1
|
de Souza AS, Amorim VMDF, de Souza RF, Guzzo CR. Molecular dynamics simulations of the spike trimeric ectodomain of the SARS-CoV-2 Omicron variant: structural relationships with infectivity, evasion to immune system and transmissibility. J Biomol Struct Dyn 2023; 41:9326-9343. [PMID: 36345794 DOI: 10.1080/07391102.2022.2142296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron is currently the most prevalent SARS-CoV-2 variant worldwide. Herein, we calculated molecular dynamics simulations of the trimeric spikeWT and SpikeBA.1 for 300 ns. Our results show that SpikeBA.1 has more conformational flexibility than SpikeWT. Our principal component analysis (PCA) allowed us to observe a broader spectrum of different conformations for SpikeBA.1, mainly at N-terminal domain (NTD) and receptor-binding domain (RBD). Such increased flexibility could contribute to decreased neutralizing antibody recognition of this variant. Our molecular dynamics data show that the RBDBA.1 easily visits an up-conformational state and the prevalent D614G mutation is pivotal to explain molecular dynamics results for this variant because to lost hydrogen bonding interactions between the residue pairs K854SC/D614SC, Y837MC/D614MC, K835SC/D614SC, T859SC/D614SC. In addition, SpikeBA.1 residues near the furin cleavage site are more flexible than in SpikeWT, probably due to P681H and D614G substitutions. Finally, dynamical cross-correlation matrix (DCCM) analysis reveals that D614G and P681H may allosterically affect the cleavage site S1/S2. Conversely, S2' site may be influenced by residues located between NTD and RBD of a neighboring protomer of the SpikeWT. Such communication may be lost in SpikeBA.1, explaining the changes of the cell tropism in the viral infection. In addition, the movements of the NTDWT and NTDBA.1 may modulate the RBD conformation through allosteric effects. Taken together, our results explain how the structural aspects may explain the observed gains in infectivity, immune system evasion and transmissibility of the Omicron variant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. Int J Mol Sci 2023; 24:ijms24054401. [PMID: 36901832 PMCID: PMC10003049 DOI: 10.3390/ijms24054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Since its outbreak in December 2019, the COVID-19 pandemic has caused the death of more than 6.5 million people around the world. The high transmissibility of its causative agent, the SARS-CoV-2 virus, coupled with its potentially lethal outcome, provoked a profound global economic and social crisis. The urgency of finding suitable pharmacological tools to tame the pandemic shed light on the ever-increasing importance of computer simulations in rationalizing and speeding up the design of new drugs, further stressing the need for developing quick and reliable methods to identify novel active molecules and characterize their mechanism of action. In the present work, we aim at providing the reader with a general overview of the COVID-19 pandemic, discussing the hallmarks in its management, from the initial attempts at drug repurposing to the commercialization of Paxlovid, the first orally available COVID-19 drug. Furthermore, we analyze and discuss the role of computer-aided drug discovery (CADD) techniques, especially those that fall in the structure-based drug design (SBDD) category, in facing present and future pandemics, by showcasing several successful examples of drug discovery campaigns where commonly used methods such as docking and molecular dynamics have been employed in the rational design of effective therapeutic entities against COVID-19.
Collapse
|
3
|
Shi W, Cai Y, Zhu H, Peng H, Voyer J, Rits-Volloch S, Cao H, Mayer ML, Song K, Xu C, Lu J, Zhang J, Chen B. Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.12.05.519151. [PMID: 36523411 PMCID: PMC9753783 DOI: 10.1101/2022.12.05.519151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells depends on refolding of the virus-encoded spike protein from a prefusion conformation, metastable after cleavage, to a lower energy, stable postfusion conformation. This transition overcomes kinetic barriers for fusion of viral and target cell membranes. We report here a cryo-EM structure of the intact postfusion spike in a lipid bilayer that represents single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membraneinteracting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.
Collapse
|
4
|
Surmeier G, Dogan-Surmeier S, Paulus M, Albers C, Latarius J, Sternemann C, Schneider E, Tolan M, Nase J. The interaction of viral fusion peptides with lipid membranes. Biophys J 2022; 121:3811-3825. [PMID: 36110043 PMCID: PMC9674987 DOI: 10.1016/j.bpj.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022] Open
Abstract
In this paper, we studied fusogenic peptides of class I-III fusion proteins, which are relevant to membrane fusion for certain enveloped viruses, in contact with model lipid membranes. We resolved the vertical structure and examined the adsorption or penetration behavior of the fusogenic peptides at phospholipid Langmuir monolayers with different initial surface pressures with x-ray reflectometry. We show that the fusion loops of tick-borne encephalitis virus (TBEV) glycoprotein E and vesicular stomatitis virus (VSV) G-protein are not able to insert deeply into model lipid membranes, as they adsorbed mainly underneath the headgroups with only limited penetration depths into the lipid films. In contrast, we observed that the hemagglutinin 2 fusion peptide (HA2-FP) and the VSV-transmembrane domain (VSV-TMD) can penetrate deeply into the membranes. However, in the case of VSV-TMD, the penetration was suppressed already at low surface pressures, whereas HA2-FP was able to insert even into highly compressed films. Membrane fusion is accompanied by drastic changes of the membrane curvature. To investigate how the peptides affect the curvature of model lipid membranes, we examined the effect of the fusogenic peptides on the equilibration of cubic monoolein structures after a phase transition from a lamellar state induced by an abrupt hydrostatic pressure reduction. We monitored this process in presence and absence of the peptides with small-angle x-ray scattering and found that HA2-FP and VSV-TMD drastically accelerate the equilibration, while the fusion loops of TBEV and VSV stabilize the swollen state of the lipid structures. In this work, we show that the class I fusion peptide of HA2 penetrates deeply into the hydrophobic region of membranes and is able to promote and accelerate the formation of negative curvature. In contrast, we found that the class II and III fusion loops of TBEV and VSV tend to counteract negative membrane curvature.
