1
|
Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1064-74. [DOI: 10.1016/j.bbabio.2015.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/23/2015] [Accepted: 05/15/2015] [Indexed: 12/20/2022]
|
2
|
Gonçalves AP, Videira A. Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death. MICROBIAL CELL 2015; 2:68-73. [PMID: 28357279 PMCID: PMC5349180 DOI: 10.15698/mic2015.03.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(P)H dehydrogenases (also called alternative NAD(P)H dehydrogenases) are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(P)H dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(P)H dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF)-family.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Current address: Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - Arnaldo Videira
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| |
Collapse
|
3
|
Martins I, Hartmann DO, Alves PC, Planchon S, Renaut J, Leitão MC, Rebelo LP, Silva Pereira C. Proteomic alterations induced by ionic liquids in Aspergillus nidulans and Neurospora crassa. J Proteomics 2013; 94:262-78. [DOI: 10.1016/j.jprot.2013.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 09/13/2013] [Accepted: 09/27/2013] [Indexed: 02/03/2023]
|
4
|
Li L, Nelson CJ, Carrie C, Gawryluk RMR, Solheim C, Gray MW, Whelan J, Millar AH. Subcomplexes of ancestral respiratory complex I subunits rapidly turn over in vivo as productive assembly intermediates in Arabidopsis. J Biol Chem 2012; 288:5707-17. [PMID: 23271729 DOI: 10.1074/jbc.m112.432070] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subcomplexes of mitochondrial respiratory complex I (CI; EC 1.6.5.3) are shown to turn over in vivo, and we propose a role in an ancestral assembly pathway. By progressively labeling Arabidopsis cell cultures with (15)N and isolating mitochondria, we have identified CI subcomplexes through differences in (15)N incorporation into their protein subunits. The 200-kDa subcomplex, containing the ancestral γ-carbonic anhydrase (γ-CA), γ-carbonic anhydrase-like, and 20.9-kDa subunits, had a significantly higher turnover rate than intact CI or CI+CIII(2). In vitro import of precursors for these CI subunits demonstrated rapid generation of subcomplexes and revealed that their specific abundance varied when different ancestral subunits were imported. Time course studies of precursor import showed the further assembly of these subcomplexes into CI and CI+CIII(2), indicating that the subcomplexes are productive intermediates of assembly. The strong transient incorporation of new subunits into the 200-kDa subcomplex in a γ-CA mutant is consistent with this subcomplex being a key initiator of CI assembly in plants. This evidence alongside the pattern of coincident occurrence of genes encoding these particular proteins broadly in eukaryotes, except for opisthokonts, provides a framework for the evolutionary conservation of these accessory subunits and evidence of their function in ancestral CI assembly.
Collapse
Affiliation(s)
- Lei Li
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
5
|
The mitochondrial respiratory chain of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Arch Microbiol 2012; 195:51-61. [DOI: 10.1007/s00203-012-0845-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/13/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
|
6
|
Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V. The oxidative phosphorylation system in mammalian mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:3-37. [PMID: 22399416 DOI: 10.1007/978-94-007-2869-1_1] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chapter provides a review of the state of art of the oxidative phosphorylation system in mammalian mitochondria. The sections of the paper deal with: (i) the respiratory chain as a whole: redox centers of the chain and protonic coupling in oxidative phosphorylation (ii) atomic structure and functional mechanism of protonmotive complexes I, III, IV and V of the oxidative phosphorylation system (iii) biogenesis of oxidative phosphorylation complexes: mitochondrial import of nuclear encoded subunits, assembly of oxidative phosphorylation complexes, transcriptional factors controlling biogenesis of the complexes. This advanced knowledge of the structure, functional mechanism and biogenesis of the oxidative phosphorylation system provides a background to understand the pathological impact of genetic and acquired dysfunctions of mitochondrial oxidative phosphorylation.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Basic Medical Sciences, University of Bari, Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
7
|
Understanding mitochondrial complex I assembly in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:851-62. [PMID: 21924235 DOI: 10.1016/j.bbabio.2011.08.010] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/17/2011] [Accepted: 08/27/2011] [Indexed: 12/12/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
8
|
Martins VDP, Dinamarco TM, Curti C, Uyemura SA. Classical and alternative components of the mitochondrial respiratory chain in pathogenic fungi as potential therapeutic targets. J Bioenerg Biomembr 2011; 43:81-8. [PMID: 21271279 DOI: 10.1007/s10863-011-9331-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Collapse
Affiliation(s)
- Vicente de Paulo Martins
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
9
|
Li Q, Bai Z, O’Donnell A, Harvey LM, Hoskisson PA, McNeil B. Oxidative stress in fungal fermentation processes: the roles of alternative respiration. Biotechnol Lett 2010; 33:457-67. [DOI: 10.1007/s10529-010-0471-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/03/2010] [Indexed: 02/07/2023]
|
10
|
Dinamarco TM, Pimentel BDCF, Savoldi M, Malavazi I, Soriani FM, Uyemura SA, Ludovico P, Goldman MHS, Goldman GH. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance. Fungal Genet Biol 2010; 47:1055-69. [PMID: 20654725 DOI: 10.1016/j.fgb.2010.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 12/13/2022]
Abstract
Farnesol (FOH) is a nonsterol isoprenoid produced by dephosphorylation of farnesyl pyrophosphate, a catabolite of the cholesterol biosynthetic pathway. These isoprenoids inhibit proliferation and induce apoptosis. Here, we show that Aspergillus nidulans AifA encoding the apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase plays a role in the function of the mitochondrial Complex I. Additionally, we demonstrated that ndeA-B and ndiA encode external and internal alternative NADH dehydrogenases, respectively, that have a function in FOH resistance. When exposed to FOH, the ΔaifA and ΔndeA strains have increased ROS production while ΔndeB, ΔndeA ΔndeB, and ΔndiA mutant strains showed the same ROS accumulation than in the absence of FOH. We observed several compensatory mechanisms affecting the differential survival of these mutants to FOH.
