1
|
Kumari A, Singh KP, Mandal A, Paswan RK, Sinha P, Das P, Ali V, Bimal S, Lal CS. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani. PLoS One 2017; 12:e0178800. [PMID: 28586364 PMCID: PMC5460814 DOI: 10.1371/journal.pone.0178800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'–tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) and Zinc Sulfate (ZnSO4). Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death. Therefore, cellular zinc homeostasis in Leishmania can be explored for new drug targets and chemotherapeutics to control Leishmanial growth and disease progression.
Collapse
Affiliation(s)
- Anjali Kumari
- Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Abhishek Mandal
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Ranjeet Kumar Paswan
- Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Preeti Sinha
- Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Sanjiva Bimal
- Division of Immunology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
| | - Chandra Shekhar Lal
- Division of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of medical Research), Agamkuan, Patna, Bihar, India
- * E-mail:
| |
Collapse
|
2
|
Bodiga VL, Inapurapu SP, Vemuri PK, Kudle MR, Bodiga S. Intracellular zinc status influences cisplatin-induced endothelial permeability through modulation of PKCα, NF-κB and ICAM-1 expression. Eur J Pharmacol 2016; 791:355-368. [DOI: 10.1016/j.ejphar.2016.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|
3
|
Takeda A, Tamano H. Significance of Low Nanomolar Concentration of Zn2+ in Artificial Cerebrospinal Fluid. Mol Neurobiol 2016; 54:2477-2482. [DOI: 10.1007/s12035-016-9816-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 01/03/2023]
|
4
|
Mao L, Chen J, Peng Q, Zhou A, Wang Z. Effects of different sources and levels of zinc on H2O2-induced apoptosis in IEC-6 cells. Biol Trace Elem Res 2013; 155:132-41. [PMID: 23912254 DOI: 10.1007/s12011-013-9759-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/09/2013] [Indexed: 12/14/2022]
Abstract
Zinc has been shown to be an inhibitor of apoptosis for many years. The present study was designed to investigate effects of three zinc chemical forms on H2O2-induced cell apoptosis in IEC-6 cells via analysis of cell vitality, LDH activity, apoptosis percentage, caspase-3 activity, and Bcl-2, Bax, and caspase-3, -8, and -9 gene expression. Cells were divided into H2O2 and zinc sources+H2O2 groups, and there are three different zinc sources [zinc oxide nanoparticle (nano-ZnO), zinc oxide (ZnO), and zinc sulfate (ZnSO4)] and three concentrations (normal = 25 μM, medium = 50 μM, and high = 100 μM) used in this article. In the present study, we found the striking cytotoxicity of H2O2 higher than 200 μM on cell vitality, LDH activity, and apoptosis percentage in the cells using five different concentrations (50, 100, 200, 400, and 800 μM) of H2O2 for 4 h. Moreover, we observed that cell vitality was increased, LDH activity and apoptotic percentage were decreased, and gene expression level of Bax and caspase-3 and -9 was markedly reduced, while gene expression level of Bcl-2 and ratio of Bcl-2/Bax were increased in normal concentration groups of nano-ZnO and ZnSO4 compared with H2O2 group, but no significant difference was observed in caspase-8 gene expression. Furthermore, medium or, more intensely, high concentrations of nano-ZnO and ZnSO4 enhanced H2O2-induced cell apoptosis. Compared with nano-ZnO and ZnSO4, ZnO showed weakest protective effect on H2O2-induced apoptosis at normal concentration and was less toxic to cells at high level. Taken together, we proposed that preventive and protective effects of zinc on H2O2-induced cell apoptosis varied in IEC-6 cells with its chemical forms and concentrations, and maybe for the first time, we suggested that nano-ZnO have a protective effect on H2O2-induced cell apoptosis in IEC-6 cells.
