1
|
Calisto F, Todorovic S, Louro RO, Pereira MM. Exploring substrate interaction in respiratory alternative complex III from Rhodothermus marinus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148983. [PMID: 37127243 DOI: 10.1016/j.bbabio.2023.148983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Rhodothermus marinus is a thermohalophilic organism that has optimized its microaerobic metabolism at 65 °C. We have been exploring its respiratory chain and observed the existence of a quinone:cytochrome c oxidoreductase complex, named Alternative Complex III, structurally different from the bc1 complex. In the present work, we took profit from nanodiscs and liposomes technology to investigate ACIII activity in membrane-mimicking systems. In addition, we studied the interaction of ACIII with menaquinone, its potential electron acceptors (HiPIP and cytochrome c) and the caa3 oxygen reductase.
Collapse
Affiliation(s)
- Filipa Calisto
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
2
|
Karavaeva V, Sousa FL. Modular structure of complex II: An evolutionary perspective. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148916. [PMID: 36084748 DOI: 10.1016/j.bbabio.2022.148916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
Succinate dehydrogenases (SDHs) and fumarate reductases (FRDs) catalyse the interconversion of succinate and fumarate, a reaction highly conserved in all domains of life. The current classification of SDH/FRDs is based on the structure of the membrane anchor subunits and their cofactors. It is, however, unknown whether this classification would hold in the context of evolution. In this work, a large-scale comparative genomic analysis of complex II addresses the questions of its taxonomic distribution and phylogeny. Our findings report that for types C, D, and F, structural classification and phylogeny go hand in hand, while for types A, B and E the situation is more complex, highlighting the possibility for their classification into subgroups. Based on these findings, we proposed a revised version of the evolutionary scenario for these enzymes in which a primordial soluble module, corresponding to the cytoplasmatic subunits, would give rise to the current diversity via several independent membrane anchor attachment events.
Collapse
Affiliation(s)
- Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Filipa L Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| |
Collapse
|
3
|
Apura P, Saramago M, Peregrina A, Viegas SC, Carvalho SM, Saraiva LM, Arraiano CM, Domingues S. Tailor-made sRNAs: a plasmid tool to control the expression of target mRNAs in Pseudomonas putida. Plasmid 2020; 109:102503. [PMID: 32209400 DOI: 10.1016/j.plasmid.2020.102503] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
Abstract
Pseudomonas putida is a highly attractive production system for industrial needs. However, for its improvement as a biocatalyst at the industrial level, modulation of its gene expression is urgently needed. We report the construction of a plasmid expressing a small RNA-based system with the potential to be used for different purposes. Due to the small RNAs modular composition, the design facilities and ability to tune gene expression, they constitute a powerful tool in genetic and metabolic engineering. In the tool presented here, customized sRNAs are expressed from a plasmid and specifically directed to any region of a chosen target. Expression of these customized sRNAs is shown to differentially modulate the level of endogenous and heterologous reporter genes. The antisense interaction of the sRNA with the mRNA produces different outcomes. Depending on the particularity of each sRNA-target mRNA pair, we demonstrate the duality of this system, which is able either to decrease or increase the expression of the same given gene. This system combines high specificity with the potential to be widely applied, due to its predicted ability to modulate the expression of virtually any given gene. This plasmid can be used to redesign P. putida metabolism, fulfilling an important industrial gap.