Collapse
Affiliation(s)
- Göran Surmeier
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | | | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Christian Albers
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Jan Latarius
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | | | - Eric Schneider
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Metin Tolan
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| | - Julia Nase
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund, Germany
| |
Collapse
|
5
|
Zhu C, He G, Yin Q, Zeng L, Ye X, Shi Y, Xu W. Molecular biology of the SARs-CoV-2 spike protein: A review of current knowledge. J Med Virol 2021; 93:5729-5741. [PMID: 34125455 PMCID: PMC8427004 DOI: 10.1002/jmv.27132] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
The global coronavirus disease 2019 (COVID‐19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), has led to an unprecedented worldwide public health emergency. Despite the concerted efforts of the scientific field, by April 25, 2021, SARS‐CoV‐2 had spread to over 192 countries/regions, causing more than 146 million confirmed cases including 31 million deaths. For now, an established treatment for patients with COVID‐19 remains unavailable. The key to tackling this pandemic is to understand the mechanisms underlying its infectivity and pathogenicity. As a predominant focus, the coronavirus spike (S) protein is the key determinant of host range, infectivity, and pathogenesis. Thereby comprehensive understanding of the sophisticated structure of SARS‐CoV‐2 S protein may provide insights into possible intervention strategies to fight this ongoing global pandemic. Herein, we summarize the current knowledge of the molecular structural and functional features of SARS‐CoV‐2 S protein as well as recent updates on the cell entry mechanism of the SARS‐CoV‐2, paving the way for exploring more structure‐guided strategies against SARS‐CoV‐2.
Collapse
Affiliation(s)
- Chaogeng Zhu
- Translational Medicine Laboratory of Pancreatic Diseases, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Guiyun He
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Qinqin Yin
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lin Zeng
- Institute of Translational Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiangli Ye
- Department of Medical Laboratory Science, School of Medicine, Hunan Normal University, Changsha, China
| | - Yongzhong Shi
- Institute of Translational Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wei Xu
- Institute of Translational Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
6
|
Vishwakarma P, Yadav N, Rizvi ZA, Khan NA, Chiranjivi AK, Mani S, Bansal M, Dwivedi P, Shrivastava T, Kumar R, Awasthi A, Ahmed S, Samal S. Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Based Novel Epitopes Induce Potent Immune Responses in vivo and Inhibit Viral Replication in vitro. Front Immunol 2021; 12:613045. [PMID: 33841395 PMCID: PMC8032902 DOI: 10.3389/fimmu.2021.613045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiates infection by attachment of the surface-exposed spike glycoprotein to the host cell receptors. The spike glycoprotein (S) is a promising target for inducing immune responses and providing protection; thus the ongoing efforts for the SARS-CoV-2 vaccine and therapeutic developments are mostly spiraling around S glycoprotein. The matured functional spike glycoprotein is presented on the virion surface as trimers, which contain two subunits, such as S1 (virus attachment) and S2 (virus fusion). The S1 subunit harbors the N-terminal domain (NTD) and the receptor-binding domain (RBD). The RBD is responsible for binding to host-cellular receptor angiotensin-converting enzyme 2 (ACE2). The NTD and RBD of S1, and the S2 of S glycoprotein are the major structural moieties to design and develop spike-based vaccine candidates and therapeutics. Here, we have identified three novel epitopes (20-amino acid peptides) in the regions NTD, RBD, and S2 domains, respectively, by structural and immunoinformatic analysis. We have shown as a proof of principle in the murine model, the potential role of these novel epitopes in-inducing humoral and cellular immune responses. Further analysis has shown that RBD and S2 directed epitopes were able to efficiently inhibit the replication of SARS-CoV-2 wild-type virus in vitro suggesting their role as virus entry inhibitors. Structural analysis revealed that S2-epitope is a part of the heptad repeat 2 (HR2) domain which might have plausible inhibitory effects on virus fusion. Taken together, this study discovered novel epitopes that might have important implications in the development of potential SARS-CoV-2 spike-based vaccine and therapeutics.
Collapse
Affiliation(s)
- Preeti Vishwakarma
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Naveen Yadav
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Zaigham Abbas Rizvi
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Naseem Ahmed Khan
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Adarsh Kumar Chiranjivi
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Shailendra Mani
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Manish Bansal
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Prabhanjan Dwivedi
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Amit Awasthi
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| |
Collapse
|
7
|
Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Front Mol Biosci 2020; 7:605236. [PMID: 33392262 PMCID: PMC7773825 DOI: 10.3389/fmolb.2020.605236] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread in humans in almost every country, causing the disease COVID-19. Since the start of the COVID-19 pandemic, research efforts have been strongly directed towards obtaining a full understanding of the biology of the viral infection, in order to develop a vaccine and therapeutic approaches. In particular, structural studies have allowed to comprehend the molecular basis underlying the role of many of the SARS-CoV-2 proteins, and to make rapid progress towards treatment and preventive therapeutics. Despite the great advances that have been provided by these studies, many knowledge gaps on the biology and molecular basis of SARS-CoV-2 infection still remain. Filling these gaps will be the key to tackle this pandemic, through development of effective treatments and specific vaccination strategies.