Collapse
Affiliation(s)
- Lei Mao
- Institute of Animal Nutrition, Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya' an, People's Republic of China
| | | | | | | | | |
Collapse
|
5
|
Zinc, a Neuroprotective Agent Against Aluminum-induced Oxidative DNA Injury. Mol Neurobiol 2013; 48:1-12. [DOI: 10.1007/s12035-013-8417-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/29/2013] [Indexed: 01/22/2023]
|
6
|
Abstract
After iron, zinc is the most abundant essential trace metal. Intracellular zinc ([Zn]i) is maintained across a wide range of cells and species in a tight quota (100 to 500 μM) by a dynamic process of transport, intracellular vesicular storage, and binding to a large number of proteins (estimated at 3-10% of human proteome). As such, zinc is an integral component of numerous metalloenzymes, structural proteins, and transcription factors. It is generally assumed that a vanishingly small component of [Zn]i, referred to as free or labile zinc, and operationally defined as the pool sensitive to chelation (by agents such as N, N, N’, N’-tetrakis [2-pyridylmethyl] ethylenediamine [TPEN]) and capable of detection by a variety of chemical and genetic sensors, participates in signal transduction pathways. Zinc deficiencies, per se, can arise from acquired (malnutrition, alcoholism) or genetic (mutations in molecules affecting zinc homeostasis, the informative and first example being acrodermatitis enteropathica) factors or as a component of various diseases (e.g., sickle cell disease, cystic fibrosis, sepsis). Hypozincemia has profound effects on developing humans, and all facets of physiological function (neuronal, endocrine, immunological) are affected, although considerably less is known regarding cardiovascular pathophysiology. In this review, we provide an update on current knowledge of molecular and cellular aspects of zinc homeostasis and then focus on implications of zinc signaling in pulmonary endothelium as it relates to programmed cell death, altered contractility, and septic and aseptic injury to this segment of the lung.
Collapse
Affiliation(s)
- Kalidasan Thambiayya
- Department of Bioengineering, University of Pittsburgh and University of Pittsburgh School of Medicine and Graduate School Public Health, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
7
|
Omata Y, Salvador GA, Supasai S, Keenan AH, Oteiza PI. Decreased zinc availability affects glutathione metabolism in neuronal cells and in the developing brain. Toxicol Sci 2013; 133:90-100. [PMID: 23377617 DOI: 10.1093/toxsci/kft022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A deficit in zinc (Zn) availability can increase cell oxidant production, affect the antioxidant defense system, and trigger oxidant-sensitive signals in neuronal cells. This work tested the hypothesis that a decreased Zn availability can affect glutathione (GSH) metabolism in the developing rat brain and in neuronal cells in culture, as well as the capacity of human neuroblastoma IMR-32 cells to upregulate GSH when challenged with dopamine (DA). GSH levels were low in the brain of gestation day 19 (GD19) fetuses from dams fed marginal Zn diets throughout gestation and in Zn-deficient IMR-32 cells. γ-Glutamylcysteine synthetase (GCL), the first enzyme in the GSH synthetic pathway, was altered by Zn deficiency (ZD). The protein and mRNA levels of the GCL modifier (GCLM) and catalytic (GCLC) subunits were lower in the Zn-deficient GD19 fetal brain and in IMR-32 cells compared with controls. The nuclear translocation of transcription factor nuclear factor (erythroid-derived 2)-like 2, which controls GCL transcription, was impaired by ZD. Posttranslationally, the caspase-3-dependent GCLC cleavage was high in Zn-deficient IMR-32 cells. Cells challenged with DA showed an increase in GCLM and GCLC protein and mRNA levels and a consequent increase in GSH concentration. Although Zn-deficient cells partially upregulated GCL subunits after exposure to DA, GSH content remained low. In summary, results show that a low Zn availability affects the GSH synthetic pathway in neuronal cells and fetal brain both at transcriptional and posttranslational levels. This can in part underlie the GSH depletion associated with ZD and the high sensitivity of Zn-deficient neurons to pro-oxidative stressors.
