1
|
Wang Z, Wang C, Sun CC. Elucidating critical factors driving the tabletability flip phenomenon. Int J Pharm 2025; 672:125337. [PMID: 39938726 DOI: 10.1016/j.ijpharm.2025.125337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Tabletability is a key property that determines a powder's ability to form tablets under applied stresses, typically represented by a plot of tablet tensile strength versus pressure. Tablet tensile strength reflects the contributions of interparticulate bonding area (BA) and bonding strength (BS) between adjacent particles in a tablet. BA is influenced by mechanical properties, particle characteristics, and tableting conditions, while BS is governed by molecular packing and intermolecular interactions. The "tabletability flip" phenomenon (TFP) occurs when, for a pair of solid forms of an active pharmaceutical ingredient (API), the form with a higher tabletability as a pure powder exhibits a lower tabletability when formulated with an excipient. Factors affecting either BA or BS can also impact the occurrence and extent of TFP, but their impact has not been systematically evaluated. In this work, we evaluated the impact of API loading, excipient type, particle size, and tableting speed on TFP. Our results indicate that TFP is likely to occur when the plasticity of an excipient is comparable to the softer API, particularly at intermediate drug loadings and under high compaction pressures. Additionally, the particle size of the excipient significantly influences both the occurrence and extent of TFP, while API particle size and tableting speed have only a marginal impact.
Collapse
Affiliation(s)
- Zijian Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA.
| |
Collapse
|
2
|
Samie A, Alavian H. A Perspective on the Permeability of Cocrystals/Organic Salts of Oral Drugs. Mol Pharm 2024; 21:4860-4911. [PMID: 39284012 DOI: 10.1021/acs.molpharmaceut.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
According to the BCS classification system, the differentiation of drugs is based on two essential parameters of solubility and permeability, meaning the latter is as pivotal as the former in creating marketable pharmaceutical products. Nevertheless, the indispensable role of permeability in pharmaceutical cocrystal profiles has not been sufficiently cherished, which can be most probably attributed to two principal reasons. First, responsibility may be on more user-friendly in vitro measurement procedures for solubility compared to permeability, implying the permeability measurement process seems unexpectedly difficult for researchers, whereas they have a complete understanding of solubility concepts and experiments. Besides, it may be ascribed to the undeniable attraction of introducing new crystal-based structures which mostly leaves the importance of improving the function of existing multicomponents behind. Bringing in new crystalline entities, to rephrase it, researchers have a fairly better chance of achieving high-class publications. Although the Food and Drug Administration (FDA) has provided a golden opportunity for pharmaceutical cocrystals to straightforwardly enter the market by simply considering them as derivatives of the existing active pharmaceutical ingredients, inattention to assessing and scaling up permeability which is intimately linked with solubility has resulted in limited numbers of them in the global pharmaceutical market. Casting a glance at the future, it is apprehended that further development in the field of permeability of pharmaceutical cocrystals and organic salts requires a meticulous perception of achievements to date and potentials to come. Thence, this perspective scrutinizes the pathway of permeation assessment making researchers confront their fear upfront through mapping the simplest way of permeability measurement for multicomponents of oral drugs.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
3
|
Maqbool T, Yousuf RI, Ahmed FR, Shoaib MH, Irshad A, Saleem MT, Qazi F, Sarfaraz S, Rizvi SA, Mahmood ZA. Cellulose ether and carbopol 971 based gastroretentive controlled release formulation design, optimization and physiologically based pharmacokinetic modeling of ondansetron hydrochloride minitablets. Int J Biol Macromol 2024; 276:133841. [PMID: 39032888 DOI: 10.1016/j.ijbiomac.2024.133841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
This study aims to design and optimize ondansetron (OND) gastro-retentive floating minitablets for better and prolonged control of postoperative nausea and vomiting (PONV) with improved patient compliance. Minitablets were directly compressed and encapsulated in a size 2 capsule shell with an overall dose of 24 mg. Central composite design (CCD) was applied keeping one cellulose ether derivative HPMC K15M and Carbopol 971 as variable and used as swelling and rate retarding agents. The other cellulose derivative i.e. sodium carboxymethyl cellulose, along with mannitol, sodium bicarbonate, and talc, were used in fixed quantities. The floating lag time, total floating time, swelling index, in-vitro drug release, and zero-order (RSQ value), were critical quality parameters. The optimized formulation (Fpred) was evaluated for all critical parameters, along with surface morphology, thermal stability, chemical interaction, and accelerated stability. The in silico PBPK modeling was applied to compare the bioavailability of Fpred with reference OND immediate-release tablets. The numerical optimization model predicted >90 % drug release with zero-order at 12 h. In silico PBPK modeling revealed comparable relative bioavailability of Fpred with the reference formulation. The gastroretentive floating minitablets of OND were successfully designed for prolonged emesis control in patients receiving chemotherapeutic agents.
Collapse
Affiliation(s)
- Tahmina Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Asma Irshad
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Faaiza Qazi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sana Sarfaraz
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Zafar Alam Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
4
|
Wang Z, Wang C, Guo Y, Bahl D, Fok A, Sun CC. A new insight into the mechanism of the tabletability flip phenomenon. Int J Pharm 2024; 654:123956. [PMID: 38428547 DOI: 10.1016/j.ijpharm.2024.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Tabletability is an outcome of interparticulate bonding area (BA) - bonding strength (BS) interplay, influenced by the mechanical properties, size and shape, surface energetics of the constituent particles, and compaction parameters. Typically, a more plastic active pharmaceutical ingredient (API) exhibits a better tabletability than less plastic APIs due to the formation of a larger BA during tablet compression. Thus, solid forms of an API with greater plasticity are traditionally preferred if other critical pharmaceutical properties are comparable. However, the tabletability flip phenomenon (TFP) suggests that a solid form of an API with poorer tabletability may exhibit better tabletability when formulated with plastic excipients. In this study, we propose another possible mechanism of TFP, wherein softer excipient particles conform to the shape of harder API particles during compaction, leading to a larger BA under certain pressures and, hence, better tabletability. In this scenario, the BA-BS interplay is dominated by BA. Accordingly, TFP should tend to occur when API solid forms are formulated with a soft excipient. We tested this hypothesis by visualizing the deformation of particles in a model compressed tablet by nondestructive micro-computed tomography and by optical microscopy when the particles were separated from the tablet. The results confirmed that soft particles wrapped around hard particles at their interfaces, while an approximately flat contact was formed between two adjacent soft particles. In addition to the direct visual evidence, the BA-dominating mechanism was also supported by the observation that TFP occurred in the p-aminobenzoic acid polymorph system only when mixed with a soft excipient.
Collapse
Affiliation(s)
- Zijian Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA
| | - Yiwang Guo
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA
| | - Deepak Bahl
- Bristol-Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA
| | - Alex Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, USA.
| |
Collapse
|
5
|
Su J, Zhang K, Qi F, Cao J, Miao Y, Zhang Z, Qiao Y, Xu B. A tabletability change classification system in supporting the tablet formulation design via the roll compaction and dry granulation process. Int J Pharm X 2023; 6:100204. [PMID: 37560487 PMCID: PMC10407897 DOI: 10.1016/j.ijpx.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
In this paper, the material library approach was used to uncover the pattern of tabletability change and related risk for tablet formulation design under the roll compaction and dry granulation (RCDG) process. 31 materials were fully characterized using 18 physical parameters and 9 compression behavior classification system (CBCS) parameters. Then, each material was dry granulated and sieved into small granules (125-250 μm) and large granules (630-850 μm), respectively. The compression behavior of granules was characterized by the CBCS descriptors, and were compared with that of ungranulated powders. The relative change of tabletability (CoTr) index was used to establish the tabletability change classification system (TCCS), and all materials were classified into three types, i.e. loss of tabletability (LoT, Type I), unchanged tabletability (Type II) and increase of tabletability (Type III). Results showed that approximately 65% of materials presented LoT, and as the granules size increased, 84% of the materials exhibited LoT. A risk decision tree was innovatively proposed by joint application of the CBCS tabletability categories and the TCCS tabletability change types. It was found that the LoT posed little risk to the tensile strength of the final tablet, when Category 1 or 2A materials, or Category 2B materials with Type II or Type III change of tabletability were used. Formulation risk happened to Category 2C or 3 materials, or Category 2B materials with Type I change of tabletability, particularly when high proportions of these materials were involved in tablet formulation. In addition, the risk assessment results were verified in the material property design space developed from a latent variable model in prediction of tablet tensile strength. Overall, results suggested that a combinational use of CBCS and TCCS could aid the decision making in selecting materials for tablet formulation design via RCDG.