Collapse
Affiliation(s)
- Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca J. Farthing
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | | | - Julien R. C. Bergeron
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Influenza A H1 and H3 Transmembrane Domains Interact Differently with Each Other and with Surrounding Membrane Lipids. Viruses 2020; 12:v12121461. [PMID: 33348831 PMCID: PMC7765950 DOI: 10.3390/v12121461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hemagglutinin (HA) is a class I viral membrane fusion protein, which is the most abundant transmembrane protein on the surface of influenza A virus (IAV) particles. HA plays a crucial role in the recognition of the host cell, fusion of the viral envelope and the host cell membrane, and is the major antigen in the immune response during the infection. Mature HA organizes in homotrimers consisting of a sequentially highly variable globular head and a relatively conserved stalk region. Every HA monomer comprises a hydrophilic ectodomain, a pre-transmembrane domain (pre-TMD), a hydrophobic transmembrane domain (TMD), and a cytoplasmic tail (CT). In recent years the effect of the pre-TMD and TMD on the structure and function of HA has drawn some attention. Using bioinformatic tools we analyzed all available full-length amino acid sequences of HA from 16 subtypes across various host species. We calculated several physico-chemical parameters of HA pre-TMDs and TMDs including accessible surface area (ASA), average hydrophobicity (Hav), and the hydrophobic moment (µH). Our data suggests that distinct differences in these parameters between the two major phylogenetic groups, represented by H1 and H3 subtypes, could have profound effects on protein–lipid interactions, trimer formation, and the overall HA ectodomain orientation and antigen exposure.
Collapse
|
9
|
Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, Rawson S, Rits-Volloch S, Chen B. Distinct conformational states of SARS-CoV-2 spike protein. Science 2020; 369:1586-1592. [PMID: 32694201 PMCID: PMC7464562 DOI: 10.1126/science.abd4251] [Citation(s) in RCA: 836] [Impact Index Per Article: 209.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Intervention strategies are urgently needed to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The trimeric viral spike (S) protein catalyzes fusion between viral and target cell membranes to initiate infection. Here, we report two cryo-electron microscopy structures derived from a preparation of the full-length S protein, representing its prefusion (2.9-angstrom resolution) and postfusion (3.0-angstrom resolution) conformations, respectively. The spontaneous transition to the postfusion state is independent of target cells. The prefusion trimer has three receptor-binding domains clamped down by a segment adjacent to the fusion peptide. The postfusion structure is strategically decorated by N-linked glycans, suggesting possible protective roles against host immune responses and harsh external conditions. These findings advance our understanding of SARS-CoV-2 entry and may guide the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Yongfei Cai
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Zhang
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Sarah M Sterling
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Richard M Walsh
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Rawson
- The Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- SBGrid Consortium, Harvard Medical School, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Bing Chen
- Division of Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM, Rawson S, Rits-Volloch S, Chen B. Distinct conformational states of SARS-CoV-2 spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511405 DOI: 10.1101/2020.05.16.099317] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ongoing SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic has created urgent needs for intervention strategies to control the crisis. The spike (S) protein of the virus forms a trimer and catalyzes fusion between viral and target cell membranes - the first key step of viral infection. Here we report two cryo-EM structures, both derived from a single preparation of the full-length S protein, representing the prefusion (3.1Å resolution) and postfusion (3.3Å resolution) conformations, respectively. The spontaneous structural transition to the postfusion state under mild conditions is independent of target cells. The prefusion trimer forms a tightly packed structure with three receptor-binding domains clamped down by a segment adjacent to the fusion peptide, significantly different from recently published structures of a stabilized S ectodomain trimer. The postfusion conformation is a rigid tower-like trimer, but decorated by N-linked glycans along its long axis with almost even spacing, suggesting possible involvement in a mechanism protecting the virus from host immune responses and harsh external conditions. These findings advance our understanding of how SARS-CoV-2 enters a host cell and may guide development of vaccines and therapeutics.
Collapse
|
11
|
Abstract
Coronaviruses (CoVs) have caused outbreaks of deadly pneumonia in humans since the beginning of the 21st century. The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and was responsible for an epidemic that spread to five continents with a fatality rate of 10% before being contained in 2003 (with additional cases reported in 2004). The Middle-East respiratory syndrome coronavirus (MERS-CoV) emerged in the Arabian Peninsula in 2012 and has caused recurrent outbreaks in humans with a fatality rate of 35%. SARS-CoV and MERS-CoV are zoonotic viruses that crossed the species barrier using bats/palm civets and dromedary camels, respectively. No specific treatments or vaccines have been approved against any of the six human coronaviruses, highlighting the need to investigate the principles governing viral entry and cross-species transmission as well as to prepare for zoonotic outbreaks which are likely to occur due to the large reservoir of CoVs found in mammals and birds. Here, we review our understanding of the infection mechanism used by coronaviruses derived from recent structural and biochemical studies.
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA, United States; Institut Pasteur, Unité de Virologie Structurale, Paris, France; CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, United States.
| |
Collapse
|
12
|
Entropic forces drive clustering and spatial localization of influenza A M2 during viral budding. Proc Natl Acad Sci U S A 2018; 115:E8595-E8603. [PMID: 30150411 DOI: 10.1073/pnas.1805443115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The influenza A matrix 2 (M2) transmembrane protein facilitates virion release from the infected host cell. In particular, M2 plays a role in the induction of membrane curvature and/or in the scission process whereby the envelope is cut upon virion release. Here we show using coarse-grained computer simulations that various M2 assembly geometries emerge due to an entropic driving force, resulting in compact clusters or linearly extended aggregates as a direct consequence of the lateral membrane stresses. Conditions under which these protein assemblies will cause the lipid membrane to curve are explored, and we predict that a critical cluster size is required for this to happen. We go on to demonstrate that under the stress conditions taking place in the cellular membrane as it undergoes large-scale membrane remodeling, the M2 protein will, in principle, be able to both contribute to curvature induction and sense curvature to line up in manifolds where local membrane line tension is high. M2 is found to exhibit linactant behavior in liquid-disordered-liquid-ordered phase-separated lipid mixtures and to be excluded from the liquid-ordered phase, in near-quantitative agreement with experimental observations. Our findings support a role for M2 in membrane remodeling during influenza viral budding both as an inducer and a sensor of membrane curvature, and they suggest a mechanism by which localization of M2 can occur as the virion assembles and releases from the host cell, independent of how the membrane curvature is produced.