Collapse
Affiliation(s)
- Yo Omata
- Department of Nutrition and Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
8
|
Jeong J, Walker JM, Wang F, Park JG, Palmer AE, Giunta C, Rohrbach M, Steinmann B, Eide DJ. Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers-Danlos syndrome. Proc Natl Acad Sci U S A 2012; 109:E3530-8. [PMID: 23213233 PMCID: PMC3529093 DOI: 10.1073/pnas.1211775110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zinc is essential but potentially toxic, so intracellular zinc levels are tightly controlled. A key strategy used by many organisms to buffer cytosolic zinc is to store it within vesicles and organelles.It is yet unknown whether vesicular or organellar sites perform this function in mammals. Human ZIP13, a member of the Zrt/Irt-like protein (ZIP) metal transporter family, might provide an answer to this question. Mutations in the ZIP13 gene, SLC39A13, previously were found to cause the spondylocheiro dysplastic form of Ehlers–Danlos syndrome (SCD-EDS), a heritable connective tissue disorder.Those previous studies suggested that ZIP13 transports excess zinc out of the early secretory pathway and that zinc overload in the endoplasmic reticulum (ER) occurs in SCD-EDS patients. In contrast,this study indicates that ZIP13’s role is to release labile zinc from vesicular stores for use in the ER and other compartments. We propose that SCD-EDS is the result of vesicular zinc trapping and ER zinc deficiency rather than overload.
Collapse
Affiliation(s)
- Jeeyon Jeong
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Alam S, Kelleher SL. Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 2012; 4:875-903. [PMID: 23016122 PMCID: PMC3448077 DOI: 10.3390/nu4080875] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 12/29/2022] Open
Abstract
Worldwide, breast cancer is the most commonly diagnosed cancer among women and is the leading cause of female cancer deaths. Zinc (Zn) functions as an antioxidant and plays a role in maintaining genomic stability. Zn deficiency results in oxidative DNA damage and increased cancer risk. Studies suggest an inverse association between dietary and plasma Zn levels and the risk for developing breast cancer. In contrast, breast tumor biopsies display significantly higher Zn levels compared with normal tissue. Zn accumulation in tumor tissue also correlates with increased levels of Zn importing proteins. Further, aberrant expression of Zn transporters in tumors correlates with malignancy, suggesting that altered metal homeostasis in the breast could contribute to malignant transformation and the severity of cancer. However, studies have yet to link dysregulated Zn transport and abnormal Zn-dependent functions in breast cancer development. Herein, we summarize studies that address the multi-modal role of Zn dyshomeostasis in breast cancer with respect to the role of Zn in modulating oxidative stress, DNA damage response/repair pathways and cell proliferation/apoptosis, and the relationship to aberrant regulation of Zn transporters. We also compare Zn dysregulation in breast tissue to that of prostate, pancreatic and ovarian cancer where possible.
Collapse
Affiliation(s)
- Samina Alam
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Shannon L. Kelleher
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Surgery, the Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Cell and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-814-863-9680; Fax: +1-814-863-6103
| |
Collapse
|
10
|
Xu H, Gao HL, Zheng W, Xin N, Chi ZH, Bai SL, Wang ZY. Lactational zinc deficiency-induced hippocampal neuronal apoptosis by a BDNF-independent TrkB signaling pathway. Hippocampus 2012; 21:495-501. [PMID: 20101602 DOI: 10.1002/hipo.20767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is well-known that zinc deficiency leads to neuronal death in the brain. Here we tested the hypothesis that changes in the TrkB signaling pathway are involved in hippocampal neuronal apoptosis of suckling offspring with maternal zinc deficiency. Postpartum mice were fed a zinc-deficient (0.85 ppm) diet and their offspring were used as a lactational zinc deficiency mouse model. At P7, P14, and P21, changes in hippocampal neuronal apoptosis were assessed by Nissl and TUNEL staining. BDNF levels and TrkB neurotrophic signaling were examined using immunoblotting assay. Lactational zinc deficiency resulted in lower levels of p-TrkB and p-ERK, and higher levels of Bax/Bcl-2 and caspase-3 in the hippocampus, suggesting that zinc deficiency-induced low levels of TrkB phosphorylation would abrogate the downstream ERK signaling pathway, leading to hippocampal neuronal apoptosis. Most interestingly, our data showed that the activity of Src, a key molecule for zinc-induced TrkB activation through the BDNF-independent pathway, was inhibited significantly, and the expression levels of BDNF were significantly increased in the hippocampus of suckling mice. The present data indicate that zinc depletion-induced hippocampal neuronal apoptosis is likely through modulation of the TrkB neurotrophic signaling pathway by a BDNF-independent and Src-dependent mechanism, whereas higher expression of BDNF is considered as a protective response, which cannot fully compensate for the injury caused by maternal zinc deficiency.