Collapse
Affiliation(s)
- Junhui Su
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, PR China
| | - Kunfeng Zhang
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Feiyu Qi
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Junjie Cao
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yuhua Miao
- The International Department, No. 8 Middle School of Beijing, Beijing 100045, PR China
| | - Zhiqiang Zhang
- Beijing Tcmages Pharmceutical Co. LTD, Beijing 101301, PR China
| | - Yanjiang Qiao
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, PR China
| | - Bing Xu
- Department of Chinese Medicine Informatics, Beijing University of Chinese Medicine, Beijing 100029, PR China
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, PR China
| |
Collapse
|
6
|
Gui Y. Solid Form Screenings in Pharmaceutical Development: a Perspective on Current Practices. Pharm Res 2023; 40:2347-2354. [PMID: 37537423 DOI: 10.1007/s11095-023-03573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Solid form screening is a crucial step in new drug development because solid forms of a drug substance significantly affect stability, dissolution and manufacturing processes of its drug products. This perspective introduces solid-state science from a practical standpoint, aiming to reduce knowledge gaps and promote communications among scientists with diverse background. This perspective starts with a concise overview that followed by discussion on timeline and goals of solid form screening. Techniques for solid from identification and characterization are then discussed. Subsequently, the perspective presents commonly used methods in solid form screening and introduces criteria and strategies to effectively select a favorable solid form based on screening results. The last section summarizes current practices in pharmaceutical industries and suggests potential opportunities for future research and development.
Collapse
Affiliation(s)
- Yue Gui
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai, China.
| |
Collapse
|
7
|
Wang Z, Wang C, Bahl D, Sun CC. The ubiquity of the tabletability flip phenomenon. Int J Pharm 2023; 643:123262. [PMID: 37495026 DOI: 10.1016/j.ijpharm.2023.123262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
The plasticity of materials plays a critical role in adequate powder tabletability, which is required in developing a successful tablet product. Generally, a more plastic material can develop larger bonding areas when other factors are the same, leading to higher tabletability than less plastic materials. However, it was observed that, for a solid form of a compound with poorer tabletability, a mixture with microcrystalline cellulose (MCC) can actually exhibit better tabletability, a phenomenon termed tabletability flip. Hence, there is a chance that a solid form with poor tabletability could have been erroneously eliminated based on the expected tabletability challenges during tablet manufacturing. This study was conducted to investigate the generality of this phenomenon using two polymorph pairs, a salt and free acid pair, a crystalline and amorphous solid dispersion pair, and a pair of chemically distinct crystals. Results show that tabletability flip occurred in all six systems tested, including five pairs of binary mixtures with MCC and one pair in a realistic generic tablet formulation, suggesting the broad occurrence of the tabletability flip phenomenon, where both compaction pressure and the difference in plasticity between the pair of materials play important roles.
Collapse
Affiliation(s)
- Zijian Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Deepak Bahl
- Bristol-Myers Squibb, 556 Morris Avenue, Summit, NJ 07901, USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Su M, Huang M, Pang Z, Wei Y, Gao Y, Zhang J, Qian S, Heng W. Functional in situ formed deep eutectic solvents improving mechanical properties of powders by enhancing interfacial interactions. Int J Pharm 2023:123181. [PMID: 37364786 DOI: 10.1016/j.ijpharm.2023.123181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023]
Abstract
As novel green solvents, deep eutectic solvent (DES) with distinct liquid properties has gained increasing interest in pharmaceutical fields. In this study, DES was firstly utilized for improving powder mechanical properties and tabletability of drugs, and the interfacial interaction mechanism was explored. Honokiol (HON), a natural bioactive compound, was used as model drug, and two novel HON-based DESs were synthesized with choline chloride (ChCl) and l-menthol (Men), respectively. The extensive non-covalent interactions were account for DES formation according to FTIR, 1H NMR and DFT calculation. PLM, DSC and solid-liquid phase diagram revealed that DES successfully in situ formed in HON powders, and the introduction of trace amount DES (99:1 w/w for HON-ChCl, 98:2 w/w for HON-Men) significantly improve mechanical properties of HON. Surface energy analysis and molecular simulation revealed that the introduced DES promoted the formation of solid-liquid interfaces and generation of polar interactions, which increase interparticulate interactions, thus better tabletability. Compared to nonionic HON-Men DES, ionic HON-ChCl DES exhibited better improvement effect, since their more hydrogen-bonding interactions and higher viscosity promote stronger interfacial interactions and adhesion effect. The current study provides a brand-new green strategy for improving powder mechanical properties and fills in the blank of DES application in pharmaceutical industry.
Collapse
Affiliation(s)
- Meiling Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Maoli Huang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
Jones-Salkey O, Chu Z, Ingram A, Windows-Yule CRK. Reviewing the Impact of Powder Cohesion on Continuous Direct Compression (CDC) Performance. Pharmaceutics 2023; 15:1587. [PMID: 37376036 DOI: 10.3390/pharmaceutics15061587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
The pharmaceutical industry is undergoing a paradigm shift towards continuous processing from batch, where continuous direct compression (CDC) is considered to offer the most straightforward implementation amongst powder processes due to the relatively low number of unit operations or handling steps. Due to the nature of continuous processing, the bulk properties of the formulation will require sufficient flowability and tabletability in order to be processed and transported effectively to and from each unit operation. Powder cohesion presents one of the greatest obstacles to the CDC process as it inhibits powder flow. As a result, there have been many studies investigating potential manners in which to overcome the effects of cohesion with, to date, little consideration of how these controls may affect downstream unit operations. The aim of this literature review is to explore and consolidate this literature, considering the impact of powder cohesion and cohesion control measures on the three-unit operations of the CDC process (feeding, mixing, and tabletting). This review will also cover the consequences of implementing such control measures whilst highlighting subject matter which could be of value for future research to better understand how to manage cohesive powders for CDC manufacture.
Collapse
Affiliation(s)
- Owen Jones-Salkey
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Zoe Chu
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew Ingram
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
10
|
Jirát J, Rohlíček J, Kaminský J, Jirkal T, Ridvan L, Skořepová E, Zvoníček V, Dušek M, Šoóš M. Formation of ibrutinib solvates: so similar, yet so different. IUCRJ 2023; 10:210-219. [PMID: 36815712 PMCID: PMC9980385 DOI: 10.1107/s2052252523001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The transformation processes of non-solvated ibrutinib into a series of halogenated benzene solvates are explored in detail here. The transformation was studied in real time by X-ray powder diffraction in a glass capillary. Crystal structures of chlorobenzene, bromobenzene and iodobenzene solvates are isostructural, whereas the structure of fluorobenzene solvate is different. Four different mechanisms for transformation were discovered despite the similarity in the chemical nature of the solvents and crystal structures of the solvates formed. These mechanisms include direct transformations and transformations with either a crystalline or an amorphous intermediate phase. The binding preference of each solvate in the crystal structure of the solvates was examined in competitive slurry experiments and further confirmed by interaction strength calculations. Overall, the presented system and online X-ray powder diffraction measurement provide unique insights into the formation of solvates.