Collapse
|
13
|
Vesicular stomatitis virus G protein transmembrane region is crucial for the hemi-fusion to full fusion transition. Sci Rep 2018; 8:10669. [PMID: 30006542 PMCID: PMC6045571 DOI: 10.1038/s41598-018-28868-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/29/2018] [Indexed: 11/30/2022] Open
Abstract
Viral fusion proteins are essential for enveloped virus infection. These proteins mediate fusion between the virus envelope and host cellular membrane to release the viral genome into cells. Vesicular stomatitis virus G (VSV G) protein is a typical type III viral fusion protein. To study the mechanism of VSV G protein mediated membrane fusion, we set up a cell-cell fusion system in which cells are marked by different fluorescent proteins. Taking advantage of this system, we performed real-time recording and quantitative analysis of the cell fusion mediated by VSV G. We found that the time scale required for VSV G mediated cell-cell fusion was approximately 1–2 minutes. Next, we specifically examined the function of the transmembrane (TM) region of VSV G protein in membrane fusion by replacing the TM region with those of other fusion proteins. The TM region replacements dramatically impaired VSV G protein function in the cell-cell fusion assay and diminished VSV G mediated lentivirus and recombinant VSV infection efficiency. Further experiments implied that the TM region played a role in the transition from hemi-fusion to full fusion. Several residues within the TM region were identified as important for membrane fusion. Overall, our findings unraveled the important function of the TM region in VSV G mediated viral fusion.
Collapse
|
14
|
Levin A, Jeworrek C, Winter R, Weise K, Czeslik C. Lipid Phase Control and Secondary Structure of Viral Fusion Peptides Anchored in Monoolein Membranes. J Phys Chem B 2017; 121:8492-8502. [PMID: 28829131 DOI: 10.1021/acs.jpcb.7b06400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fusion of lipid membranes involves major changes of the membrane curvatures and is mediated by fusion proteins that bind to the lipid membranes. For a better understanding of the way fusion proteins steer this process, we have studied the interaction of two different viral fusion peptides, HA2-FP and TBEV-FP, with monoolein mesophases as a function of temperature and pressure at limited hydration. The fusion peptides are derived from the influenza virus hemagglutinin fusion protein (HA2-FP) and from the tick-borne encephalitis virus envelope glycoprotein E (TBEV-FP). By using synchrotron X-ray diffraction, the changes of the monoolein phase behavior upon binding the peptides have been determined and the concomitant secondary structures of the peptides have been analyzed by FTIR spectroscopy. As main results we have found that the fusion peptides interact differently with monoolein and change the pressure and temperature dependent lipid phase behavior to different extents. However, they both destabilize the fluid lamellar phase and favor phases with negative curvature, i.e. inverse bicontinuous cubic and inverse hexagonal phases. These peptide-induced phase changes can partially be reversed by the application of high pressure, demonstrating that the promotion of negative curvature is achieved by a less dense packing of the monoolein membranes by the fusion peptides. Pressure jumps across the cubic-lamellar phase transition reveal that HA2-FP has a negligible effect on the rates of the cubic and the lamellar phase formation. Interestingly, the secondary structures of the fusion peptides appear unaffected by monoolein fluid-fluid phase transitions, suggesting that the fusion peptides are the structure dominant species in the fusion process of lipid membranes.
Collapse
Affiliation(s)
- Artem Levin
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Christoph Jeworrek
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Katrin Weise
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| | - Claus Czeslik
- Department of Chemistry and Chemical Biology, TU Dortmund University , D-44221 Dortmund, Germany
| |
Collapse
|
15
|
Lai AL, Freed JH. The Interaction between Influenza HA Fusion Peptide and Transmembrane Domain Affects Membrane Structure. Biophys J 2015; 109:2523-2536. [PMID: 26682811 PMCID: PMC4699882 DOI: 10.1016/j.bpj.2015.10.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022] Open
Abstract
Viral glycoproteins, such as influenza hemagglutinin (HA) and human immunodeficiency virus gp41, are anchored by a single helical segment transmembrane domain (TMD) on the viral envelope membrane. The fusion peptides (FP) of the glycoproteins insert into the host membrane and initiate membrane fusion. Our previous study showed that the FP or TMD alone perturbs membrane structure. Interaction between the influenza HA FP and TMD has previously been shown, but its role is unclear. We used PC spin labels dipalmitoylphospatidyl-tempo-choline (on the headgroup), 5PC and 14PC (5-C and 14-C positions on the acyl chain) to detect the combined effect of FP-TMD interaction by titrating HA FP to TMD-reconstituted 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol)/cholesterol lipid bilayers using electron spin resonance. We found that the FP-TMD increases the lipid order at all positions, which has a greater lipid ordering effect than the sum of the FP or TMD alone, and this effect reaches deeper into the membranes. Although HA-mediated membrane fusion is pH dependent, this combined effect is observed at both pH 5 and pH 7. In addition to increasing lipid order, multiple components are found for 5PC at increased concentration of FP-TMD, indicating that distinct domains are induced. However, the mutation of Gly1 in the FP and L187 in the TMD eliminates the perturbations, consistent with their fusogenic phenotypes. Electron spin resonance on spin-labeled peptides confirms these observations. We suggest that this interaction may provide a driving force in different stages of membrane fusion: initialization, transition from hemifusion stalk to transmembrane contact, and fusion pore formation.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
16
|
Holtz KM, Robinson PS, Matthews EE, Hashimoto Y, McPherson CE, Khramtsov N, Reifler MJ, Meghrous J, Rhodes DG, Cox MM, Srivastava IK. Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss. BMC Biotechnol 2014; 14:111. [PMID: 25540031 PMCID: PMC4320835 DOI: 10.1186/s12896-014-0111-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 01/19/2023] Open
Abstract
Background Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency. Potency is measured by the Single Radial Immuno-diffusion (SRID) assay to determine the amount of HA that has the correct antigenic form. Results The five cysteine residues in the transmembrane (TM) and cytoplasmic (CT) domains of the rHA protein from the H3 A/Perth/16/2009 human influenza strain have been substituted to alanine and/or serine residues to produce three different site directed variants (SDVs). These SDVs have been evaluated to determine the impact of the TM and CT cysteines on potency, cross-linking, and the biochemical and biophysical properties of the rHA. Modification of these cysteine residues prevents disulfide bond cross-linking in the TM and CT, and the resulting rHA maintains potency for at least 12 months at 25°C. The strategy of substituting TM and CT cysteines to prevent potency loss has been successfully applied to another H3 rHA protein (from the A/Texas/50/2012 influenza strain) further demonstrating the utility of the approach. Conclusion rHA potency can be maintained by preventing non-specific disulfide bonding and cross-linked multimer formation. Substitution of carboxy terminal cysteines is an alternative to using reducing agents, and permits room temperature storage of the vaccine.