Collapse
Affiliation(s)
- He Xu
- Key Laboratory of Cell Biology of Ministry of Public Health of China, College of Basic Medical Sciences, China Medical University, Shenyang 110001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Kumari D, Nair N, Bedwal RS. Testicular apoptosis after dietary zinc deficiency: Ultrastructural and TUNEL studies. Syst Biol Reprod Med 2011; 57:233-43. [DOI: 10.3109/19396368.2011.584500] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Thambiayya K, Wasserloos KJ, Huang Z, Kagan VE, St Croix CM, Pitt BR. LPS-induced decrease in intracellular labile zinc, [Zn]i, contributes to apoptosis in cultured sheep pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L624-32. [PMID: 21239534 DOI: 10.1152/ajplung.00376.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A role in signal transduction for a vanishingly small labile pool of intracellular zinc ([Zn](i)) has been inferred by the sensitivity of various physiological pathways to zinc chelators such as N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and/or associations with changes in nonprotein-bound zinc-sensitive fluorophores. Although we (44) reported that LPS-induced apoptosis in cultured sheep pulmonary artery endothelial cells (SPAEC) was exacerbated by TPEN, 1) we did not detect acute (30 min) changes in [Zn](i), and 2) it is unclear from other reports whether LPS increases or decreases [Zn](i) and whether elevations or decreases in [Zn](i) are associated with cell death and/or apoptosis. In the present study, we used both chemical (FluoZin-3 via live cell epifluorescence microscopy and fluorescence-activated cell sorting) and genetic (luciferase activity of a chimeric reporter encoding zinc-sensitive metal-response element and changes in steady-state mRNA of zinc importer, SLC39A14 or ZIP14) techniques to show that LPS caused a delayed time-dependent (2-4 h) decrease in [Zn](i) in SPAEC. A contributory role of decreases in [Zn](i) in LPS-induced apoptosis (as determined by caspase-3/7 activation, annexin-V binding, and cytochrome c release) in SPAECs was revealed by mimicking the effect of LPS with the zinc chelator, TPEN, and inhibiting LPS- (or TPEN)-induced apoptosis with exogenous zinc. Collectively, these are the first data demonstrating a signaling role for decrease in [Zn](i) in pulmonary endothelial cells and suggest that endogenous levels of labile zinc may affect sensitivity of pulmonary endothelium to the important and complex proapoptotic stimulus of LPS.
Collapse
Affiliation(s)
- Kalidasan Thambiayya
- Department of Bioengineering, University of Pittsburgh and Universityof Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
13
|
Zinc and reproduction: effects of zinc deficiency on prenatal and early postnatal development. ACTA ACUST UNITED AC 2010; 89:313-25. [DOI: 10.1002/bdrb.20264] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Filipiak M, Bilska E, Tylko G, Pyza E. Effects of zinc on programmed cell death of Musca domestica and Drosophila melanogaster blood cells. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:383-390. [PMID: 19941868 DOI: 10.1016/j.jinsphys.2009.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 05/28/2023]
Abstract
Programmed cell death (PCD) and phagocytotic activity of immune cells play a pivotal role in insect development. We examined the influence of Zn(2+), an important element to fundamental biological processes, on phagocytosis and apoptosis of hemocytes in two fly species: Musca domestica and Drosophila melanogaster. Hemocytes were isolated from the third instar larvae of both species and treated for 3h with zinc chloride solutions, containing 0.35 mM or 1.7 mM of Zn(2+), and untreated as control. Phagocytotic activity of hemocytes was examined by flow cytometry after adding latex fluorescent beads to the medium, while apoptosis was evaluated by application of annexinV-FITC and pan-caspase-FITC inhibitor. Mitochondrial viability was determined by measuring resazurin absorbancy in the cell medium. The obtained results showed that Zn(2+) increases phagocytosis and affects PCD of both species hemocytes but each in a different way. Zinc decreases fraction of annexin-positive hemocytes in M. domestica but increases it in D. melanogaster. The pan-caspase analysis revealed low and high activity of caspases in hemocytes of M. domestica and D. melanogaster, respectively. Zn(2+) also decreased the viability of hemocyte mitochondria but only in D. melanogaster. It suggests that flies use different pathways of PCD, or that Zn plays a different role in this process in M. domestica than in D. melanogaster.