Collapse
Affiliation(s)
- Taísa Magnani Dinamarco
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café S/N, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sharma LK, Lu J, Bai Y. Mitochondrial respiratory complex I: structure, function and implication in human diseases. Curr Med Chem 2009; 16:1266-77. [PMID: 19355884 DOI: 10.2174/092986709787846578] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria are ubiquitous organelles in eukaryotic cells whose primary function is to generate energy supplies in the form of ATP through oxidative phosphorylation. As the entry point for most electrons into the respiratory chain, NADH:ubiquinone oxidoreductase, or complex I, is the largest and least understood component of the mitochondrial oxidative phosphorylation system. Substantial progress has been made in recent years in understanding its subunit composition, its assembly, the interaction among complex I and other respiratory components, and its role in oxidative stress and apoptosis. This review provides an updated overview of the structure of complex I, as well as its cellular functions, and discusses the implication of complex I dysfunction in various human diseases.
Collapse
Affiliation(s)
- Lokendra K Sharma
- Department of Cellular and Structural Biology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
12
|
Levine AJ, Hu W, Feng Z, Gil G. Reconstructing signal transduction pathways: challenges and opportunities. Ann N Y Acad Sci 2007; 1115:32-50. [PMID: 17934060 DOI: 10.1196/annals.1407.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this chapter, we will review how signal transduction pathways have been assembled in the past, bringing us to our present understanding of this area of research. The methods employed have relied heavily upon the genetics of yeast, worms, flies, mice, and humans. The use of second site suppressors and epistasis has permitted the detection of interacting elements and the sequence of genetic activities. Biochemistry has been employed to elucidate metabolic pathways, demonstrate protein complexes, and identify functions of gene products. The tools of molecular biology-knocking concentration of protein products down or up-have been helpful to trace the function of pathways in vivo. The study of disease states has led to the identification of a set of altered genes and helped define a network that is altered and gives rise to the disease. We will also discuss some serious limitations in these approaches. After reviewing how signal transduction pathways are constructed and investigated, we will turn our attention to an example that demonstrates the inter-relationships between pathways and the regulation of a specific set of pathways. We will examine how the p53 pathway in responding to stress shuts down the AKT-1 and mTOR pathways so as to limit the error frequency of cell growth and division during a stressful time where homeostatic mechanisms are required to respond and increase the fidelity of these processes.
Collapse
Affiliation(s)
- Arnold J Levine
- School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540-0631, USA.
| | | | | | | |
Collapse
|
13
|
Vogel RO, Smeitink JAM, Nijtmans LGJ. Human mitochondrial complex I assembly: A dynamic and versatile process. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1215-27. [PMID: 17854760 DOI: 10.1016/j.bbabio.2007.07.008] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 12/12/2022]
Abstract
One can but admire the intricate way in which biomolecular structures are formed and cooperate to allow proper cellular function. A prominent example of such intricacy is the assembly of the five inner membrane embedded enzymatic complexes of the mitochondrial oxidative phosphorylation (OXPHOS) system, which involves the stepwise combination of >80 subunits and prosthetic groups encoded by both the mitochondrial and nuclear genomes. This review will focus on the assembly of the most complicated OXPHOS structure: complex I (NADH:ubiquinone oxidoreductase, EC 1.6.5.3). Recent studies into complex I assembly in human cells have resulted in several models elucidating a thus far enigmatic process. In this review, special attention will be given to the overlap between the various assembly models proposed in different organisms. Complex I being a complicated structure, its assembly must be prone to some form of coordination. This is where chaperone proteins come into play, some of which may relate complex I assembly to processes such as apoptosis and even immunity.