Collapse
Affiliation(s)
- Patrícia Apura
- Control of Gene Expression Lab, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Margarida Saramago
- Control of Gene Expression Lab, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alexandra Peregrina
- Control of Gene Expression Lab, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sandra C Viegas
- Control of Gene Expression Lab, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Sandra M Carvalho
- Molecular Mechanisms of Pathogen Resistance Lab, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lígia M Saraiva
- Molecular Mechanisms of Pathogen Resistance Lab, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Control of Gene Expression Lab, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Susana Domingues
- Control of Gene Expression Lab, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
4
|
Lancaster CRD, Betz YM, Heit S, Lafontaine MA. Transmembrane Electron and Proton Transfer in Diheme-Containing Succinate : Quinone Oxidoreductases. Isr J Chem 2017. [DOI: 10.1002/ijch.201600139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- C. Roy D. Lancaster
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| | - Yamila M. Betz
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| | - Sabine Heit
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| | - Michael A. Lafontaine
- Department of Structural Biology; Center of Human and Molecular Biology (ZHMB); Saarland University; Faculty of Medicine Building 60 D-66421 Homburg (Saar) Germany
| |
Collapse
|
5
|
Marreiros BC, Calisto F, Castro PJ, Duarte AM, Sena FV, Silva AF, Sousa FM, Teixeira M, Refojo PN, Pereira MM. Exploring membrane respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1039-1067. [PMID: 27044012 DOI: 10.1016/j.bbabio.2016.03.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/20/2023]
Abstract
Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Bruno C Marreiros
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Paulo J Castro
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Afonso M Duarte
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Andreia F Silva
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal.
| |
Collapse
|
6
|
Lancaster CRD. The di-heme family of respiratory complex II enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:679-87. [PMID: 23466335 DOI: 10.1016/j.bbabio.2013.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 01/28/2023]
Abstract
The di-heme family of succinate:quinone oxidoreductases is of particular interest, because its members support electron transfer across the biological membranes in which they are embedded. In the case of the di-heme-containing succinate:menaquinone reductase (SQR) from Gram-positive bacteria and other menaquinone-containing bacteria, this results in an electrogenic reaction. This is physiologically relevant in that it allows the transmembrane electrochemical proton potential Δp to drive the endergonic oxidation of succinate by menaquinone. In the case of the reverse reaction, menaquinol oxidation by fumarate, catalysed by the di-heme-containing quinol:fumarate reductase (QFR), evidence has been obtained that this electrogenic electron transfer reaction is compensated by proton transfer via a both novel and essential transmembrane proton transfer pathway ("E-pathway"). Although the reduction of fumarate by menaquinol is exergonic, it is obviously not exergonic enough to support the generation of a Δp. This compensatory "E-pathway" appears to be required by all di-heme-containing QFR enzymes and results in the overall reaction being electroneutral. In addition to giving a brief overview of progress in the characterization of other members of this diverse family, this contribution summarizes key evidence and progress in identifying constituents of the "E-pathway" within the framework of the crystal structure of the QFR from the anaerobic epsilon-proteobacterium Wolinella succinogenes at 1.78Å resolution. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- C Roy D Lancaster
- Department of Structural Biology, Saarland University, Homburg, Germany.
| |
Collapse
|
7
|
Refojo PN, Teixeira M, Pereira MM. The Alternative complex III: properties and possible mechanisms for electron transfer and energy conservation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1852-9. [PMID: 22609325 DOI: 10.1016/j.bbabio.2012.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 11/17/2022]
Abstract