Collapse
Affiliation(s)
- Marta Filipiak
- Department of Cytology and Histology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | | | | | | |
Collapse
|
15
|
Adamo AM, Zago MP, Mackenzie GG, Aimo L, Keen CL, Keenan A, Oteiza PI. The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res 2010; 17:1-14. [PMID: 19784710 PMCID: PMC2797425 DOI: 10.1007/s12640-009-9067-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/13/2009] [Accepted: 05/17/2009] [Indexed: 11/04/2022]
Abstract
Although a requirement of zinc (Zn) for normal brain development is well documented, the extent to which Zn can modulate neuronal proliferation and apoptosis is not clear. Thus, we investigated the role of Zn in the regulation of these two critical events. A low Zn availability leads to decreased cell viability in human neuroblastoma IMR-32 cells and primary cultures of rat cortical neurons. This occurs in part as a consequence of decreased cell proliferation and increased apoptotic cell death. In IMR-32 cells, Zn deficiency led to the inhibition of cell proliferation through the arrest of the cell cycle at the G0/G1 phase. Zn deficiency induced apoptosis in both proliferating and quiescent neuronal cells via the intrinsic apoptotic pathway. Reductions in cellular Zn triggered a translocation of the pro-apoptotic protein Bad to the mitochondria, cytochrome c release, and caspase-3 activation. Apoptosis is the resultant of the inhibition of the prosurvival extracellular-signal-regulated kinase, the inhibition of nuclear factor-kappa B, and associated decreased expression of antiapoptotic proteins, and to a direct activation of caspase-3. A deficit of Zn during critical developmental periods can have persistent effects on brain function secondary to a deregulation of neuronal proliferation and apoptosis.
Collapse
Affiliation(s)
- Ana M Adamo
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Pavlica S, Gebhardt R. Comparison of uptake and neuroprotective potential of seven zinc-salts. Neurochem Int 2009; 56:84-93. [PMID: 19782114 DOI: 10.1016/j.neuint.2009.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 11/15/2022]
Abstract
Zinc plays an important role as an antioxidant in different cells treated with various kinds of oxidative stressors. Although intracellular Zn(2+) is important in many cellular events, little is known about the cellular uptake of this trace metal and the intracellular status that is required for its optimal function. Since previous reports usually employed only one type of zinc-salt, in this work was compared cellular uptake and antioxidative potential of seven zinc-salts in order to discriminate whether different counterions and ligands may influence its function. Oxidative stress was induced by peroxide or iron in neuronal PC12 cells. We compared uptake of zinc-salts into the labile Zn(2+) pool of PC12 cells as well as their effects on the prevention of cell death, glutathione depletion, lipid peroxidation and ROS production. Zinc-salts provided better protection against oxidative stress-induced in PC12 cultures by peroxide than by iron. Preincubations with zinc-salts displayed better neuroprotection in all cases than coincubations. Zinc-histidine complex was shown to be the most potent compound. Our results indicated that protective effect of zinc is not related to its uptake into PC12 cells, what is indicated by the rather low salt concentrations required for the cell protection and by the observation that despite a superior antioxidant effect of zinc-histidine, the uptake of this salt by PC12 cells was remarkably lower in comparison with other zinc-salts. Although zinc-sulfate exerted weak neuroprotective potential, accumulation of Zn(2+) from this salt within cells was significantly higher compared to other salts. The differences in accumulation of zinc-salts were not specific and unique to PC12 cells, since similar results were obtained in rat primary hepatocytes and endothelial HUVEC cells.
Collapse
Affiliation(s)
- Sanja Pavlica
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Leipzig, Germany
| | | |
Collapse
|
17
|
Abstract
Zinc bioinorganic chemistry has emphasized the role of the metal ion on the structure and function of the protein. There is, more recently, an increasing appreciation of the role of zinc proteins in a variety of human diseases. This critical review, aimed at both bioinorganic and medicinal chemists, shows how apparently widely-diverging diseases share the common mechanistic approaches of targeting the essential function of the metal ion to inhibit activity. Protein structure and function is briefly summarized in the context of its clinical relevance. The status of current and potential inhibitors is discussed along with the prospects for future developments (162 references).