Collapse
Affiliation(s)
- Jan Jirát
- Chemical Engineering, University of Chemistry and Technology in Prague, Technická 3, Praha, Czech Republic
- Zentiva, k.s., U kabelovny 130, Prague 10 10237, Czech Republic
| | - Jan Rohlíček
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 182 00, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, Prague 6, Czech Republic
| | - Tomáš Jirkal
- Chemical Engineering, University of Chemistry and Technology in Prague, Technická 3, Praha, Czech Republic
| | - Luděk Ridvan
- Zentiva, k.s., U kabelovny 130, Prague 10 10237, Czech Republic
| | - Eliška Skořepová
- Chemical Engineering, University of Chemistry and Technology in Prague, Technická 3, Praha, Czech Republic
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 182 00, Czech Republic
| | - Vít Zvoníček
- Zentiva, k.s., U kabelovny 130, Prague 10 10237, Czech Republic
| | - Michal Dušek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, Prague 8 182 00, Czech Republic
| | - Miroslav Šoóš
- Chemical Engineering, University of Chemistry and Technology in Prague, Technická 3, Praha, Czech Republic
| |
Collapse
|
11
|
Khan S, Zahoor M, Rahman MU, Gul Z. Cocrystals; basic concepts, properties and formation strategies. Z PHYS CHEM 2023. [DOI: 10.1515/zpch-2022-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
Cocrystallization is an old technique and remains the focus of several research groups working in the field of Chemistry and Pharmacy. This technique is basically in field for improving physicochemical properties of material which can be active pharmaceutical ingredients (APIs) or other chemicals with poor profile. So this review article has been presented in order to combine various concepts for scientists working in the field of chemistry, pharmacy or crystal engineering, also it was attempt to elaborate concepts belonging to crystal designing, their structures and applications. A handsome efforts have been made to bring scientists together working in different fields and to make chemistry easier for a pharmacist and pharmacy for chemists pertaining to cocrystals. Various aspects of chemicals being used as co-formers have been explored which predict the formation of co-crystals or molecular salts and even inorganic cocrystals.
Collapse
Affiliation(s)
- Shahab Khan
- Department of Chemistry , University of Malakand , Dir Lower 18800 , Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry , University of Malakand , Dir Lower 18800 , Khyber Pakhtunkhwa , Pakistan
| | - Mudassir Ur Rahman
- Department of Chemistry , Government Degree College Lundkhwar , Mardan 23130 , Khyber Pakhtunkhwa , Pakistan
| | - Zarif Gul
- Department of Chemistry , University of Malakand , Dir Lower 18800 , Khyber Pakhtunkhwa , Pakistan
| |
Collapse
|
12
|
Ibrahim SF, Pickering J, Ramachandran V, Roberts KJ. Prediction of the Mechanical Deformation Properties of Organic Crystals Based upon their Crystallographic Structures: Case Studies of Pentaerythritol and Pentaerythritol Tetranitrate. Pharm Res 2022; 39:3063-3078. [PMID: 35778633 DOI: 10.1007/s11095-022-03314-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Development of a quantitative model and associated workflow for predicting the mechanical deformation properties (plastic deformation or cleavage fracture) of organic single crystals from their crystallographic structures using molecular and crystallographic modelling. METHODS Intermolecular synthons, hydrogen bonding, crystal morphology and surface chemistry are modelled using empirical force fields with the data integrated into the analysis of lattice deformation as computed using a statistical approach. RESULTS The approach developed comprises three main components. Firstly, the identification of the likely direction of deformation based on lattice unit cell geometry; secondly, the identification of likely lattice planes for deformation through the calculation of the strength and stereochemistry of interplanar intermolecular interactions, surface plane rugosity and surface energy; thirdly, identification of potential crystal planes for cleavage fracture by assessing intermolecular bonding anisotropy. Pentaerythritol is predicted to fracture by brittle cleavage on the {001} lattice planes by strong in-plane hydrogen-bond interactions in the <110>, whereas pentaerythritol tetranitrate is predicted to deform by plastic deformation through the slip system {110} < 001>, with both predictions being in excellent agreement with known experimental data. CONCLUSION A crystallographic framework and associated workflow for predicting the mechanical deformation of molecular crystals is developed through quantitative assessment of lattice energetics, crystal surface chemistry and crystal defects. The potential for the de novo prediction of the mechanical deformation of pharmaceutical materials using this approach is highlighted for its potential importance in the design of formulated drug products process as needed for manufacture by direct compression.
Collapse
Affiliation(s)
- S Fatimah Ibrahim
- Malaysian Institute of Chemical & Bioengineering Technology (MICET), Universiti Kuala Lumpur, 1988, 7800, Vendor City, Taboh Naning, Malaysia. .,Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | - Jonathan Pickering
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,School of Computing, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, UK
| | - Vasuki Ramachandran
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Kevin J Roberts
- Centre for the Digital Design of Drug Products, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
13
|
Varied Bulk Powder Properties of Micro-Sized API within Size Specifications as a Result of Particle Engineering Methods. Pharmaceutics 2022; 14:pharmaceutics14091901. [PMID: 36145649 PMCID: PMC9500803 DOI: 10.3390/pharmaceutics14091901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Micronized particles are commonly used to improve the content uniformity (CU), dissolution performance, and bioavailability of active pharmaceutical ingredients (API). Different particle engineering routes have been developed to prepare micron-sized API in a specific size range to deliver desirable biopharmaceutical performance. However, such API particles still risk varying bulk powder properties critical to successful manufacturing of quality drug products due to different particle shapes, size distribution, and surface energetics, arising from the anisotropy of API crystals. In this work, we systematically investigated key bulk properties of 10 different batches of Odanacatib prepared through either jet milling or fast precipitation, all of which meet the particle size specification established to ensure equivalent biopharmaceutical performance. However, they exhibited significantly different powder properties, solid-state properties, dissolution, and tablet CU. Among the 10 batches, a directly precipitated sample exhibited overall best performance, considering tabletability, dissolution, and CU. This work highlights the measurable impact of processing route on API properties and the importance of selecting a suitable processing route for preparing fine particles with optimal properties and performance.
Collapse
|
14
|
Paul S, Wang C, Calvin Sun C. An extended macroindentation method for determining the hardness of poorly compressible materials. Int J Pharm 2022; 624:122054. [PMID: 35902058 DOI: 10.1016/j.ijpharm.2022.122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Indentation hardness, H, is an important mechanical property that quantifies the resistance to deformation by a material. For pharmaceutical powders, H can be determined using a macroindentation method, provided they can form intact tablets suitable for testing. This work demonstrates a method for determining the hardness of problematic materials that cannot form suitable tablets for macroindentation. The method entails predicting the hardness of a given powder at zero porosity (H0) from those of microcrystalline cellulose and its binary mixture with the test compound using a power law mixing rule based on weight fraction. This method was found suitable for 13 binary mixtures. In addition, the H0 values derived by this method could capture changes due to different particle sizes of sucrose and sodium chloride. Furthermore, the derived H0 reasonably agreed with the single crystal indentation hardness of a set of 16 crystals when accounting for the effect of indentation condition and structural anisotropy. The mixture method thus extends the use of macroindentation for predicting indentation hardness of powders that cannot form intact tablets and, hence, their plasticity.
Collapse
Affiliation(s)
- Shubhajit Paul
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455.
| |
Collapse
|
15
|
Majumder S, Sun CC, Mara NA. Nanomechanical testing in drug delivery: Theory, applications, and emerging trends. Adv Drug Deliv Rev 2022; 183:114167. [PMID: 35183656 DOI: 10.1016/j.addr.2022.114167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/01/2022]
Abstract
Mechanical properties play a central role in drug formulation development and manufacturing. Traditional characterization of mechanical properties of pharmaceutical solids relied mainly on large compacts, instead of individual particles. Modern nanomechanical testing instruments enable quantification of mechanical properties from the single crystal/particle level to the finished tablet. Although widely used in characterizing inorganic materials for decades, nanomechanical testing has been relatively less employed to characterize pharmaceutical materials. This review focuses on the applications of existing and emerging nanomechanical testing methods in characterizing mechanical properties of pharmaceutical solids to facilitate fast and cost-effective development of high quality drug products. Testing of pharmaceutical materials using nanomechanical techniques holds potential to develop fundamental knowledge in the structure-property relationships of molecular solids, with implications for solid form selection, milling, formulation design, and manufacturing. We also systematically discuss pitfalls and useful tips during sample preparation and testing for reliable measurements from nanomechanical testing.