Alternative complexes III (ACIII) are recently identified membrane-bound enzymes that replace functionally the cytochrome bc(1/)b(6)f complexes. In general, ACIII are composed of four transmembrane proteins and three peripheral subunits that contain iron-sulfur centers and C-type hemes. ACIII are built by a combination of modules present in different enzyme families, namely the complex iron-sulfur molybdenum containing enzymes. In this article a historical perspective on the investigation of ACIII is presented, followed by an overview of the present knowledge on these enzymes. Electron transfer pathways within the protein are discussed taking into account possible different locations (cytoplasmatic or periplasmatic) of the iron-sulfur containing protein and their contribution to energy conservation. In this way several hypotheses for energy conservation modes are raised including linear and bifurcating electron transfer pathways. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
8
|
Kolaj-Robin O, O'Kane SR, Nitschke W, Léger C, Baymann F, Soulimane T. Biochemical and biophysical characterization of succinate: quinone reductase from Thermus thermophilus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:68-79. [PMID: 20951673 DOI: 10.1016/j.bbabio.2010.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Enzymes serving as respiratory complex II belong to the succinate:quinone oxidoreductases superfamily that comprises succinate:quinone reductases (SQRs) and quinol:fumarate reductases. The SQR from the extreme thermophile Thermus thermophilus has been isolated, identified and purified to homogeneity. It consists of four polypeptides with apparent molecular masses of 64, 27, 14 and 15kDa, corresponding to SdhA (flavoprotein), SdhB (iron-sulfur protein), SdhC and SdhD (membrane anchor proteins), respectively. The existence of [2Fe-2S], [4Fe-4S] and [3Fe-4S] iron-sulfur clusters within the purified protein was confirmed by electron paramagnetic resonance spectroscopy which also revealed a previously unnoticed influence of the substrate on the signal corresponding to the [2Fe-2S] cluster. The enzyme contains two heme b cofactors of reduction midpoint potentials of -20mV and -160mV for b(H) and b(L), respectively. Circular dichroism and blue-native polyacrylamide gel electrophoresis revealed that the enzyme forms a trimer with a predominantly helical fold. The optimum temperature for succinate dehydrogenase activity is 70°C, which is in agreement with the optimum growth temperature of T. thermophilus. Inhibition studies confirmed sensitivity of the enzyme to the classical inhibitors of the active site, as there are sodium malonate, sodium diethyl oxaloacetate and 3-nitropropionic acid. Activity measurements in the presence of the semiquinone analog, nonyl-4-hydroxyquinoline-N-oxide (NQNO) showed that the membrane part of the enzyme is functionally connected to the active site. Steady-state kinetic measurements showed that the enzyme displays standard Michaelis-Menten kinetics at a low temperature (30°C) with a K(M) for succinate of 0.21mM but exhibits deviation from it at a higher temperature (70°C). This is the first example of complex II with such a kinetic behavior suggesting positive cooperativity with k' of 0.39mM and Hill coefficient of 2.105. While the crystal structures of several SQORs are already available, no crystal structure of type A SQOR has been elucidated to date. Here we present for the first time a detailed biophysical and biochemical study of type A SQOR-a significant step towards understanding its structure-function relationship.
Collapse
Affiliation(s)
- Olga Kolaj-Robin
- Chemical and Environmental Sciences Department and Materials & Surface Science Institute, University of Limerick, Limerick, Ireland
| | | | | | | | | | | |
Collapse
|
9
|
The alternative complex III of Rhodothermus marinus and its structural and functional association with caa3 oxygen reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1477-82. [DOI: 10.1016/j.bbabio.2010.02.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 11/21/2022]
|
10
|
Refojo PN, Sousa FL, Teixeira M, Pereira MM. The alternative complex III: a different architecture using known building modules. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1869-76. [PMID: 20416271 DOI: 10.1016/j.bbabio.2010.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/05/2010] [Accepted: 04/13/2010] [Indexed: 11/16/2022]
Abstract
Until recently cytochrome bc(1) complexes were the only enzymes known to be able to transfer electrons from reduced quinones to cytochrome c. However, a complex with the same activity and with a unique subunit composition was purified from the membranes of Rhodothermus marinus. This complex, named alternative complex III (ACIII) was then biochemical, spectroscopic and genetically characterized. Later it was observed that the presence of ACIII was not exclusive of R. marinus being the genes coding for ACIII widespread, at least in the Bacteria domain. In this work, a comprehensive description of the current knowledge on ACIII is presented. The relation of ACIII with members of the complex iron-sulfur molybdoenzyme family is investigated by analyzing all the available completely sequenced genomes. It is concluded that ACIII is a new complex composed by a novel combination of modules already identified in other respiratory complexes.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