Collapse
Affiliation(s)
- Rutger O Vogel
- Nijmegen Centre for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
14
|
Yadava N, Potluri P, Scheffler IE. Investigations of the potential effects of phosphorylation of the MWFE and ESSS subunits on complex I activity and assembly. Int J Biochem Cell Biol 2007; 40:447-60. [PMID: 17931954 DOI: 10.1016/j.biocel.2007.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 11/18/2022]
Abstract
There have been several reports on the phosphorylation of various subunits of NADH-ubiquinone oxidoreductase (complex I) in mammalian mitochondria. The effects of phosphorylation on assembly or activity of these subunits have not been investigated directly. The cAMP-dependent phosphorylation of the MWFE and ESSS subunits in isolated bovine heart mitochondria has been recently reported. We have investigated the significance of potential phosphorylation of these two subunits in complex I assembly and function by mutational analysis of the phosphorylation sites. Chinese hamster mutant cell lines missing either the MWFE or the ESSS subunits were transfected and complemented with the corresponding wild type and mutant cDNAs made by site-directed mutagenesis. In MWFE the serine 55 was substituted by alanine, glutamate, glutamine, and aspartate (S55A, S55E, S55Q, and S55D, respectively). The glutamate substitutions might be expected to mimic the phosphorylated state of the protein. With the exception of the MWFE(S55A) mutant protein the assembly of complex I was completely blocked, and no activity could be detected. Various substitutions in the ESSS protein (S2A, S2E, S8A, S8E, T21A, T21E, S30A, S30E) appeared to cause lower levels of mature protein and a significantly reduced complex I activity measured polarographically. The ESSS (S2/8A) double mutant protein caused a complete failure to assemble. These mutational analyses suggest that if phosphorylation occurs in vivo, the effects on complex I activity are significant.
Collapse
Affiliation(s)
- N Yadava
- Buck Institute for Age Research, Novato, CA 94945, United States
| | | | | |
Collapse
|
15
|
Vogel RO, Dieteren CEJ, van den Heuvel LPWJ, Willems PHGM, Smeitink JAM, Koopman WJH, Nijtmans LGJ. Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J Biol Chem 2007; 282:7582-90. [PMID: 17209039 DOI: 10.1074/jbc.m609410200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biogenesis of human mitochondrial complex I (CI) requires the coordinated assembly of 45 subunits derived from both the mitochondrial and nuclear genome. The presence of CI subcomplexes in CI-deficient cells suggests that assembly occurs in distinct steps. However, discriminating between products of assembly or instability is problematic. Using an inducible NDUFS3-green fluorescent protein (GFP) expression system in HEK293 cells, we here provide direct evidence for the stepwise assembly of CI. Upon induction, six distinct NDUFS3-GFP-containing subcomplexes gradually appeared on a blue native Western blot also observed in wild type HEK293 mitochondria. Their stability was demonstrated by differential solubilization and heat incubation, which additionally allowed their distinction from specific products of CI instability and breakdown. Inhibition of mitochondrial translation under conditions of steady state labeling resulted in an accumulation of two of the NDUFS3-GFP-containing subcomplexes (100 and 150 kDa) and concomitant disappearance of the fully assembled complex. Lifting inhibition reversed this effect, demonstrating that these two subcomplexes are true assembly intermediates. Composition analysis showed that this event was accompanied by the incorporation of at least one mitochondrial DNA-encoded subunit, thereby revealing the first entry point of these subunits.
Collapse
Affiliation(s)
- Rutger O Vogel
- Nijmegen Centre for Mitochondrial Disorders, Department of Paediatrics, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Pineau B, Mathieu C, Gérard-Hirne C, De Paepe R, Chétrit P. Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7. J Biol Chem 2005; 280:25994-6001. [PMID: 15849190 DOI: 10.1074/jbc.m500508200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial DNA of the Nicotiana sylvestris CMSII mutant carries a 72-kb deletion comprising the single copy nad7 gene that encodes the NAD7 subunit of the respiratory complex I (NADH-ubiquinone oxidoreductase). CMSII plants lack rotenone-sensitive complex I activity and are impaired in physiological and phenotypical traits. To check whether these changes directly result from the deletion of nad7, we constructed CMS transgenic plants (termed as CMSnad7) carrying an edited nad7 cDNA fused to the CAMV 35S promoter and to a mitochondrial targeting sequence. The nad7 sequence was transcribed and translated and the NAD7 protein directed to mitochondria in CMSnad7 transgenic plants, which recovered both wild type morphology and growth features. Blue-native/SDS gel electrophoresis and enzymatic assays showed that, whereas fully assembled complex I was absent from CMSII mitochondria, a functional complex was present in CMSnad7 mitochondria. Furthermore, a supercomplex involving complex I and complex III was present in CMSnad7 as in the wild type. Taken together, these data demonstrate that lack of complex I in CMSII was indeed the direct consequence of the absence of nad7. Hence, NAD7 is a key element for complex assembly in plants. These results also show that allotopic expression from the nucleus can fully complement the lack of a mitochondrial-encoded complex I gene.