Collapse
|
16
|
Chaudhari KR, Savjani JK, Savjani KT, Shah H. Improved Pharmaceutical Properties of Ritonavir through Co-crystallization Approach with Liquid Assisted Grinding Method. Drug Dev Ind Pharm 2022; 47:1633-1642. [PMID: 35156497 DOI: 10.1080/03639045.2022.2042553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ritonavir is a BCS class II antiretroviral agent which shows poor aqueous solubility and low oral bioavailability. The cocrystallization approach was selected to overcome these problems and to improve the physicochemical and mechanical properties of Ritonavir. The novel pharmaceutical Ritonavir-L-tyrosine cocrystals (RTC at a molar ratio of 1:1) were synthesized using the liquid assisted grinding (LAG) method. The possibility of molecular interactions between drug and coformer were studied using Gold software version 5.2. The newly formed crystalline solid phase was characterized through Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Solid-State Nuclear magnetic resonance (SSNMR). The improved pharmaceutical properties were confirmed by solubility, dissolution, and powder compaction study. The prepared cocrystals exhibited an 11.24-fold increase in solubility and a 3.73-fold increase in % of drug release at 1 h compared to pure drug. Tabletability and compaction behaviour of the pure drug and cocrystal with added excipients assessed. The tabletability profile of cocrystals showed enhanced tabletting performance as compared to pure drug. The stability studies revealed that cocrystals were stable for at least one month when stored at 40 °C/75% RH and 25 °C/60% RH conditions. The cocrystallization approach was found to be very promising and showed an overall improved performance of Ritonavir.
Collapse
Affiliation(s)
| | - Jignasa K Savjani
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | | | - Harsh Shah
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201, USA
| |
Collapse
|
17
|
Vreeman G, Sun CC. Stress transmission coefficient is a reliable and robust parameter for quantifying powder plasticity. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Paczkowska-Walendowska M, Szymańska E, Winnicka K, Szwajgier D, Baranowska-Wójcik E, Ruchała MA, Simon M, Cielecka-Piontek J. Cyclodextrin as Functional Carrier in Development of Mucoadhesive Tablets Containing Polygoni cuspidati Extract with Potential for Dental Applications. Pharmaceutics 2021; 13:pharmaceutics13111916. [PMID: 34834331 PMCID: PMC8619530 DOI: 10.3390/pharmaceutics13111916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Polygoni cuspidati root is a resveratrol-rich source with anti-inflammatory, angiogenic and neuroprotective effects. The raw material was standardized for the content of resveratrol, for which there is a special justification for administration within the oral mucosa. To improve the solubility of resveratrol and to assure its high content in plant material, an ultrasound-assisted extraction method was applied. The addition of cyclodextrin was found to increase the extraction efficiency of resveratrol (from 13 to 297 µg per 1 g of plant material in case of 50% ethanol extracts) and enhanced its antioxidant activity as compared to pure Polygoni cuspidati extract/resveratrol. Cyclodextrin plays the role of a functional extract regarding technological properties (increasing the extraction of resveratrol from the extract, improving mucoadhesive properties). Therefore, the aim of this study was to develop mucoadhesive tablets containing combinations of the Polygoni cuspidati extract with a cyclodextrin carrier for buccal delivery. The tests sequentially included extract preparation and characterization of its physical and biological properties and then formulation studies with a broad description of the prototype properties. The test results indicate that cyclodextrin increases the efficiency of resveratrol extraction from Polygoni cuspidati rhizome, which is a rich source of resveratrol, and its extract enclosed in a mucoadhesive tablet guarantees prolonged action at the site of administration.
Collapse
Affiliation(s)
| | - Emilia Szymańska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (E.S.); (K.W.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (E.S.); (K.W.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Marek A. Ruchała
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Marek Simon
- Department of Pathophysiology, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland;
| |
Collapse
|
19
|
Young BA, Stevens LL. Discriminating the Interaction Anisotropy in Polymorphs Using Powder Brillouin Light Scattering. J Pharm Sci 2021; 111:440-449. [PMID: 34516989 DOI: 10.1016/j.xphs.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Drug product performance is polymorph specific, and it is imperative that solid phase stability be monitored throughout the manufacturing process to ensure final product quality and performance. PXRD remains the gold standard for polymorph identification, but due to a growing interest in continuous manufacturing, a need has emerged for alternative process analytical technologies (PATs) that can provide fast, reliable, and non-destructive polymorph discrimination amenable to in situ process monitoring. Herein we demonstrate an original application of powder Brillouin light scattering (p-BLS) for the discrimination of polymorphic molecular solids. We hypothesize that the anisotropic sound velocities directly reflect the strength and orientation of the intermolecular forces in molecular solids. Redistributing these forces upon polymorphic conversion should thus clearly be reflected in the sound frequency distributions obtained by p-BLS. To test this hypothesis, three model compounds - resorcinol, sulfamerazine and furosemide - were selected. Distinct, polymorph-specific, acoustic frequency distributions were observed, and these p-BLS spectra were interpreted using a hydrogen-bond analysis and energy frameworks calculated from CrystalExplorer. In conclusion, this study clearly demonstrates that the sound frequencies measured in p-BLS are sensitive to the interaction forces in molecular solids, and p-BLS is a novel optical technique capable of reliably discriminating polymorphs. Extending this study further, we fully expect that many pharmaceutically relevant processes - e.g., hydrate formation, co-crystallization, or amorphous instability - could potentially be monitored using p-BLS.
Collapse
Affiliation(s)
- Beth A Young
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA 52241, United States
| | - Lewis L Stevens
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, College of Pharmacy, Iowa City, IA 52241, United States.
| |
Collapse
|
20
|
Performance Evaluation of a Novel Biosourced Co-Processed Excipient in Direct Compression and Drug Release. Polymers (Basel) 2021; 13:polym13060988. [PMID: 33807048 PMCID: PMC8004800 DOI: 10.3390/polym13060988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022] Open
Abstract
This study exposes the potential usefulness of a new co-processed excipient, composed of alginic acid and microcrystalline cellulose (Cop AA-MCC), for the preparation of immediate drug release tablets by direct compression. Evaluation of the physical and mechanical properties as well as the disintegration behavior of Cop AA-MCC in comparison to commercial co-processed excipients (Cellactose®, Ludipress®, Prosolv® SMCC HD90 and Prosolv® ODT) and to the physical mixture of the native excipients (MCC and AA), was carried out. The obtained results illustrate the good performance of Cop AA-MCC in terms of powder flowability, tablet tensile strength, compressibility, and disintegration time. Although, this new co-processed excipient showed a slightly high lubricant sensitivity, which was explained by its more plastic than fragmentary deformation behavior, it presented a low lubricant requirement due to the remarkably low ejection force observed during compression. Compression speed and dwell time seemed not to affect significantly the tabletability of Cop AA-MCC. The study exposed evenly the performance of Cop AA-MCC compared to Prosolv® ODT, in terms of tabletability and dissolution rate of Melatonin. Cop AA-MCC presented comparable hardness, lower dilution potential, higher lubricant sensitivity, lower ejection force, and faster Melatonin's release time than Prosolv® ODT. In summary, Cop AA-MCC exhibited interesting physical, mechanical, and biopharmaceutical properties, which demonstrate its concurrence to commercially available co-processed excipients. Furthermore, the simplicity of its composition and the scalability of its elaboration makes this multifunctional excipient highly recommended for direct compression.