Collapse
|
17
|
Victor BL, Baptista AM, Soares CM. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus. J Chem Inf Model 2012; 52:3001-12. [PMID: 23101989 DOI: 10.1021/ci3003396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Membrane fusion is a process involved in a high range of biological functions, going from viral infections to neurotransmitter release. Fusogenic proteins increase the slow rate of fusion by coupling energetically downhill conformational changes of the protein to the kinetically unfavorable fusion of the membrane lipid bilayers. Hemagglutinin is an example of a fusogenic protein, which promotes the fusion of the membrane of the influenza virus with the membrane of the target cell. The N-terminus of the HA2 subunit of this protein contains a fusion domain described to act as a destabilizer of the target membrane bilayers, leading eventually to a full fusion of the two membranes. On the other hand, the C-terminus of the same subunit contains a helical transmembrane domain which was initially described to act as the anchor of the protein to the membrane of the virus. However, in recent years the study of this peptide segment has been gaining more attention since it has also been described to be involved in the membrane fusion process. Yet, the structural characterization of the interaction of such a protein domain with membrane lipids is still very limited. Therefore, in this work, we present a study of this transmembrane peptide domain in the presence of DMPC membrane bilayers, and we evaluate the effect of several mutations, and the effect of peptide oligomerization in this interaction process. Our results allowed us to identify and confirm amino acid residue motifs that seem to regulate the interaction between the segment peptide and membrane bilayers. Besides these sequence requirements, we have also identified length and tilt requirements that ultimately contribute to the hydrophobic matching between the peptide and the membrane. Additionally, we looked at the association of several transmembrane peptide segments and evaluated their direct interaction and stability inside a membrane bilayer. From our results we could conclude that three independent TM peptide segments arrange themselves in a parallel arrangement, very similarly to what is observed for the C-terminal regions of the hemagglutinin crystallographic structure of the protein, to where the segments are attached.
Collapse
Affiliation(s)
- Bruno L Victor
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Avenida da República, EAN Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | |
Collapse
|
18
|
Filovirus entry: a novelty in the viral fusion world. Viruses 2012; 4:258-75. [PMID: 22470835 PMCID: PMC3315215 DOI: 10.3390/v4020258] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/24/2012] [Accepted: 01/30/2012] [Indexed: 12/18/2022] Open
Abstract
Ebolavirus (EBOV) and Marburgvirus (MARV) that compose the filovirus family of negative strand RNA viruses infect a broad range of mammalian cells. Recent studies indicate that cellular entry of this family of viruses requires a series of cellular protein interactions and molecular mechanisms, some of which are unique to filoviruses and others are commonly used by all viral glycoproteins. Details of this entry pathway are highlighted here. Virus entry into cells is initiated by the interaction of the viral glycoprotein(1) subunit (GP(1)) with both adherence factors and one or more receptors on the surface of host cells. On epithelial cells, we recently demonstrated that TIM-1 serves as a receptor for this family of viruses, but the cell surface receptors in other cell types remain unidentified. Upon receptor binding, the virus is internalized into endosomes primarily via macropinocytosis, but perhaps by other mechanisms as well. Within the acidified endosome, the heavily glycosylated GP(1) is cleaved to a smaller form by the low pH-dependent cellular proteases Cathepsin L and B, exposing residues in the receptor binding site (RBS). Details of the molecular events following cathepsin-dependent trimming of GP(1) are currently incomplete; however, the processed GP(1) specifically interacts with endosomal/lysosomal membranes that contain the Niemann Pick C1 (NPC1) protein and expression of NPC1 is required for productive infection, suggesting that GP/NPC1 interactions may be an important late step in the entry process. Additional events such as further GP(1) processing and/or reducing events may also be required to generate a fusion-ready form of the glycoprotein. Once this has been achieved, sequences in the filovirus GP(2) subunit mediate viral/cellular membrane fusion via mechanisms similar to those previously described for other enveloped viruses. This multi-step entry pathway highlights the complex and highly orchestrated path of internalization and fusion that appears unique for filoviruses.