Collapse
Affiliation(s)
- Bernard Pineau
- Institut de Biotechnologie des Plantes, Laboratoire Mitochondries et Métabolisme Centre National de la Recherche Scientifique-Université Paris-Sud, Unite Mixte de Recherche 8618, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
17
|
Bourges I, Ramus C, Mousson de Camaret B, Beugnot R, Remacle C, Cardol P, Hofhaus G, Issartel JP. Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin. Biochem J 2005; 383:491-9. [PMID: 15250827 PMCID: PMC1133742 DOI: 10.1042/bj20040256] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondria-encoded ND (NADH dehydrogenase) subunits, as components of the hydrophobic part of complex I, are essential for NADH:ubiquinone oxidoreductase activity. Mutations or lack of expression of these subunits have significant pathogenic consequences in humans. However, the way these events affect complex I assembly is poorly documented. To understand the effects of particular mutations in ND subunits on complex I assembly, we studied four human cell lines: ND4 non-expressing cells, ND5 non-expressing cells, and rho degrees cells that do not express any ND subunits, in comparison with normal complex I control cells. In control cells, all the seven analysed nuclear-encoded complex I subunits were found to be attached to the mitochondrial inner membrane, except for the 24 kDa subunit, which was nearly equally partitioned between the membranes and the matrix. Absence of a single ND subunit, or even all the seven ND subunits, caused no major changes in the nuclear-encoded complex I subunit content of mitochondria. However, in cells lacking ND4 or ND5, very low amounts of 24 kDa subunit were found associated with the membranes, whereas most of the other nuclear-encoded subunits remained attached. In contrast, membrane association of most of the nuclear subunits was significantly reduced in the absence of all seven ND proteins. Immunopurification detected several subcomplexes. One of these, containing the 23, 30 and 49 kDa subunits, also contained prohibitin. This is the first description of prohibitin interaction with complex I subunits and suggests that this protein might play a role in the assembly or degradation of mitochondrial complex I.
Collapse
Affiliation(s)
- Ingrid Bourges
- *UMR 5090 CNRS-DRDC, CEA Grenoble, 38054 Grenoble cedex 9, France
| | - Claire Ramus
- †ERIT-M 0201 INSERM-DRDC, CEA Grenoble, 38054 Grenoble cedex 9, France
| | | | - Réjane Beugnot
- *UMR 5090 CNRS-DRDC, CEA Grenoble, 38054 Grenoble cedex 9, France
| | - Claire Remacle
- §Genetics of Microorganisms, Department of Life Sciences B22, University of Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- §Genetics of Microorganisms, Department of Life Sciences B22, University of Liège, B-4000 Liège, Belgium
| | - Götz Hofhaus
- ∥Institut für Biochemie und Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany
| | - Jean-Paul Issartel
- *UMR 5090 CNRS-DRDC, CEA Grenoble, 38054 Grenoble cedex 9, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Scheffler IE, Yadava N, Potluri P. Molecular genetics of complex I-deficient Chinese hamster cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1659:160-71. [PMID: 15576048 DOI: 10.1016/j.bbabio.2004.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/28/2004] [Accepted: 08/09/2004] [Indexed: 11/22/2022]
Abstract
The work from our laboratory on complex I-deficient Chinese hamster cell mutants is reviewed. Several complementation groups with a complete defect have been identified. Three of these are due to X-linked mutations, and the mutated genes for two have been identified. We describe null mutants in the genes for the subunits MWFE (gene: NDUFA1) and ESSS. They represent small integral membrane proteins localized in the Ialpha (Igamma) and Ibeta subcomplexes, respectively [J. Hirst, J. Carroll, I.M. Fearnley, R.J. Shannon, J.E. Walker. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604 (7-10-2003) 135-150.]. Both are absolutely essential for assembly and activity of complex I. Epitope-tagged versions of these proteins can be expressed from a poly-cistronic vector to complement the mutants, or to be co-expressed with the endogenous proteins in other hamster cell lines (mutant or wild type), or human cells. Structure-function analyses can be performed with proteins altered by site-directed mutagenesis. A cell line has been constructed in which the MWFE subunit is conditionally expressed, opening a window on the kinetics of assembly of complex I. Its targeting, import into mitochondria, and orientation in the inner membrane have also been investigated. The two proteins have recently been shown to be the targets for a cAMP-dependent kinase [R. Chen, I.M. Fearnley, S.Y. Peak_Chew, J.E. Walker. The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. xx (2004) xx-xx.]. The epitope-tagged proteins can be cross-linked with other complex I subunits.
Collapse
Affiliation(s)
- Immo E Scheffler
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0322, USA.
| | | | | |
Collapse
|
19
|
Marques I, Duarte M, Assunção J, Ushakova AV, Videira A. Composition of complex I from Neurospora crassa and disruption of two "accessory" subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1707:211-20. [PMID: 15863099 DOI: 10.1016/j.bbabio.2004.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 12/06/2004] [Accepted: 12/08/2004] [Indexed: 11/29/2022]
Abstract
Respiratory chain complex I of the fungus Neurospora crassa contains at least 39 polypeptide subunits, of which 35 are conserved in mammals. The 11.5 kDa and 14 kDa proteins, homologues of bovine IP15 and B16.6, respectively, are conserved among eukaryotes and belong to the membrane domain of the fungal enzyme. The corresponding genes were separately inactivated by repeat-induced point-mutations, and null-mutant strains of the fungus were isolated. The lack of either subunit leads to the accumulation of distinct intermediates of the membrane arm of complex I. In addition, the peripheral arm of the enzyme seems to be formed in mutant nuo14 but, interestingly, not in mutant nuo11.5. These results and the analysis of enzymatic activities of mutant mitochondria indicate that both polypeptides are required for complex I assembly and function.