11
|
Azarkina NV, Konstantinov AA. Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase. BIOCHEMISTRY (MOSCOW) 2010; 75:50-62. [DOI: 10.1134/s0006297910010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Energy conservation by Rhodothermus marinus respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:509-15. [PMID: 20100453 DOI: 10.1016/j.bbabio.2010.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/11/2010] [Accepted: 01/15/2010] [Indexed: 11/21/2022]
Abstract
A sodium ion efflux, together with a proton influx and an inside-positive DeltaPsi, was observed during NADH-respiration by Rhodothermus marinus membrane vesicles. Proton translocation was monitored by fluorescence spectroscopy and sodium ion transport by (23)Na-NMR spectroscopy. Specific inhibitors of complex I (rotenone) and of the dioxygen reductase (KCN) inhibited the proton and the sodium ion transport, but the KCN effect was totally reverted by the addition of menaquinone analogues, indicating that both transports were catalyzed by complex I. We concluded that the coupling ion of the system is the proton and that neither the catalytic reaction nor the establishment of the delta-pH are dependent on sodium, but the presence of sodium increases proton transport. Moreover, studies of NADH oxidation at different sodium concentrations and of proton and sodium transport activities allowed us to propose a model for the mechanism of complex I in which the presence of two different energy coupling sites is suggested.
Collapse
|
13
|
Xin Y, Lu YK, Fromme R, Fromme P, Blankenship RE. Purification, characterization and crystallization of menaquinol:fumarate oxidoreductase from the green filamentous photosynthetic bacterium Chloroflexus aurantiacus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:86-96. [PMID: 19103151 DOI: 10.1016/j.bbabio.2008.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 11/17/2022]
Abstract
The integral membrane protein complex, menaquinol:fumarate oxidoreductase (mQFR) has been purified, identified and characterized from the thermophilic green filamentous anoxygenic photosynthetic bacterium Chloroflexus aurantiacus. The complex is composed of three subunits: a 74 kDa flavoprotein that contains a covalently bound flavin adenine dinucleotide, a 28 kDa iron-sulfur cluster-containing polypeptide, and a 27 kDa transmembrane polypeptide, which is also the binding site of two b-type hemes and two menaquinones. The purified complex has an apparent molecular mass of 260 kDa by blue-native PAGE, which is indicative of a native homodimeric form. The isolated complex is active in vitro in both fumarate reduction and succinate oxidation. It has been analyzed by visible absorption, redox titration, chemical analysis and EPR spectroscopy. In addition, phylogenetic analysis shows that the QFR of both C. aurantiacus and Chlorobium tepidum are most closely related to those found in the delta-proteobacteria. The purified enzyme was crystallized and X-ray diffraction data obtained up to 3.2 A resolution.
Collapse
Affiliation(s)
- Yueyong Xin
- Departments of Biology and Chemistry, Washington University, Campus Box 1137, One Brooking Drive, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
14
|
Pereira MM, Refojo PN, Hreggvidsson GO, Hjorleifsdottir S, Teixeira M. The alternative complex III from Rhodothermus marinus - a prototype of a new family of quinol:electron acceptor oxidoreductases. FEBS Lett 2007; 581:4831-5. [PMID: 17888426 DOI: 10.1016/j.febslet.2007.09.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/04/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
The biochemical and genetic search for a bc(1) complex in Rhodothermus marinus was always fruitless; however, a functional equivalent, i.e. having quinol:cytochrome c oxidoreductase activity was characterized. Now, with the sequencing of R. marinus genome, it was possible to assign the N-terminal sequences of several proteins of this complex to its coding genes. The alternative complex III from R. marinus has the same genomic organization of the so-called MFIcc complexes, proposed to be oxidoreductases of the respiratory and photosynthetic electron transfer chains. In this report, we establish undoubtedly the existence of an alternative complex III, a functional substitute of the bc(1) complex, by its identification at both the biochemical and genomic level.