Collapse
|
21
|
Paczkowska-Walendowska M, Dvořák J, Rosiak N, Tykarska E, Szymańska E, Winnicka K, Ruchała MA, Cielecka-Piontek J. Buccal Resveratrol Delivery System as a Potential New Concept for the Periodontitis Treatment. Pharmaceutics 2021; 13:pharmaceutics13030417. [PMID: 33804630 PMCID: PMC8003728 DOI: 10.3390/pharmaceutics13030417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
The health benefits of resveratrol have been proven to inhibit the development of numerous diseases. A frequent limitation in its use is a low bioavailability stemming from a poor solubility and fast enterohepatic metabolism. Thus, the aim of the research was to investigate the possibility to formulate mucoadhesive cyclodextrin- and xanthan gum-based buccal tablets in order to increase the solubility of resveratrol and to eliminate bypass enterohepatic metabolism. Systems of resveratrol with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) prepared by the dry mixing method (ratio 1:1) were selected for the of tablets where xanthan gum was used as a mucoadhesive agent. They were identified on the basis of PXRD, FT-IR analysis. Tablets F1 (with α-CD), F2 (with β-CD) and F3 (with γ-CD) were characterized by the highest compactibility as well as by favorable mucoadhesive properties. Resveratrol release from these tablets was delayed and controlled by diffusion. The tablets prepared in the course of this study appear to constitute promising resveratrol delivery systems and are recommended to increase the effectiveness of the treatment in many diseases, particularly periodontitis.
Collapse
Affiliation(s)
| | - Jakub Dvořák
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
- Zentiva k.s., U Kabelovny 130, 102 37 Praha, Czech Republic
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (M.P.-W.); (N.R.)
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
| | - Emilia Szymańska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (E.S.); (K.W.)
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland; (E.S.); (K.W.)
| | - Marek A. Ruchała
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznań, Poland; (M.P.-W.); (N.R.)
- Correspondence:
| |
Collapse
|
22
|
Kavanagh ON, Wang C, Walker GM, Sun CC. Modulation of the powder properties of lamotrigine by crystal forms. Int J Pharm 2021; 595:120274. [PMID: 33486026 DOI: 10.1016/j.ijpharm.2021.120274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
The mechanical properties of powders determine the ease of manufacture and ultimately the quality of the oral solid dosage forms. Although poor mechanical properties of an active pharmaceutical ingredient (API) can be mitigated by using suitable excipients in a formulation, the effectiveness of that approach is limited for high dose drugs or multidrug tablets. In this context, improving the mechanical properties of the APIs through solid form optimisation is a good strategy to address such a challenge. This work explores the powder and tableting properties of various lamotrigine (LAM) solid forms with the aim to facilitate direct compression by overcoming the poor tabletability of LAM. The two drug-drug crystals of LAM with nicotinamide and valproic acid demonstrate superior flowability and tabletability over LAM. The improved powder properties are rationalised by structure analysis using energy framework, scanning electron microscopy, and Heckel analysis.
Collapse
Affiliation(s)
- Oisín N Kavanagh
- Synthesis and Solid State Pharmaceutical Centre (SSPC), The SFI Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Gavin M Walker
- Synthesis and Solid State Pharmaceutical Centre (SSPC), The SFI Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Upadhyay PP, Mishra MK, Ramamurty U, Bond AD. Structure–property correlations in piracetam polytypes. CrystEngComm 2021. [DOI: 10.1039/d0ce01694b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analysis of piracetam polytypes using energy-vector models, thermal expansion and nanoindentation measurements, produces a plausible link between their crystal structures and tableting behaviour.
Collapse
Affiliation(s)
| | - Manish Kumar Mishra
- Department of Pharmaceutics
- College of Pharmacy
- University of Minnesota
- Minneapolis
- USA
| | - Upadrasta Ramamurty
- School of Mechanical and Aerospace Engineering
- Nanyang Technological University
- Singapore 639798
- Republic of Singapore
- Institute of Materials Research and Engineering
| | | |
Collapse
|
24
|
Zhoujin Y, Zhang M, Parkin S, Li T, Yu F, Long S. A new solvate of clonixin and a comparison of the two clonixin solvates. RSC Adv 2021; 11:24836-24842. [PMID: 35481021 PMCID: PMC9036871 DOI: 10.1039/d1ra03623h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
A new solvate of clonixin (CLX), a dimethylacetamide (DMA) solvate, has been obtained by crystal growth in DMA. The new form was characterized by NMR, single-crystal X-ray diffraction, and PXRD. The crystal structure is stabilized by a strong hydrogen bond between the carboxylic acid OH of CLX and the DMA carbonyl, the strength of which is on par with those of the four solvent-free forms of CLX and the DMF solvate. These previously known forms are based on either the acid–acid homosynthon or the acid–pyridine heterosynthon, depending on the dihedral angle between the two aromatic rings of CLX, or the heterodimer between CLX and DMF. The new solvate loses DMA to convert into form I of CLX, as confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD), similar to how the DMF solvate does. A comparison of the two solvates was carried out and theoretical studies were performed to shed light on the conformational difference between the two CLX molecules in the two solvates and the packing differences between them. The insight gained on this solvatomorphic system could aid the design of new solvates and cocrystals of CLX. A new solvate of clonixin (CLX), a dimethylacetamide (DMA) solvate, has been obtained by crystal growth in DMA.![]()
Collapse
Affiliation(s)
- Yunping Zhoujin
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- Hubei Engineering Research Center for Advanced Fine Chemicals
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
| | - Mingtao Zhang
- Computational Center for Molecular Science
- College of Chemistry
- Nankai University
- Tianjin
- China
| | - Sean Parkin
- Department of Chemistry
- University of Kentucky
- Lexington
- USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy
- Purdue University
- West Lafayette
- USA
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- Hubei Engineering Research Center for Advanced Fine Chemicals
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- Hubei Engineering Research Center for Advanced Fine Chemicals
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
| |
Collapse
|
25
|
Kamat K, Guo R, Reutzel-Edens SM, Price SL, Peters B. Diabat method for polymorph free energies: Extension to molecular crystals. J Chem Phys 2020; 153:244105. [PMID: 33380078 DOI: 10.1063/5.0024727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lattice-switch Monte Carlo and the related diabat methods have emerged as efficient and accurate ways to compute free energy differences between polymorphs. In this work, we introduce a one-to-one mapping from the reference positions and displacements in one molecular crystal to the positions and displacements in another. Two features of the mapping facilitate lattice-switch Monte Carlo and related diabat methods for computing polymorph free energy differences. First, the mapping is unitary so that its Jacobian does not complicate the free energy calculations. Second, the mapping is easily implemented for molecular crystals of arbitrary complexity. We demonstrate the mapping by computing free energy differences between polymorphs of benzene and carbamazepine. Free energy calculations for thermodynamic cycles, each involving three independently computed polymorph free energy differences, all return to the starting free energy with a high degree of precision. The calculations thus provide a force field independent validation of the method and allow us to estimate the precision of the individual free energy differences.
Collapse
Affiliation(s)
- Kartik Kamat
- Department of Chemical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, USA
| | - Rui Guo
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Susan M Reutzel-Edens
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Sarah L Price
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Baron Peters
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
26
|
The impact of the degree of intimate mixing on the compaction properties of materials produced by crystallo-co-spray drying. Eur J Pharm Sci 2020; 154:105505. [DOI: 10.1016/j.ejps.2020.105505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
|
27
|
Taylor CR, Mulvee MT, Perenyi DS, Probert MR, Day GM, Steed JW. Minimizing Polymorphic Risk through Cooperative Computational and Experimental Exploration. J Am Chem Soc 2020; 142:16668-16680. [PMID: 32897065 PMCID: PMC7586337 DOI: 10.1021/jacs.0c06749] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
We
combine state-of-the-art computational crystal structure prediction
(CSP) techniques with a wide range of experimental crystallization
methods to understand and explore crystal structure in pharmaceuticals
and minimize the risk of unanticipated late-appearing polymorphs.