Collapse
Affiliation(s)
- Isabel Marques
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | |
Collapse
|
20
|
Ugalde C, Vogel R, Huijbens R, Van Den Heuvel B, Smeitink J, Nijtmans L. Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies. Hum Mol Genet 2004; 13:2461-72. [PMID: 15317750 DOI: 10.1093/hmg/ddh262] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With 46 subunits, human mitochondrial complex I is the largest enzyme of the oxidative phosphorylation system. We have studied the assembly of complex I in cultured human cells. This will provide essential information about the nature of complex I deficiencies and will enhance our understanding of mitochondrial disease mechanisms. We have found that 143B206 rho zero cells, not containing mitochondrial DNA, are still able to form complex I subcomplexes. To further address the nature of these subcomplexes, we depleted 143B osteosarcoma cells of complex I by inhibiting mitochondrial protein translation with doxycycline. After removing this drug, complex I formation resumes and assembly intermediates were observed by two-dimensional blue native electrophoresis. Analysis of the observed subcomplexes indicates that assembly of human complex I is a semi-sequential process in which different preassembled subcomplexes are joined to form a fully assembled complex. The membrane part of the complex is formed in distinct steps. The B17 subunit is part of a subcomplex to which ND1, ND6 and PSST are subsequently added. This is bound to a hydrophilic subcomplex containing the 30 and 49 kDa subunits, to which a subcomplex including the 39 kDa subunit is incorporated, and later on the 18 and 24 kDa subunits. At a later stage more subunits, including the 15 kDa, are added and holo-complex I is formed. Our results suggest that human complex I assembly resembles that of Neurospora crassa, in which a membrane arm is formed and assembled to a preformed peripheral arm, and support ideas about modular evolution.
Collapse
Affiliation(s)
- Cristina Ugalde
- Nijmegen Center for Mitochondrial Disorders, Department of Pediatrics, University Medical Center Nijmegen, Geert Grooteplein 10, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Yadava N, Houchens T, Potluri P, Scheffler IE. Development and Characterization of a Conditional Mitochondrial Complex I Assembly System. J Biol Chem 2004; 279:12406-13. [PMID: 14722084 DOI: 10.1074/jbc.m313588200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed a conditional complex I assembly system in a Chinese hamster fibroblast mutant line, CCL16-B2, that does not express the NDUFA1 gene (encoding the MWFE protein). In this mutant, a hemagglutinin (HA) epitope-tagged MWFE protein was expressed from a doxycycline-inducible promoter. The expression of the protein was absolutely dependent on the presence of doxycycline, and the gene could be turned off completely by removal of doxycycline. These experiments demonstrated a key role of MWFE in the pathway of complex I assembly. Upon induction the MWFE.HA protein reached steady-state levels within 24 h, but the appearance of fully active complex I was delayed by another approximately 24 h. The MWFE appeared in a precomplex that probably includes one or more subunits encoded by mtDNA. The fate of MWFE and the stability of complex I were themselves very tightly linked to the activity of mitochondrial protein synthesis and to the assembly of subunits encoded by mtDNA (ND1-6 and ND4L). This novel conditional system can shed light not only on the mechanism of complex I assembly but emphasizes the role of subunits previously thought of as "accessory." It promises to have broader applications in the study of cellular energy metabolism and production of reactive oxygen species and related processes.
Collapse
Affiliation(s)
- Nagendra Yadava
- Section of Molecular Biology, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | |
Collapse
|
22
|
Antonicka H, Ogilvie I, Taivassalo T, Anitori RP, Haller RG, Vissing J, Kennaway NG, Shoubridge EA. Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 2003; 278:43081-8. [PMID: 12941961 DOI: 10.1074/jbc.m304998200] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiencies in the activity of complex I (NADH: ubiquinone oxidoreductase) are an important cause of human mitochondrial disease. Complex I is composed of at least 46 structural subunits that are encoded in both nuclear and mitochondrial DNA. Enzyme deficiency can result from either impaired catalytic efficiency or an inability to assemble the holoenzyme complex; however, the assembly process remains poorly understood. We have used two-dimensional Blue-Native/SDS gel electrophoresis and a panel of 11 antibodies directed against structural subunits of the enzyme to investigate complex I assembly in the muscle mitochondria from four patients with complex I deficiency caused by either mitochondrial or nuclear gene defects. Immunoblot analyses of second dimension denaturing gels identified seven distinct complex I subcomplexes in the patients studied, five of which could also be detected in nondenaturing gels in the first dimension. Although the abundance of these intermediates varied among the different patients, a common constellation of subcomplexes was observed in all cases. A similar profile of subcomplexes was present in a human/mouse hybrid fibroblast cell line with a severe complex I deficiency due to an almost complete lack of assembly of the holoenzyme complex. The finding that diverse causes of complex I deficiency produce a similar pattern of complex I subcomplexes suggests that these are intermediates in the assembly of the holoenzyme complex. We propose a possible assembly pathway for the complex, which differs significantly from that proposed for Neurospora, the current model for complex I assembly.
