombinant vectors, encoding different regions of the protein. Here we report that only recombinant proteins that contain all the putative PIPPin domains show RNA-binding ability.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Dipartimento di Biologia Cellulare e dello Sviluppo Alberto Monroy, Palermo, Italy
| | | | | | | | | |
Collapse
|
48
|
Chadee DN, Peltier CP, Davie JR. Histone H1(S)-3 phosphorylation in Ha-ras oncogene-transformed mouse fibroblasts. Oncogene 2002; 21:8397-403. [PMID: 12466960 DOI: 10.1038/sj.onc.1206029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2002] [Revised: 08/30/2002] [Accepted: 09/04/2002] [Indexed: 11/08/2022]
Abstract
Phosphorylation of linker histone H1(S)-3 (previously named H1b) and core histone H3 is elevated in mouse fibroblasts transformed with oncogenes or constitutively active mitogen-activated protein kinase (MAPK) kinase (MEK). H1(S)-3 phosphorylation is the only histone modification known to be dependent upon transcription and replication. Our results show that the increased amounts of phosphorylated H1(S)-3 in the oncogene Ha-ras-transformed mouse fibroblasts was a consequence of an elevated Cdk2 activity rather than the reduced activity of a H1 phosphatase, which our studies suggest is PP1. Induction of oncogenic ras expression results in an increase in H1(S)-3 and H3 phosphorylation. However, in contrast to the phosphorylation of H3, which occurred immediately following the onset of Ras expression, there was a lag of several hours before H1(S)-3 phosphorylation levels increased. We found that there was a transient increase in the levels of p21(cip1), which inhibited the H1 kinase activity of Cdk2. Cdk2 activity and H1(S)-3 phosphorylated levels increased after p21(cip1) levels declined. Our studies suggest that persistent activation of the Ras-MAPK signal transduction pathway in oncogene-transformed cells results in deregulated activity of kinases phosphorylating H3 and H1(S)-3 associated with transcribed genes. The chromatin remodelling actions of these modified histones may result in aberrant gene expression.
Collapse
Affiliation(s)
- Deborah N Chadee
- Manitoba Institute of Cell Biology, 675 McDermot Avenue, Winnipeg, Manitoba, R3E 0V9 Canada
| | | | | |
Collapse
|
49
|
Abstract
Eukaryotic genomes are organized into condensed, heterogeneous chromatin fibers throughout much of the cell cycle. Here we describe recent studies indicating that even transcriptionally active loci may be encompassed within 80- to 100-nanometer-thick chromonema fibers. These studies suggest that chromatin higher order folding may be a key feature of eukaryotic transcriptional control. We also discuss evidence suggesting that adenosine-5'-triphosphate-dependent chromatin-remodeling enzymes and histone-modifying enzymes may regulate transcription by controlling the extent and dynamics of chromatin higher order folding.
Collapse
Affiliation(s)
- Peter J Horn
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | | |
Collapse
|
50
|
Parseghian MH, Newcomb RL, Hamkalo BA. Distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin II: distribution in human adult fibroblasts. J Cell Biochem 2002; 83:643-59. [PMID: 11746507 DOI: 10.1002/jcb.1224] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
For nearly twenty years researchers have observed changes in the histone H1 subtype content of tissues as an organism develops into an adult. To better understand the consequences of such changes, immunofractionation of chromatin using previously characterized antibodies specific for human H1 subtypes was employed in the analysis of a fibroblast cell strain derived from a 37-year-old individual. DNAs isolated from immunoprecipitates were probed for the existence of a variety of DNA sequences. The results presented lend further support to a previously-proposed model (Parseghian et al. [2000] Chromosome Res 8:405-424) in which transcription of a sequence is accompanied by the selective depletion of subtypes. The data also suggest that there is more total H1 on actively transcribed sequences in these cells as compared to fetal fibroblasts and that there is less difference in the subtype compositions of active genes vs. inactive sequences in this strain. Specifically, the consequences of these changes appear to correlate with the attenuation of the heat shock response in aging fibroblasts. In a broader context, these results could explain why there are reductions in transcription in cells from mature tissue that approach senescence.
Collapse
Affiliation(s)
- M H Parseghian
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|