Initially, we demonstrate the power of CSP to rationalize the difficulty
in obtaining polymorphs of the well-known pharmaceutical isoniazid
and show that CSP provides the structure of the recently obtained,
but unsolved, Form III of this drug despite there being only a single
resolved form for almost 70 years. More dramatically, our blind CSP
study predicts a significant risk of polymorphism for the related
iproniazid. Employing a wide variety of experimental techniques, including
high-pressure experiments, we experimentally obtained the first three
known nonsolvated crystal forms of iproniazid, all of which were successfully
predicted in the CSP procedure. We demonstrate the power of CSP methods
and free energy calculations to rationalize the observed elusiveness
of the third form of iproniazid, the success of high-pressure experiments
in obtaining it, and the ability of our synergistic computational-experimental
approach to “de-risk” solid form landscapes.
Collapse
Affiliation(s)
- Christopher R Taylor
- Computational Systems Chemistry, School of Chemistry, University of Southampton, Southampton SO17 1NX, U.K
| | - Matthew T Mulvee
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Domonkos S Perenyi
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Michael R Probert
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Graeme M Day
- Computational Systems Chemistry, School of Chemistry, University of Southampton, Southampton SO17 1NX, U.K
| | - Jonathan W Steed
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
28
|
Paul S, Wang C, Sun CC. Tabletability Flip - Role of Bonding Area and Bonding Strength Interplay. J Pharm Sci 2020; 109:3569-3573. [PMID: 32910948 DOI: 10.1016/j.xphs.2020.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/02/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Predicting tableting performance of mixtures from that of individual components is of practical importance for achieving efficient and robust tablet design. It has been commonly assumed that a solid form exhibiting better tabletability will result in better tabletability when formulated. However, we show that the rank order of tabletability between two powders can flip when mixed with another powder, a phenomenon termed tabletability flip. Using three examples, we show that the tabletability flip upon mixing with microcrystalline cellulose is activated by the switch of the dominating factor in the bonding area (BA) and bonding strength (BS) interplay that determines tablet tensile strength. A mechanistic understanding of this phenomenon can significantly improve the accuracy of predicted tableting performance of mixtures from that of individual powders.
Collapse
Affiliation(s)
- Shubhajit Paul
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
29
|
Stagner WC, Jain A, Al-Achi A, Haware RV. Employing Multivariate Statistics and Latent Variable Models to Identify and Quantify Complex Relationships in Typical Compression Studies. AAPS PharmSciTech 2020; 21:186. [PMID: 32638170 DOI: 10.1208/s12249-020-01712-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 11/30/2022] Open
Abstract
The effect of storage condition (% RH) on flufenamic acid:nicotinamide (FFA:NIC) cocrystal compressibility, compactibility, and tabletability profiles was not observed after visual evaluation or linear regression analysis. However, multivariate statistical analysis showed that storage condition had a significant effect on each compressional profile. Shapiro and Heckel equations were used to determine the compression parameters: porosity, Shapiro's compression parameter (f), densification factor (Da), plastic yield pressure (YPpl), and elastic yield pressure (YPel). Latent variable models such as exploratory factor analysis, principal component analysis, and principal component regression were employed to decode complex hidden main, interaction, and quadratic effects of % RH and the compression parameters on FFA:NIC tablet mechanical strength (TMS). Statistically significant correlations between f and Da, f and YPpl, and Da and YPel supported the idea that both rearrangement and fragmentation, and plastic deformation are important to FFA:NIC TMS. To the authors knowledge, this is the first time that simultaneously operating dual mechanisms of fragmentation and plastic deformation in low and midrange compression, and midrange plastic deformation have been identified and reported. A quantitative PCR model showed that f, Da, and YPel had statistically significant main effects along with a significant antagonist storage condition-porosity "conditional interaction effect". f exhibited a 2.35 times greater impact on TMS compared to Da. The model root-mean-square error at calibration and prediction stages were 0.04 MPa and 0.08 MPa, respectively. The R2 values at the calibration stage and at the prediction stage were 0.9005 and 0.7539, respectively. This research demonstrated the need for caution when interpreting the results of bivariate compression data because complex latent inter-relationships may be hidden from visual assessment and linear regression analysis, and result in false data interpretation as illustrated in this report.
Collapse
|
30
|
Shi Z, Wang C, Sun CC. Molecular Origin of the Distinct Tabletability of Loratadine and Desloratadine: Role of the Bonding Area – Bonding Strength Interplay. Pharm Res 2020; 37:133. [DOI: 10.1007/s11095-020-02856-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/10/2020] [Indexed: 01/21/2023]
|
31
|
Sanchez-Ballester NM, Bataille B, Benabbas R, Alonso B, Soulairol I. Development of alginate esters as novel multifunctional excipients for direct compression. Carbohydr Polym 2020; 240:116280. [PMID: 32475564 DOI: 10.1016/j.carbpol.2020.116280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Methyl ester derivatives of alginic acid have been evaluated as potential multifunctional excipients for pharmaceutical direct compression. The use of alginic acid as an excipient in tablet formulation is limited because of certain drawbacks such as low tablet hardness and poor compressibility. The objective of this work is to improve these properties through esterification of alginic acid, chemical modification commonly used for enhancing the functionality of tableting excipients. It has been observed that the degree of methylation (DM) has a profitable impact in the physico-chemical and mechanical properties of the obtained materials. In general, an increase in the degree of methylation yielded tablets with higher tensile strength and better compressibility. Furthermore, modified alginates exhibited extended disintegration times compared to native alginic acid due to the introduced hydrophobicity. Finally, the functional versatility of the modified alginates as disintegrating and filling/binding agents was tested by formulating them with microcrystalline cellulose and lactose.
Collapse
Affiliation(s)
| | - Bernard Bataille
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rihab Benabbas
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruno Alonso
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nimes, France
| |
Collapse
|
32
|
Paczkowska M, McDonagh AF, Bialek K, Tajber L, Cielecka-Piontek J. Mechanochemical activation with cyclodextrins followed by compaction as an effective approach to improving dissolution of rutin. Int J Pharm 2020; 581:119294. [PMID: 32247814 DOI: 10.1016/j.ijpharm.2020.119294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Rutin is one of the most important flavonoids with poor bioavailability. This work aimed at addressing the issue of poor biopharmaceutical performance of rutin by applying a combination of complexation with secondary processing into tablets. Mechanical activation was the most suitable method of rutin complex formation with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD), while the β-cyclodextrin (β-CD) complex successfully formed by kneading with an ethanol/water mixture. Complexation was confirmed by thermal analysis, powder X-ray diffraction and vibrational spectroscopy. Dynamic vapour sorption showed that stability of powders at high humidity conditions was satisfactory, however, the β-CD complex retained around 8% of moisture. The complexes were compacted with or without tricalcium phosphate (TRI-CAFOS) filler at a range of compression pressures (19-113 MPa). The best tabletability was determined for rutin/HP-β-CD, compressibility for the TRI-CAFOS blends with complexes and compactibility for the rutin/HP-β-CD + TRI-CAFOS mix. Dissolution studies showed quicker and more complete dissolution (pH 1.2) of rutin/HP-β-CD tablets, however the compacts comprising the filler were superior than pure complexes. The tablets manufactured in this study appear to be promising delivery systems of rutin and it is recommended to combine rutin/HP-β-CD with TRI-CAFOS and compact at 38-76 MPa.