Collapse
Affiliation(s)
- Hana Antonicka
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE. The nuclear encoded subunits of complex I from bovine heart mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:135-50. [PMID: 12837546 DOI: 10.1016/s0005-2728(03)00059-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, multi-subunit, membrane-bound assembly. Recently, the subunit compositions of complex I and three of its subcomplexes have been reevaluated comprehensively. The subunits were fractionated by three independent methods, each based on a different property of the subunits. Forty-six different subunits, with a combined molecular mass of 980 kDa, were identified. The three subcomplexes, I alpha, I beta and I lambda, correlate with parts of the membrane extrinsic and membrane-bound domains of the complex. Therefore, the partitioning of subunits amongst these subcomplexes has provided information about their arrangement within the L-shaped structure. The sequences of 45 subunits of complex I have been determined. Seven of them are encoded by mitochondrial DNA, and 38 are products of the nuclear genome, imported into the mitochondrion from the cytoplasm. Post-translational modifications of many of the nuclear encoded subunits of complex I have been identified. The seven mitochondrially encoded subunits, and seven of the nuclear encoded subunits, are homologues of the 14 subunits found in prokaryotic complexes I. They are considered to be sufficient for energy transduction by complex I, and they are known as the core subunits. The core subunits bind a flavin mononucleotide (FMN) at the active site for NADH oxidation, up to eight iron-sulfur clusters, and one or more ubiquinone molecules. The locations of some of the cofactors can be inferred from the sequences of the core subunits. The remaining 31 subunits of bovine complex I are the supernumerary subunits, which may be important either for the stability of the complex, or for its assembly. Sequence relationships suggest that some of them carry out reactions unrelated to the NADH:ubiquinone oxidoreductase activity of the complex.
Collapse
Affiliation(s)
- Judy Hirst
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, UK.
| | | | | | | | | |
Collapse
|
24
|
Heazlewood JL, Howell KA, Millar AH. Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:159-69. [PMID: 12837548 DOI: 10.1016/s0005-2728(03)00045-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NADH:ubiquinone oxidoreductase of the mitochondrial respiratory chain is a large multisubunit complex in eukaryotes containing 30-40 different subunits. Analysis of this complex using blue-native gel electrophoresis coupled to tandem mass spectrometry (MS) has identified a series of 30 different proteins from the model dicot plant, Arabidopsis, and 24 different proteins from the model monocot plant, rice. These proteins have been linked back to genes from plant genome sequencing and comparison of this dataset made with predicted orthologs of complex I components in these plants. This analysis reveals that plants contain the series of 14 highly conserved complex I subunits found in other eukaryotic and related prokaryotic enzymes and a small set of 9 proteins widely found in eukaryotic complexes. A significant number of the proteins present in bovine complex I but absent from fungal complex I are also absent from plant complex I and are not encoded in plant genomes. A series of plant-specific nuclear-encoded complex I associated subunits were identified, including a series of ferripyochelin-binding protein-like subunits and a range of small proteins of unknown function. This represents a post-genomic and large-scale analysis of complex I composition in higher plants.
Collapse
Affiliation(s)
- Joshua L Heazlewood
- Plant Molecular Biology Group, Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Western Australia, Australia
| | | | | |
Collapse
|
25
|
Marques I, Duarte M, Videira A. The 9.8 kDa subunit of complex I, related to bacterial Na(+)-translocating NADH dehydrogenases, is required for enzyme assembly and function in Neurospora crassa. J Mol Biol 2003; 329:283-90. [PMID: 12758076 DOI: 10.1016/s0022-2836(03)00443-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nuclear gene encoding a 9.8 kDa subunit of complex I, the homologue of mammalian MWFE protein, was identified in the genome of Neurospora crassa. The gene was cloned and inactivated in vivo by the generation of repeat-induced point mutations. Fungal mutant strains lacking the 9.8 kDa polypeptide were subsequently isolated. Analyses of mitochondrial proteins from mutant nuo9.8 indicate that the membrane and peripheral arms of complex I fail to assemble. Respiration of mutant mitochondria on matrix NADH is rotenone-insensitive, confirming that the 9.8 kDa protein is required for the assembly and activity of complex I. We found a similarity between the MWFE homologues and the C-terminal part of the nqrA subunit of bacterial Na(+)-translocating NADH:quinone oxidoreductases (Na(+)-NQR), suggesting a link between proton-pumping and sodium-pumping NADH dehydrogenases.