Collapse
Affiliation(s)
- Manuela M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República (EAN), APT 127, 2780-901 Oeiras, Portugal.
| | | | | | | | | |
Collapse
|
15
|
Fernandes AS, Sousa FL, Teixeira M, Pereira MM. Electron Paramagnetic Resonance Studies of the Iron−Sulfur Centers from Complex I of Rhodothermus marinus. Biochemistry 2005; 45:1002-8. [PMID: 16411776 DOI: 10.1021/bi0519452] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodothermus marinus, a thermohalophilic gram negative bacterium, contains a type I NADH/quinone oxidoreductase (complex I). Its purification was optimized, yielding large amounts of pure and active protein. Furthermore, the stoichiometry of NADH oxidation and quinone reduction was shown to be 1:1. The large amounts of protein enabled a thorough characterization by electron paramagnetic resonance (EPR) spectroscopy at different temperatures and microwave powers, using NADH, NADPH, and dithionite as reducing agents. A minimum of two [2Fe-2S](2+/1+) and four [4Fe-4S](2+/1+) centers were observed in the purified complex. Redox titrations monitored by EPR spectroscopy made possible the determination of the reduction potentials of the iron-sulfur centers; with the exception of one of the [4Fe-4S](2+/1+) centers, which has a lower reduction potential, all the other centers have reduction potentials of -240 +/- 20 mV, pH 7.5.
Collapse
Affiliation(s)
- Andreia S Fernandes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2784-505 Oeiras, Portugal
| | | | | | | |
Collapse
|
16
|
Melo AMP, Lobo SAL, Sousa FL, Fernandes AS, Pereira MM, Hreggvidsson GO, Kristjansson JK, Saraiva LM, Teixeira M. A nhaD Na+/H+ antiporter and a pcd homologues are among the Rhodothermus marinus complex I genes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:95-103. [PMID: 16023073 DOI: 10.1016/j.bbabio.2005.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/07/2005] [Accepted: 06/10/2005] [Indexed: 11/18/2022]
Abstract
The NADH:menaquinone oxidoreductase (Nqo) is one of the enzymes present in the respiratory chain of the thermohalophilic bacterium Rhodothermus marinus. The genes coding for the R. marinus Nqo subunits were isolated and sequenced, clustering in two operons [nqo1 to nqo7 (nqoA) and nqo10 to nqo14 (nqoB)] and two independent genes (nqo8 and nqo9). Unexpectedly, two genes encoding homologues of a NhaD Na+/H+ antiporter (NhaD) and of a pterin-4alpha-carbinolamine dehydratase (PCD) were identified within nqoB, flanked by nqo13 and nqo14. Eight conserved motives to harbour iron-sulphur centres are identified in the deduced primary structures, as well as two consensus sequences to bind nucleotides, in this case NADH and FMN. Moreover, the open-reading-frames of the putative NhaD and PCD were shown to be co-transcribed with the other complex I genes encoded by nqoB. The possible role of these two genes in R. marinus complex I is discussed.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bjornsdottir SH, Blondal T, Hreggvidsson GO, Eggertsson G, Petursdottir S, Hjorleifsdottir S, Thorbjarnardottir SH, Kristjansson JK. Rhodothermus marinus: physiology and molecular biology. Extremophiles 2005; 10:1-16. [PMID: 16075163 DOI: 10.1007/s00792-005-0466-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 06/17/2005] [Indexed: 11/24/2022]
Abstract
Rhodothermus marinus has been the subject of many studies in recent years. It is a thermohalophilic bacterium and is the only validly described species in the genus Rhodothermus. It is not closely related to other well-known thermophiles and is the only thermophile within the family Crenotrichaceae. R. marinus has been isolated from several similar but distantly located geothermal habitats, many of which are subject to large fluctuations in environmental conditions. This presumably affects the physiology of R. marinus. Many of its enzymes show optimum activity at temperatures considerably higher than 65 degrees C, the optimum for growth, and some are active over a broad temperature range. Studies have found distinguishing components in the R. marinus electron transport chain as well as in its pool of intracellular solutes, which accumulate during osmotic stress. The species hosts both bacteriophages and plasmids and a functional intein has been isolated from its chromosome. Despite these interesting features and its unknown genetics, interest in R. marinus has been mostly stimulated by its thermostable enzymes, particularly polysaccharide hydrolysing enzymes and enzymes of DNA synthesis which may be useful in industry and in the laboratory. R. marinus has not been amenable to genetic analysis until recently when a system for gene transfer was established. Here, we review the current literature on R. marinus.