Collapse
Affiliation(s)
- Magdalena Paczkowska
- Department of Pharmacognosy, Poznan University of Medical Sciences, Poznan, Poland
| | - Alan F McDonagh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Klaudia Bialek
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Lidia Tajber
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
33
|
Paul S, Taylor LJ, Murphy B, Krzyzaniak JF, Dawson N, Mullarney MP, Meenan P, Sun CC. Toward a Molecular Understanding of the Impact of Crystal Size and Shape on Punch Sticking. Mol Pharm 2020; 17:1148-1158. [DOI: 10.1021/acs.molpharmaceut.9b01185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shubhajit Paul
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Lisa J. Taylor
- Pfizer Worldwide Research and Development, Sandwich CT13 9ND, U.K
| | - Brendan Murphy
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Joseph F. Krzyzaniak
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Neil Dawson
- Pfizer Worldwide Research and Development, Sandwich CT13 9ND, U.K
| | - Matthew P. Mullarney
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Paul Meenan
- Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
34
|
A material-saving and robust approach for obtaining accurate out-of-die powder compressibility. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Partial Least Squares Regression-Based Robust Forward Control of the Tableting Process. Pharmaceutics 2020; 12:pharmaceutics12010085. [PMID: 31968698 PMCID: PMC7022652 DOI: 10.3390/pharmaceutics12010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 11/20/2022] Open
Abstract
In this study, we established a robust feed-forward control model for the tableting process by partial least squares regression using the near-infrared (NIR) spectra and physical attributes of the granules to be compressed. The NIR spectra of granules are rich in information about chemical attributes, such as the compositions of any ingredients and moisture content. Polymorphism and pseudo-polymorphism can also be quantitatively evaluated by NIR spectra. We used the particle size distribution, flowability, and loose and tapped density as the physical attributes of the granules. The tableting process was controlled by the lower punch fill depth and the minimum distance between the upper and lower punches at compression, which were specifically related to the tablet weight and thickness, respectively. The feed-forward control of the process would be expected to provide some advantages for automated and semi-automated continuous pharmaceutical manufacturing. As a result, our model, using a combination of NIR spectra and the physical attributes of granules to control the distance between punches, resulted in respectable agreement between the predicted process parameters and actual settings to produce tablets of the desired thickness.
Collapse
|
36
|
Singaraju AB, Bahl D, Wang C, Swenson DC, Sun CC, Stevens LL. Molecular Interpretation of the Compaction Performance and Mechanical Properties of Caffeine Cocrystals: A Polymorphic Study. Mol Pharm 2020; 17:21-31. [PMID: 31756102 DOI: 10.1021/acs.molpharmaceut.9b00377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 1:1 caffeine (CAF) and 3-nitrobenzoic acid (NBA) cocrystal (CAF:NBA) displays polymorphism. Each polymorph shares the same docking synthon that connects individual CAF and NBA molecules within the asymmetric unit; however, the extended intermolecular interactions are significantly different between the two polymorphic modifications. These alternative interaction topologies translate to distinct structural motifs, mechanical properties, and compaction performance. To assist our molecular interpretation of the structure-mechanics-performance relationships for these cocrystal polymorphs, we combine powder Brillouin light scattering (p-BLS) to determine the mechanical properties with energy frameworks calculations to identify potentially available slip systems that may facilitate plastic deformation. The previously reported Form 1 for CAF:NBA adopts a 2D-layered crystal structure with a conventional 3.4 Å layer-to-layer separation distance. For Form 2, a columnar structure of 1D-tapes is displayed with CAF:NBA dimers running parallel to the (110) crystallographic direction. Consistent with the layered crystal structure, the shear modulus for Form 1 is significantly reduced relative to Form 2, and moreover, our p-BLS spectra for Form 1 clearly display the presence of low-velocity shear modes, which support the expectation of a low-energy slip system available for facile plastic deformation. Our energy frameworks calculations confirm that Form 1 displays a favorable slip system for plastic deformation. Combining our experimental and computational data indicates that the structural organization in Form 1 of CAF:NBA improves the compressibility and plasticity of the material, and from our tabletability studies, each of these contributions confers superior tableting performance to that of Form 1. Overall, mechanical and energy framework data permit a clear interpretation of the functional performance of polymorphic solids. This could serve as a robust screening approach for early pharmaceutical solid form selection and development.
Collapse
Affiliation(s)
- Aditya B Singaraju
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Dherya Bahl
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Dale C Swenson
- X-Ray Diffraction Facility, Department of Chemistry , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Lewis L Stevens
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy , The University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
37
|
Chen H, Wang C, Kang H, Zhi B, Haynes CL, Aburub A, Sun CC. Microstructures and pharmaceutical properties of ferulic acid agglomerates prepared by different spherical crystallization methods. Int J Pharm 2020; 574:118914. [DOI: 10.1016/j.ijpharm.2019.118914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 01/06/2023]
|
38
|
Chang SY, Sun CC. Interfacial bonding in formulated bilayer tablets. Eur J Pharm Biopharm 2019; 147:69-75. [PMID: 31870828 DOI: 10.1016/j.ejpb.2019.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/20/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
Abstract
To take full advantage of the drug delivery benefits offered by bilayer tablets, the common issue of weak interfacial bonding strength (IBS) with manufacturing must be overcome. This work seeks to characterize the effects of composition in individual layers and compaction pressure on the IBS. Mixtures of MCC and lactose in different ratios with and without HPMC were used where the first layer was compacted with two different pressures (20 and 100 MPa) followed by a second layer compaction pressure of 200 MPa. After identifying the failure mode as either at the interface or within a layer, the complex trends of bilayer tablet IBS as a function of MCC content were explained by considering the interplay between particle bonding strength and bonding area at the interface.
Collapse
Affiliation(s)
- Shao-Yu Chang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
39
|
Cruz PC, Rocha FA, Ferreira AM. Application of Selective Crystallization Methods To Isolate the Metastable Polymorphs of Paracetamol: A Review. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Patrı́cia C. Cruz
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Fernando A. Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - António M. Ferreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
40
|
Chang SY, Sun CC. Effect of particle size on interfacial bonding strength of bilayer tablets. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.07.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
A compression behavior classification system of pharmaceutical powders for accelerating direct compression tablet formulation design. Int J Pharm 2019; 572:118742. [PMID: 31648016 DOI: 10.1016/j.ijpharm.2019.118742] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
In this paper, a compression behavior classification system (CBCS) for direct compression (DC) pharmaceutical powders is presented. Seven descriptors from a series of compression models for powder compressibility, compactibility and tabletability analysis were included in the CBCS. A new tabletability index d was proposed to differentiate three categories of tensile strength (TS) vs. pressure relationships, and its physical meaning was explained thoroughly. 130 materials containing diverse pharmaceutical excipients and natural product powders (NPPs) were fully characterized and were compiled into an in-house developed material library, in which 70 materials with potential DC applications were used to justify the effectiveness of the CBCS. Principle component analysis (PCA) was used to uncover the latent structure of compression variables. Moreover, partial least squares (PLS) regression models are established in prediction of both tablet TS and solid fraction (SF) based on the raw materials' physical characteristics, the compression behavior indices and the compression force. The obtained scores and loadings are used to group the materials and the compression variables, respectively. Different categories of tabletability for DC powders were clearly clustered along two orthogonal directions pointing to the index d and the compression force. Finally, a multi-objective design space was identified under the latent variable space, summarizing the operationally possible region for both material properties and compression pressure required in DC tablet formulation design.