Collapse
Affiliation(s)
- Isabel Marques
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
26
|
Duarte M, Peters M, Schulte U, Videira A. The internal alternative NADH dehydrogenase of Neurospora crassa mitochondria. Biochem J 2003; 371:1005-11. [PMID: 12556227 PMCID: PMC1223338 DOI: 10.1042/bj20021374] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2002] [Revised: 01/17/2003] [Accepted: 01/29/2003] [Indexed: 11/17/2022]
Abstract
An open reading frame homologous with genes of non-proton-pumping NADH dehydrogenases was identified in the genome of Neurospora crassa. The 57 kDa NADH:ubiquinone oxidoreductase acts as internal (alternative) respiratory NADH dehydrogenase (NDI1) in the fungal mitochondria. The precursor polypeptide includes a pre-sequence of 31 amino acids, and the mature enzyme comprises one FAD molecule as a prosthetic group. It catalyses specifically the oxidation of NADH. Western blot analysis of fungal mitochondria fractionated with digitonin indicated that the protein is located at the inner face of the inner membrane of the organelle (internal enzyme). The corresponding gene was inactivated by the generation of repeat-induced point mutations. The respiratory activity of mitochondria from the resulting null-mutant ndi1 is almost fully inhibited by rotenone, an inhibitor of the proton-pumping complex I, when matrix-generated NADH is used as substrate. Although no effects of the NDI1 defect on vegetative growth and sexual differentiation were observed, the germination of both sexual and asexual ndi1 mutant spores is significantly delayed. Crosses between the ndi1 mutant strain and complex I-deficient mutants yielded no viable double mutants. Our data indicate: (i) that NDI1 represents the sole internal alternative NADH dehydrogenase of Neurospora mitochondria; (ii) that NDI1 and complex I are functionally complementary to each other; and (iii) that NDI1 is specially needed during spore germination.
Collapse
Affiliation(s)
- Margarida Duarte
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | |
Collapse
|
27
|
Yagi T, Matsuno-Yagi A. The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 2003; 42:2266-74. [PMID: 12600193 DOI: 10.1021/bi027158b] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takao Yagi
- Department of Molecular and Experimental Medicine, MEM-256, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
28
|
Grivennikova VG, Serebryanaya DV, Isakova EP, Belozerskaya TA, Vinogradov AD. The transition between active and de-activated forms of NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial membrane of Neurospora crassa. Biochem J 2003; 369:619-26. [PMID: 12379145 PMCID: PMC1223102 DOI: 10.1042/bj20021165] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Revised: 09/26/2002] [Accepted: 10/14/2002] [Indexed: 11/17/2022]
Abstract
The mammalian mitochondrial NADH:ubiquinone oxidoreductase (Complex I) has been shown to exist in two kinetically and structurally distinct slowly interconvertible forms, active (A) and de-activated (D) [Vinogradov and Grivennikova (2001) IUBMB Life 52, 129-134]. This work was undertaken to investigate the putative Complex I A-D transition in the mitochondrial membrane of the lower eukaryote Neurospora crassa and in plasma membrane of the prokaryote Paracoccus denitrificans, organisms that are eligible for molecular genetic manipulations. The potential interconversion between A and D forms was assessed by examination of the initial and steady-state rates of NADH oxidation catalysed by inside-out submitochondrial ( N. crassa ) and sub-bacterial ( P. denitrificans ) particles and their sensitivities to N -ethylmaleimide and Mg(2+). All diagnostic tests provide evidence that slow temperature- and turnover-dependent A-D transition is an explicit feature of eukaryotic N. crassa Complex I, whereas the phenomenon is not seen in the membranes of the prokaryote P. denitrificans. Significantly lower activation energy for A-to-D transition characterizes the N. crassa enzyme compared with that determined previously for the mammalian Complex I. Either a lag or a burst in the onset of the NADH oxidase assayed in the presence of Mg(2+) is seen when the reaction is initiated by the thermally de-activated or NADH-activated particles, whereas the delayed final activities of both preparations are the same. We conclude that continuous slow cycling between A and D forms occurs during the steady-state operation of Complex I in N. crassa mitochondria.
Collapse
Affiliation(s)
- Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 199992, Russian Federation
| | | | | | | | | |
Collapse
|
29
|
Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE. Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2003; 2:117-26. [PMID: 12644575 DOI: 10.1074/mcp.m300014-mcp200] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Complex I purified from bovine heart mitochondria is a multisubunit membrane-bound assembly. In the past, seven of its subunits were shown to be products of the mitochondrial genome, and 35 nuclear encoded subunits were identified. The complex is L-shaped with one arm in the plane of the membrane and the other lying orthogonal to it in the mitochondrial matrix. With mildly chaotropic detergents, the intact complex has been resolved into various subcomplexes. Subcomplex Ilambda represents the extrinsic arm, subcomplex Ialpha consists of subcomplex Ilambda plus part of the membrane arm, and subcomplex Ibeta is another substantial part of the membrane arm. The intact complex and these three subcomplexes have been subjected to extensive reanalysis. Their subunits have been separated by three independent methods (one-dimensional SDS-PAGE, two-dimensional isoelectric focusing/SDS-PAGE, and reverse phase high pressure liquid chromatography (HPLC)) and analyzed by tryptic peptide mass fingerprinting and tandem mass spectrometry. The masses of many of the intact subunits have also been measured by electrospray ionization mass spectrometry and have provided valuable information about post-translational modifications. The presence of the known 35 nuclear encoded subunits in complex I has been confirmed, and four additional nuclear encoded subunits have been detected. Subunits B16.6, B14.7, and ESSS were discovered in the SDS-PAGE analysis of subcomplex Ilambda, in the two-dimensional gel analysis of the intact complex, and in the HPLC analysis of subcomplex Ibeta, respectively. Despite many attempts, no sequence information has been obtained yet on a fourth new subunit (mass 10,566+/-2 Da) also detected in the HPLC analysis of subcomplex Ibeta. It is unlikely that any more subunits of the bovine complex remain undiscovered. Therefore, the intact enzyme is a complex of 46 subunits, and, assuming there is one copy of each subunit in the complex, its mass is 980 kDa.