Collapse
|
18
|
Fernandes AS, Konstantinov AA, Teixeira M, Pereira MM. Quinone reduction by Rhodothermus marinus succinate:menaquinone oxidoreductase is not stimulated by the membrane potential. Biochem Biophys Res Commun 2005; 330:565-70. [PMID: 15796920 DOI: 10.1016/j.bbrc.2005.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Indexed: 11/23/2022]
Abstract
Succinate:quinone oxidoreductase (SQR), a di-haem enzyme purified from Rhodothermus marinus, reveals an HQNO-sensitive succinate:quinone oxidoreductase activity with several menaquinone analogues as electron acceptors that decreases with lowering the redox midpoint potential of the quinones. A turnover with the low-potential 2,3-dimethyl-1,4-naphthoquinone that is the closest analogue of menaquinone, although low, can be detected in liposome-reconstituted SQR. Reduction of the quinone is not stimulated by an imposed K+-diffusion membrane potential of a physiological sign (positive inside the vesicles). Nor does the imposed membrane potential increase the reduction level of the haems in R. marinus SQR poised with the succinate/fumarate redox couple. The data do not support a widely discussed hypothesis on the electrogenic transmembrane electron transfer from succinate to menaquinone catalysed by di-haem SQRs. The role of the membrane potential in regulation of the SQR activity is discussed.
Collapse
Affiliation(s)
- Andreia S Fernandes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Apartado 127, 2784-505 Oeiras, Portugal
| | | | | | | |
Collapse
|
19
|
Pereira MM, Teixeira M. Is a Q-cycle-like mechanism operative in dihaemic succinate:quinone and quinol:fumarate oxidoreductases? FEBS Lett 2003; 543:1-4. [PMID: 12753894 DOI: 10.1016/s0014-5793(03)00422-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Succinate:quinone (SQR) and quinol:fumarate oxidoreductases (QFR) are members of the same enzyme family. These are membrane bound enzymes anchored to the membrane by one or two subunits that may contain two, one or no haems. For the dihaemic enzymes the electron pathway from the flavin at the catalytic centre to the quinones remains to be established. Taking into account that the two haems are located on opposite sites of the membrane, and the possible presence of two quinone binding sites, also located on opposite sides of the membrane, we re-hypothesise the presence of a Q-cycle type mechanism in these enzymes. Such a mechanism can explain an active functional role for two haems and two quinone binding sites, allowing SQR to conserve energy. With this testable hypothesis we intend to challenge the discussion and drive further experimentation to unravel the functional mechanism of SQRs and QFRs.