Collapse
|
19
|
Beyond anchoring: the expanding role of the hendra virus fusion protein transmembrane domain in protein folding, stability, and function. J Virol 2012; 86:3003-13. [PMID: 22238302 DOI: 10.1128/jvi.05762-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While work with viral fusion proteins has demonstrated that the transmembrane domain (TMD) can affect protein folding, stability, and membrane fusion promotion, the mechanism(s) remains poorly understood. TMDs could play a role in fusion promotion through direct TMD-TMD interactions, and we have recently shown that isolated TMDs from three paramyxovirus fusion (F) proteins interact as trimers using sedimentation equilibrium (SE) analysis (E. C. Smith, et al., submitted for publication). Immediately N-terminal to the TMD is heptad repeat B (HRB), which plays critical roles in fusion. Interestingly, addition of HRB decreased the stability of the trimeric TMD-TMD interactions. This result, combined with previous findings that HRB forms a trimeric coiled coil in the prefusion form of the whole protein though HRB peptides fail to stably associate in isolation, suggests that the trimeric TMD-TMD interactions work in concert with elements in the F ectodomain head to stabilize a weak HRB interaction. Thus, changes in TMD-TMD interactions could be important in regulating F triggering and refolding. Alanine insertions between the TMD and HRB demonstrated that spacing between these two regions is important for protein stability while not affecting TMD-TMD interactions. Additional mutagenesis of the C-terminal end of the TMD suggests that β-branched residues within the TMD play a role in membrane fusion, potentially through modulation of TMD-TMD interactions. Our results support a model whereby the C-terminal end of the Hendra virus F TMD is an important regulator of TMD-TMD interactions and show that these interactions help hold HRB in place prior to the triggering of membrane fusion.
Collapse
|
20
|
Helix-destabilizing, beta-branched, and polar residues in the baboon reovirus p15 transmembrane domain influence the modularity of FAST proteins. J Virol 2011; 85:4707-19. [PMID: 21367887 DOI: 10.1128/jvi.02223-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fusogenic reoviruses induce syncytium formation using the fusion-associated small transmembrane (FAST) proteins. A recent study indicated the p14 FAST protein transmembrane domain (TMD) can be functionally replaced by the TMDs of the other FAST proteins but not by heterologous TMDs, suggesting that the FAST protein TMDs are modular fusion units. We now show that the p15 FAST protein is also a modular fusogen, as indicated by the functional replacement of the p15 ectodomain with the corresponding domain from the p14 FAST protein. Paradoxically, the p15 TMD is not interchangeable with the TMDs of the other FAST proteins, implying that unique attributes of the p15 TMD are required when this fusion module is functioning in the context of the p15 ecto- and/or endodomain. A series of point substitutions, truncations, and reextensions were created in the p15 TMD to define features that are specific to the functioning of the p15 TMD. Removal of only one or two residues from the N terminus or four residues from the C terminus of the p15 TMD eliminated membrane fusion activity, and there was a direct correlation between the fusion-promoting function of the p15 TMD and the presence of N-terminal, hydrophobic β-branched residues. Substitution of the glycine residues and triserine motif present in the p15 TMD also impaired or eliminated the fusion-promoting activity of the p15 TMD. The ability of the p15 TMD to function in an ecto- and endodomain-specific context is therefore influenced by stringent sequence requirements that reflect the importance of TMD polar residues and helix-destabilizing residues.
Collapse
|
21
|
Popa A, Pager CT, Dutch RE. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein. Biochemistry 2011; 50:945-52. [PMID: 21175223 PMCID: PMC3035738 DOI: 10.1021/bi101597k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.
Collapse
Affiliation(s)
- Andreea Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Cara Teresia Pager
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| |
Collapse
|
22
|
Nikolaus J, Warner JM, O'Shaughnessy B, Herrmann A. The pathway to membrane fusion through hemifusion. CURRENT TOPICS IN MEMBRANES 2011; 68:1-32. [PMID: 21771493 DOI: 10.1016/b978-0-12-385891-7.00001-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jörg Nikolaus
- Department of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt-University Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
23
|
Reovirus FAST protein transmembrane domains function in a modular, primary sequence-independent manner to mediate cell-cell membrane fusion. J Virol 2009; 83:2941-50. [PMID: 19129451 DOI: 10.1128/jvi.01869-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The FAST proteins are a unique family of virus-encoded cell-cell membrane fusion proteins. In the absence of a cleavable N-terminal signal peptide, a single-pass transmembrane domain (TMD) functions as a reverse signal-anchor to direct the FAST proteins into the plasma membrane in an N(exo)/C(cyt) topology. There is little information available on the role of the FAST protein TMD in the cell-cell membrane fusion reaction. We show that in the absence of conservation in the length or primary amino acid sequence, the p14 TMD can be functionally exchanged with the TMDs of the p10 and p15 FAST proteins. This is not the case for chimeric p14 proteins containing the TMDs of two different enveloped viral fusion proteins or a cellular membrane protein; such chimeric proteins were defective for both pore formation and syncytiogenesis. TMD structural features that are conserved within members of the FAST protein family presumably play direct roles in the fusion reaction. Molecular modeling suggests that the funnel-shaped architecture of the FAST protein TMDs may represent such a conserved structural and functional motif. Interestingly, although heterologous TMDs exert diverse influences on the trafficking of the p14 FAST protein, these TMDs are capable of functioning as reverse signal-anchor sequences to direct p14 into lipid rafts in the correct membrane topology. The FAST protein TMDs are therefore not primary determinants of type III protein topology, but they do play a direct, sequence-independent role in the membrane fusion reaction.