Collapse
Affiliation(s)
- Joe Carroll
- Medical Research Council Dunn Human Nutrition Unit, The Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Carroll J, Shannon RJ, Fearnley IM, Walker JE, Hirst J. Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. J Biol Chem 2002; 277:50311-7. [PMID: 12381726 DOI: 10.1074/jbc.m209166200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) from bovine heart is a complicated multisubunit, membrane-bound assembly. Seven subunits are encoded by mitochondrial DNA, and the sequences of 36 nuclear encoded subunits have been described. The subunits of complex I and two subcomplexes (Ialpha and Ibeta) were resolved on one- and two-dimensional gels and by reverse-phase high performance liquid chromatography. Mass spectrometric analysis revealed two previously unknown subunits in complex I, named B14.7 and ESSS, one in each subcomplex. Coding sequences for each protein were identified in data bases and were confirmed by cDNA cloning and sequencing. Subunit B14.7 has an acetylated N terminus, no presequence, and contains four potential transmembrane helices. It is homologous to subunit 21.3b from complex I in Neurospora crassa and is related to Tim17, Tim22, and Tim23, which are involved in protein translocation across the inner membrane. Subunit ESSS has a cleaved mitochondrial import sequence and one potential transmembrane helix. A total of 45 different subunits of bovine complex I have now been characterized.
Collapse
Affiliation(s)
- Joe Carroll
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Abstract
The energy-transducing NADH: quinone (Q) oxidoreductase (complex I) is the largest and most complicated enzyme complex in the oxidative phosphorylation system. Complex I is a redox pump that uses the redox energy to translocate H(+) (or Na(+)) ions across the membrane, resulting in a significant contribution to energy production. The need to elucidate the molecular mechanisms of complex I has greatly increased. Many devastating neurodegenerative disorders have been associated with complex I deficiency. The structural and functional complexities of complex I have already been established. However, intricate biogenesis and activity regulation functions of complex I have just been identified. Based upon these recent developments, it is apparent that complex I research is entering a new era. The advancement of our knowledge of the molecular mechanism of complex I will not only surface from bioenergetics, but also from many other fields as well, including medicine. This review summarizes the current status of our understanding of complex I and sheds light on new theories and the future direction of complex I studies.
Collapse
Affiliation(s)
- Takahiro Yano
- Department of Biochemistry and Biophysics, School of Medicine, Johnson Research Foundation, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
32
|
Videira A, Duarte M. From NADH to ubiquinone in Neurospora mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:187-91. [PMID: 12206913 DOI: 10.1016/s0005-2728(02)00276-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The respiratory chain of the mitochondrial inner membrane includes a proton-pumping enzyme, complex I, which catalyses electron transfer from NADH to ubiquinone. This electron pathway occurs through a series of protein-bound prosthetic groups, FMN and around eight iron-sulfur clusters. The high number of polypeptide subunits of mitochondrial complex I, around 40, have a dual genetic origin. Neurospora crassa has been a useful genetic model to characterise complex I. The characterisation of mutants in specific proteins helped to understand the elaborate processes of the biogenesis, structure and function of the oligomeric enzyme. In the fungus, complex I seems to be dispensable for vegetative growth but required for sexual development. N. crassa mitochondria also contain three to four nonproton-pumping alternative NAD(P)H dehydrogenases. One of them is located in the outer face of the inner mitochondrial membrane, working as a calcium-dependent oxidase of cytosolic NADPH.
Collapse
Affiliation(s)
- Arnaldo Videira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | |
Collapse
|
33
|
Yadava N, Potluri P, Smith EN, Bisevac A, Scheffler IE. Species-specific and mutant MWFE proteins. Their effect on the assembly of a functional mammalian mitochondrial complex I. J Biol Chem 2002; 277:21221-30. [PMID: 11937507 DOI: 10.1074/jbc.m202016200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MWFE protein (70 amino acids) is highly conserved in evolution, but the human protein (80% identical to hamster) does not complement a null mutation in Chinese hamster cells. We have identified a small protein segment where significant differences exist between rodents and primates, illustrating very specifically the need for compatibility of the nuclear and mitochondrial genomes in the assembly of complex I. The segment between amino acids 39 and 46 appears to be critical for species-specific compatibility. Amino acid substitutions in this region were tested that caused a reduction of activity of the hamster protein or converted the inactive human protein into a partially active one. Such mutations could be useful in making mice with partial complex I activity as models for mitochondrial diseases. Their potential as dominant negative mutants was explored. More deleterious mutations in the NDUFA1 gene were also characterized. A conservative substitution, R50K, or a short C-terminal deletion makes the protein completely inactive. In the absence of MWFE, no high molecular weight complex was detectable by Blue Native-gel electrophoresis. The MWFE protein itself is unstable in the absence of assembled mitochondrially encoded integral membrane proteins of complex I.
Collapse
Affiliation(s)
- Nagendra Yadava
- Division of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | | | | | |
Collapse
|