Collapse
Affiliation(s)
- Manuela M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
| | | |
Collapse
|
20
|
Fernandes AS, Pereira MM, Teixeira M. Purification and characterization of the complex I from the respiratory chain of Rhodothermus marinus. J Bioenerg Biomembr 2002; 34:413-21. [PMID: 12678433 DOI: 10.1023/a:1022509907553] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The rotenone sensitive NADH:menaquinone oxidoreductase (NDH-I or complex I) from the thermohalophilic bacterium Rhodothermus marinus has been purified and characterized. Three of its subunits react with antibodies against 78, 51, and 21.3c kDa subunits of Neurospora crassa complex I. The optimum conditions for NADH dehydrogenase activity are 50 degrees C and pH 8.1, and the enzyme presents a KM of 9 microM for NADH. The enzyme also displays NADH:quinone oxidoreductase activity with two menaquinone analogs, 1,4-naphtoquinone (NQ) and 2,3-dimethyl-1,4-naphtoquinone (DMN), being the last one rotenone sensitive, indicating the complex integrity as purified. When incorporated in liposomes, a stimulation of the NADH:DMN oxidoreductase activity is observed by dissipation of the membrane potential, upon addition of CCCP. The purified enzyme contains 13.5 +/- 3.5 iron atoms and approximately 3.7 menaquinone per FMN. At least five iron-sulfur centers are observed by EPR spectroscopy: two [2Fe-2S](2+/1+) and three [4Fe-4S](2+/1+) centers. By fluorescence spectroscopy a still unidentified chromophore was detected in R. marinus complex I.
Collapse
Affiliation(s)
- Andreia S Fernandes
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
21
|
Lemos RS, Gomes CM, LeGall J, Xavier AV, Teixeira M. The quinol:fumarate oxidoreductase from the sulphate reducing bacterium Desulfovibrio gigas: spectroscopic and redox studies. J Bioenerg Biomembr 2002; 34:21-30. [PMID: 11860177 DOI: 10.1023/a:1013814619023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The membrane bound fumarate reductase (FRD) from the sulphate-reducer Desulfovibrio gigas was purified from cells grown on a fumarate/sulphate medium and extensively characterized. The FRD is isolated with three subunits of apparent molecular masses of 71, 31, and 22 kDa. The enzyme is capable of both fumarate reduction and succinate oxidation, exhibiting a higher specificity toward fumarate (Km for fumarate is 0.42 and for succinate 2 mM) and a reduction rate 30 times faster than that for oxidation. Studies by Visible and EPR spectroscopies allowed the identification of two B-type haems and the three iron-sulplur clusters usually found in FRDs and succinate dehydrogenases: [2Fe-2S]2+/1+ (S1), [4Fe-4S]2+/1+ (S2), and [3Fe-4S]1+/0 (S3). The apparent macroscopic reduction potentials for the metal centers, at pH 7.6, were determined by redox titrations: -45 and -175 mV for the two haems, and +20 and -140 mV for the S3 and SI clusters, respectively. The reduction potentials of the haem groups are pH dependent, supporting the proposal that fumarate reduction is associated with formation of the membrane proton gradient. Furthermore, co-reconstitution in liposomes of D. gigas FRD, duroquinone, and D. gigas cytochrome bd shows that this system is capable of coupling succinate oxidation with oxygen reduction to water.
Collapse
Affiliation(s)
- Rita S Lemos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
22
|
Lemos RS, Fernandes AS, Pereira MM, Gomes CM, Teixeira M. Quinol:fumarate oxidoreductases and succinate:quinone oxidoreductases: phylogenetic relationships, metal centres and membrane attachment. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:158-70. [PMID: 11803024 DOI: 10.1016/s0005-2728(01)00239-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A comprehensive phylogenetic analysis of the core subunits of succinate:quinone oxidoreductases and quinol:fumarate oxidoreductases is performed, showing that the classification of the enzymes as type A to E based on the type of the membrane anchor fully correlates with the specific characteristics of the two core subunits. A special emphasis is given to the type E enzymes, which have an atypical association to the membrane, possibly involving anchor subunits with amphipathic helices. Furthermore, the redox properties of the SQR/QFR proteins are also reviewed, stressing out the recent observation of redox-Bohr effect upon haem reduction, observed for the Desulfovibrio gigas and Rhodothermus marinus enzymes, which indicates a direct protonation event at the haems or at a nearby residue. Finally, the possible contribution of these enzymes to the formation/dissipation of a transmembrane proton gradient is discussed, considering recent experimental and structural data.
Collapse
Affiliation(s)
- Rita S Lemos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboã, Oeiras, Portugal
| | | | | | | | | |
Collapse
|