Collapse
|
42
|
Roopwani R, Buckner IS. Co-Processed Particles: An Approach to Transform Poor Tableting Properties. J Pharm Sci 2019; 108:3209-3217. [DOI: 10.1016/j.xphs.2019.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
43
|
Young BA, Bahl D, Stevens LL. Understanding the Tabletability Differences between Indomethacin Polymorphs Using Powder Brillouin Light Scattering. Pharm Res 2019; 36:150. [DOI: 10.1007/s11095-019-2681-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/04/2019] [Indexed: 11/28/2022]
|
44
|
Machine Learning Modeling of Wet Granulation Scale-up Using Particle Size Distribution Characterization Parameters. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09398-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Zhou XB, Zhu JR, Liu JY, Jin ZP, Tang FY, Hu XR. Crystal structures and properties of two hydrated conglomerate forms of the heart-rate-lowering agent ivabradine hydrochloride. Acta Crystallogr C Struct Chem 2019; 75:545-553. [PMID: 31062711 DOI: 10.1107/s2053229619004819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/09/2019] [Indexed: 11/10/2022] Open
Abstract
Ivabradine hydrochloride (IVA-HCl) (systematic name: {[3,4-dimethoxybicyclo[4.2.0]octa-1(6),2,4-trien-7-yl]methyl}[3-(7,8-dimethoxy-2-oxo-2,3,4,5-tetrahydro-1H-3-benzazepin-3-yl)propyl]methylazanium), is a novel medication used for the symptomatic management of stable angina pectoris. In many recent patents, it has been claimed to exist in a very large number of polymorphic, hydrated and solvated phases, although no detailed analysis of the structural features of these forms has been published to date. Here, we have successfully crystallized the tetrahydrate form of IVA-HCl (form β), C27H37N2O5+·Cl-·4H2O, and elucidated its structure for the first time. Simultaneously, a new crystal form of IVA-HCl, i.e. the hemihydrate (form II), C27H37N2O5+·Cl-·0.5H2O, was discovered. Its crystal structure was also accurately determined and compared to that of the tetrahydrate form. While the tetrahydrate form of IVA-HCl crystallized in the orthorhombic space group P212121, the new form (hemihydrate) was solved in the monoclinic space group P21. Detailed conformational and packing comparisons between the two forms have allowed us to understand the role of water in the crystal assembly of this hydrochloride salt. The stabilities of the two forms were compared theoretically by calculating the binding energy of the water in the crystal lattice using differential scanning calorimetry (DSC). The stability experiments show that the tetrahydrate is stable under high-humidity conditions, while the hemihydrate is stable under high-temperature conditions.
Collapse
Affiliation(s)
- Xin Bo Zhou
- Zhejiang Jingxin Pharmaceutical Co. Ltd, Xinchang, Zhejiang 312500, People's Republic of China
| | - Jian Rong Zhu
- Zhejiang Jingxin Pharmaceutical Co. Ltd, Xinchang, Zhejiang 312500, People's Republic of China
| | - Ji Yong Liu
- Chemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
| | - Zhi Ping Jin
- Zhejiang Jingxin Pharmaceutical Co. Ltd, Xinchang, Zhejiang 312500, People's Republic of China
| | - Fei Yu Tang
- Zhejiang Jingxin Pharmaceutical Co. Ltd, Xinchang, Zhejiang 312500, People's Republic of China
| | - Xiu Rong Hu
- Chemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
| |
Collapse
|
46
|
Hwang KM, Kim SY, Nguyen TT, Cho CH, Park ES. Use of roller compaction and fines recycling process in the preparation of erlotinib hydrochloride tablets. Eur J Pharm Sci 2019; 131:99-110. [PMID: 30716380 DOI: 10.1016/j.ejps.2019.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/29/2018] [Accepted: 01/30/2019] [Indexed: 12/28/2022]
Abstract
This study focuses on improving the manufacturing process for a generic immediate-release tablet containing erlotinib hydrochloride by adding a fines recycling process during roller compaction. Due to the large fraction of small-sized API particles, the starting powder mixture was inconsistently fed into the roller compactor. Consequently, poorly flowing granules with a high ratio of fines were produced. A fines recycling step was, therefore, added to the existing roller compaction process to minimize the risks caused by the poor granule flow. A laboratory scale roller compactor and a tablet simulator were used to prepare granules at various process conditions. The effect of dry granulation parameters on size distribution, API distribution, powder flow, compaction properties, and dissolution profile was evaluated. The granule batch after fines recycling had markedly improved size distribution and flowability while maintaining acceptable tablet tensile strength and rapid dissolution profile. The application of the fines recycling process at commercial scale resulted in reliable dissolution performance and batch-to-batch consistency, which were further confirmed by bioequivalence to the reference product. Understanding how granule properties are impacted by the fines recycling process may enable fine-tuning of the dry granulation process for optimal product quality.
Collapse
Affiliation(s)
- Kyu-Mok Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang-Yeop Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Boryung Pharmaceutical Co., Ltd., Ansan 15425, Republic of Korea
| | - Thi-Tram Nguyen
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol-Hee Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Seok Park
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
47
|
Bhandary S, Rani G, Mangalampalli SRNK, Rao GBD, Ramamurty U, Chopra D. Guest Solvent-dependence of the Nanomechanical Response in Substituted Dihydropyrimidinone Crystals. Chem Asian J 2019; 14:607-611. [PMID: 30600930 DOI: 10.1002/asia.201801842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 11/08/2022]
Abstract
The nanomechanical responses of two crystalline phases of a dihydropyrimidine analogue (1) were similar irrespective of the presence (or absence) of the guest solvent. In contrast, the mechanical responses of two differently solvated forms of the second related (2) crystals were significantly different. These contrasting behaviors are rationalized in terms of intermolecular interactions and energy distributions.
Collapse
Affiliation(s)
- Subhrajyoti Bhandary
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-By-Pass Road, Bhauri, Bhopal-, 462066, Madhya, Pradesh, India
| | - Gulshan Rani
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-By-Pass Road, Bhauri, Bhopal-, 462066, Madhya, Pradesh, India
| | - S R N Kiran Mangalampalli
- Nanomechanics Laboratory, Sir C.V. Raman Block, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - G B Dharma Rao
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-By-Pass Road, Bhauri, Bhopal-, 462066, Madhya, Pradesh, India
| | - Upadrasta Ramamurty
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Deepak Chopra
- Crystallography and Crystal Chemistry Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal-By-Pass Road, Bhauri, Bhopal-, 462066, Madhya, Pradesh, India
| |
Collapse
|
48
|
Covaci OI, Samohvalov D, Manta CM, Buhalteanu L, Barbatu A, Baibarac M, Daescu M, Matea A, Gherca D. Novel anhydrous solid-state form of Azathioprine: The assessing of crystal structure by powder X-Ray diffraction, Infrared Absorption Spectroscopy and Raman scattering. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Hou HH, Rajesh A, Pandya KM, Lubach JW, Muliadi A, Yost E, Jia W, Nagapudi K. Impact of Method of Preparation of Amorphous Solid Dispersions on Mechanical Properties: Comparison of Coprecipitation and Spray Drying. J Pharm Sci 2019; 108:870-879. [DOI: 10.1016/j.xphs.2018.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/11/2018] [Accepted: 09/05/2018] [Indexed: 02/01/2023]
|
50
|
Todaro V, Worku ZA, Cabral LM, Healy AM. In Situ Cocrystallization of Dapsone and Caffeine during Fluidized Bed Granulation Processing. AAPS PharmSciTech 2019; 20:28. [PMID: 30603811 DOI: 10.1208/s12249-018-1228-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 11/30/2022] Open
Abstract
Different pharmaceutical manufacturing processes have been demonstrated to represent feasible platforms for the production of pharmaceutical cocrystals. However, new methods are needed for the manufacture of cocrystals on a large scale. In this work, the suitability of the use of a fluidized bed system for granulation and concomitant cocrystallization was investigated. Dapsone (DAP) and caffeine (CAF) have been shown to form a stable cocrystal by simple solvent evaporation. DAP is the active pharmaceutical ingredient (API) and CAF is the coformer. In the present study, DAP-CAF cocrystals were produced through liquid-assisted milling and the product obtained was used as a cocrystal reference. The granulation of DAP and CAF was carried out using four different experimental conditions. The solid-state properties of the constituents of the granules were characterised by differential scanning calorimetry (DSC) and x-ray powder diffraction (PXRD) analysis while the granule size distribution and morphology were investigated using laser diffraction and scanning electron microscopy (SEM), respectively. DAP-CAF cocrystal granules were successfully produced during fluidized bed granulation. The formation of cocrystals was possible only when the DAP and CAF were dissolved in the liquid phase and sprayed over the fluidized solid particles. Furthermore, the presence of polymers in solution interferes with the cocrystallization, resulting in the amorphization of the DAP and CAF. Cocrystallization via fluidized bed granulation represents a useful tool and a feasible alternative technique for the large scale manufacture of pharmaceutical cocrystals for solid dosage forms.
Collapse
|