Collapse
|
24
|
Weise K, Reed J. Fusion Peptides and Transmembrane Domains of Fusion Proteins are Characterized by Different but Specific Structural Properties. Chembiochem 2008; 9:934-43. [DOI: 10.1002/cbic.200700386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Welman M, Lemay G, Cohen EA. Role of envelope processing and gp41 membrane spanning domain in the formation of human immunodeficiency virus type 1 (HIV-1) fusion-competent envelope glycoprotein complex. Virus Res 2006; 124:103-12. [PMID: 17129629 DOI: 10.1016/j.virusres.2006.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/04/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into target cells is directed by the envelope (Env) glycoproteins, which are present on the surface of HIV-1 virion or infected cells in the form of trimers consisting of gp120/gp41 complexes. The surface subunit, gp120, initiates the entry process by interacting sequentially with the CD4 receptor and a co-receptor, thereby inducing a conformational change that allows the transmembrane (TM) gp41 subunit to mediate fusion between viral and target cell membranes. Cleavage of Env into its gp120 and gp41 components is necessary for activation of its fusogenic activity. Here, the gp41 TM glycoprotein was altered by either deleting an isoleucine residue (DeltaI642) in a critical region of its ectodomain or by substituting its membrane spanning domain (MSD) by that of the influenza hemagglutinin (HA) glycoprotein (TM-HA) to examine the contribution of these regions to Env functions. Characterization of these mutant forms of gp41 revealed that they both affected the infectivity of pseudotyped virions, however, through distinct defects in Env functions. While deletion of Ile 642 drastically altered processing of Env, replacement of gp41 MSD by that of HA led to a marked fusion defect even though the TM-HA Env was efficiently processed and incorporated into viral particles. Interestingly, both DeltaI642 and TM-HA Env were found to act as trans dominant-negative mutant of viral infectivity, presumably via their ability to form hetero-oligomers with wild type Env. Together, these results support a previously proposed model whereby all three gp120-gp41 monomers must be cleaved for the Env homo-trimer to function and suggest that the gp41 MSD plays a critical role in the formation of fusion-competent Env trimers.
Collapse
Affiliation(s)
- Mélanie Welman
- Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
26
|
Siegel DP. Determining the ratio of the Gaussian curvature and bending elastic moduli of phospholipids from Q(II) phase unit cell dimensions. Biophys J 2006; 91:608-18. [PMID: 16648171 PMCID: PMC1483111 DOI: 10.1529/biophysj.106.085225] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method is presented for measuring M, the ratio of the Gaussian (saddle splay) elastic modulus to the bending elastic modulus of a lipid monolayer. The ratio M is determined from measurements of the equilibrium bicontinuous inverted cubic (Q(II)) phase unit cell size in excess water as a function of temperature. The analysis includes the effect of a curvature elastic term that is second-order in the Gaussian curvature, K. Preliminary results using data on DOPE-Me validate the method. The fitted value of M is within 8% of the value estimated in an earlier treatment. The method can be used to measure changes in M due to addition of exogenous lipids and peptides to a host lipid system. The Gaussian elastic modulus has a substantial effect on the stability of fusion intermediates (stalks, hemifusion diaphragms, and fusion pores). Studying the effects of peptides and different lipids on M via this method may yield insights into how fusion protein moieties stabilize intermediates in membrane fusion in vivo. The contribution of the K2 curvature elastic term to the free energy of Q(II) phase and fusion pores explains some features of fusion pore stability and dynamics, and some peculiar observations concerning the mechanism of L(alpha)/Q(II) phase transitions.
Collapse
|
27
|
Serebryakova MV, Kordyukova LV, Baratova LA, Markushin SG. Mass spectrometric sequencing and acylation character analysis of C-terminal anchoring segment from Influenza A hemagglutinin. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2006; 12:51-62. [PMID: 16531651 DOI: 10.1255/ejms.792] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Influenza A virus hemagglutinin (HA) is a major envelope glycoprotein mediating viral and cell membrane fusion. HA is anchored in the viral envelope by a light HA(2) chain containing one transmembrane domain and a cytoplasmic tail. Three cysteine residues in the C-terminal region, one in the transmembrane domain and two in the cytoplasmic tail, are highly conserved and potentially palmitoylated in all HA subtypes. The HA(2) C- terminal anchoring segments were extracted to organic phase from the bromelain-digested viruses (subviral particles) of three strains: A/X-31 (H3 subtype), A/Puerto Rico/8/34 (H1 subtype) and A/FPV/Weybridge/34 (H7 subtype). Their primary structures were assessed by matrix-assisted laser desorption/ionization time-of-flight time-of- flight mass spectrometry (MALDI-ToF-ToF MS). Trypsin-type protease-cleaved peptides prevailed over bromelain- cleaved ones in the peptide mixtures. All of them included transmembrane domains. Several distinctive features of the C-terminal HA(2) peptides acylation character were discovered by MALDI-ToF MS: 1) the peptides isolated from the viruses, which were digested by bromelain in the absence of beta-mercaptoethanol, were predominantly triply acylated; 2) the peptides were acylated not only by palmitic, but also by stearic acid residues; 3) the palmitate/stearate ratio was different for the three strains studied; 4) the A/FPV/Weybridge/34 strain has a priority to stearate binding. This fatty acid residue was discovered at the first of three conservative cysteine residues located in the transmembrane domain. It was found that presence of thiol reagent during preparation of subviral particles led to the appearence of the C-terminal HA(2) peptides acylated to different degrees. Triply, doubly, mono- and even unacylated peptides were detected. It was demonstrated that the thioester bond in the isolated acylpeptides was extremely sensitive to thiol reagents.
Collapse
Affiliation(s)
- Marina V Serebryakova
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow
| | | | | | | |
Collapse
|
28
|
Siegel DP, Cherezov V, Greathouse DV, Koeppe RE, Killian JA, Caffrey M. Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion. Biophys J 2005; 90:200-11. [PMID: 16214859 PMCID: PMC1367019 DOI: 10.1529/biophysj.105.070466] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
WALP peptides consist of repeating alanine-leucine sequences of different lengths, flanked with tryptophan "anchors" at each end. They form membrane-spanning alpha-helices in lipid membranes, and mimic protein transmembrane domains. WALP peptides of increasing length, from 19 to 31 amino acids, were incorporated into N-monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) at concentrations up to 0.5 mol % peptide. When pure DOPE-Me is heated slowly, the lamellar liquid crystalline (L(alpha)) phase first forms an inverted cubic (Q(II)) phase, and the inverted hexagonal (H(II)) phase at higher temperatures. Using time-resolved x-ray diffraction and slow temperature scans (1.5 degrees C/h), WALP peptides were shown to decrease the temperatures of Q(II) and H(II) phase formation (T(Q) and T(H), respectively) as a function of peptide concentration. The shortest and longest peptides reduced T(Q) the most, whereas intermediate lengths had weaker effects. These findings are relevant to membrane fusion because the first step in the L(alpha)/Q(II) phase transition is believed to be the formation of fusion pores between pure lipid membranes. These results imply that physiologically relevant concentrations of these peptides could increase the susceptibility of biomembrane lipids to fusion through an effect on lipid phase behavior, and may explain one role of the membrane-spanning domains in the proteins that mediate membrane fusion.
Collapse
|
29
|
Hofmann MW, Weise K, Ollesch J, Agrawal P, Stalz H, Stelzer W, Hulsbergen F, de Groot H, Gerwert K, Reed J, Langosch D. De novo design of conformationally flexible transmembrane peptides driving membrane fusion. Proc Natl Acad Sci U S A 2004; 101:14776-81. [PMID: 15456911 PMCID: PMC522031 DOI: 10.1073/pnas.0405175101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 12/28/2022] Open
Abstract
Fusion of biological membranes is mediated by distinct integral membrane proteins, e.g., soluble N-ethylmaleimide-sensitive factor attachment protein receptors and viral fusion proteins. Previous work has indicated that the transmembrane segments (TMSs) of such integral membrane proteins play an important role in fusion. Furthermore, peptide mimics of the transmembrane part can drive the fusion of liposomes, and evidence had been obtained that fusogenicity depends on their conformational flexibility. To test this hypothesis, we present a series of unnatural TMSs that were designed de novo based on the structural properties of hydrophobic residues. We find that the fusogenicity of these peptides depends on the ratio of alpha-helix-promoting Leu and beta-sheet-promoting Val residues and is enhanced by helix-destabilizing Pro and Gly residues within their hydrophobic cores. The ability of these peptides to refold from an alpha-helical state to a beta-sheet conformation and backwards was determined under different conditions. Membrane fusogenic peptides with mixed Leu/Val sequences tend to switch more readily between different conformations than a nonfusogenic peptide with an oligo-Leu core. We propose that structural flexibility of these TMSs is a prerequisite of fusogenicity.
Collapse
Affiliation(s)
- Mathias W Hofmann
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bock JO, Lundsgaard T, Pedersen PA, Christensen LS. Identification and partial characterization of Taastrup virus: a newly identified member species of the Mononegavirales. Virology 2004; 319:49-59. [PMID: 14967487 DOI: 10.1016/j.virol.2003.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Revised: 10/10/2003] [Accepted: 10/17/2003] [Indexed: 11/30/2022]
Abstract
We present a 8904-nt sequence of the central part of the RNA genome of a novel virus with a filovirus-like, nonidentical morphology named Taastrup virus (TV) detected in the leafhopper Psammotettix alienus. Sequence analysis identified five potential open reading frames (ORFs) and a complex pattern of homologies to various members of the Mononegavirales suggests a genome organization with the following order of genes: 3'-N-P-M-G-L-5'. Sequence analyses reveal an unusually large glycoprotein (G) containing both potential O-linked (14) and N-linked (9) glycosylation sites-a feature shared with the glycoproteins of Filoviridae and Pneumovirinae, and a nucleoprotein (N) with homology to the nucleoprotein of viral hemorrhagic septicemia virus (VHSV), a member of the Rhabdoviridae. Highly conserved domains were identified in the RNA-dependent RNA polymerase (L) between TV and other viruses within the order of Mononegavirales, and homology was found in particular with members of the Rhabdoviridae. The sequence similarities and the unique filovirus-like but nonidentical morphology unambiguously refer this newly identified virus to the order of Mononegavirales but to no family more than any, to other within the order.
Collapse
Affiliation(s)
- J O Bock
- Department of Clinical Microbiology, Rigshospitalet, DK-2100 Copenhagen East, Denmark
| | | | | | | |
Collapse
|
31
|
Abstract
Segments of viral fusion proteins play an important role in viral fusion. They are defined by a number of criteria, including the sensitivity of this region of the viral fusion protein to loss of function as a consequence of mutation. In addition, small model peptides designed to mimic this segment of viral fusion proteins often have some membrane perturbing activity. The properties of viral fusion peptides are quite varied. Many are found at the amino terminus of viral fusion proteins. As isolated peptides, they have been found to form both alpha-helical as well as beta-structure. In addition, some viruses have internal fusion peptides. Just as there are several structural motifs for viral fusion peptides, there are also several mechanisms by which they accelerate the process of membrane fusion. These include the promotion of negative curvature, lowering the rupture tension of the lipid monolayer, acting as an anchor to join the fusion membranes, transmitting a force to the membrane or imparting energy to the system by other means. It is not likely that the fusion peptide can fulfill all of these diverse roles and future studies will elucidate which of these mechanisms is most important for the action of individual viral fusion peptides.
Collapse
Affiliation(s)
- Richard M Epand
- Health Science Centre, Department of Biochemistry, McMaster University, 1200 Main Street West, ON, Hamilton, Canada L8N 3Z5.
| |
Collapse
|