Collapse
Affiliation(s)
- A I Anzellotti
- Department of Chemistry, Virginia Commonwealth University, PO Box 842006, Richmond, VA23284, USA
| | | |
Collapse
|
18
|
|
19
|
Simm C, Lahner B, Salt D, LeFurgey A, Ingram P, Yandell B, Eide DJ. Saccharomyces cerevisiae vacuole in zinc storage and intracellular zinc distribution. EUKARYOTIC CELL 2007; 6:1166-77. [PMID: 17526722 PMCID: PMC1951117 DOI: 10.1128/ec.00077-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies of the yeast Saccharomyces cerevisiae indicated that the vacuole is a major site of zinc storage in the cell. However, these studies did not address the absolute level of zinc that was stored in the vacuole nor did they examine the abundances of stored zinc in other compartments of the cell. In this report, we describe an analysis of the cellular distribution of zinc by use of both an organellar fractionation method and an electron probe X-ray microanalysis. With these methods, we determined that zinc levels in the vacuole vary with zinc status and can rise to almost 100 mM zinc (i.e., 7 x 10(8) atoms of vacuolar zinc per cell). Moreover, this zinc can be mobilized effectively to supply the needs of as many as eight generations of progeny cells under zinc starvation conditions. While the Zrc1 and Cot1 zinc transporters are essential for zinc uptake into the vacuole under steady-state growth conditions, additional transporters help mediate zinc uptake into the vacuole during "zinc shock," when zinc-limited cells are resupplied with zinc. In addition, we found that other compartments of the cell do not provide significant stores of zinc. In particular, zinc accumulation in mitochondria is low and is homeostatically regulated independently of vacuolar zinc storage. Finally, we observed a strong correlation between zinc status and the levels of magnesium and phosphorus accumulated in cells. Our results implicate zinc as a major determinant of the ability of the cell to store these other important nutrients.
Collapse
Affiliation(s)
- Claudia Simm
- Department of Nutritional Sciences, 1415 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Zinc/cysteine coordination environments in proteins are redox-active. Oxidation of the sulfur ligands mobilizes zinc, while reduction of the oxidized ligands enhances zinc binding, providing redox control over the availability of zinc ions. Some zinc proteins are redox sensors, in which zinc release is coupled to conformational changes that control varied functions such as enzymatic activity, binding interactions, and molecular chaperone activity. Whereas the released zinc ion in redox sensors has no known function, the redox signal is transduced to specific and sensitive zinc signals in redox transducers. Released zinc can bind to sites on other proteins and modulate signal transduction, generation of metabolic energy, mitochondrial function, and gene expression. The paradigm of such redox transducers is the zinc protein metallothionein, which, together with its apoprotein, thionein, functions at a central node in cellular signaling by redistributing cellular zinc, presiding over the availability of zinc, and interconverting redox and zinc signals. In this regard, the transduction of nitric oxide (NO) signals into zinc signals by metallothionein has received particular attention. It appears that redox-inert zinc has been chosen to control some aspects of cellular thiol/disulfide redox metabolism. Tight control of zinc is essential for redox homeostasis because both increases and decreases of cellular zinc elicit oxidative stress. Depending on its availability, zinc can be cytoprotective as a pro-antioxidant or cytotoxic as a pro-oxidant. Any condition with acute or chronic oxidative stress is expected to perturb zinc homeostasis.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, 77555, USA.
| |
Collapse
|
21
|
Glesne D, Vogt S, Maser J, Legnini D, Huberman E. Regulatory properties and cellular redistribution of zinc during macrophage differentiation of human leukemia cells. J Struct Biol 2006; 155:2-11. [PMID: 16495082 DOI: 10.1016/j.jsb.2005.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/22/2005] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
Many proteins require the binding of trace metals such as Ca, Fe, Cu, or Zn, which may modulate their structure, function, or activity. To determine if there were any overall changes in metalloprotein distribution or metal concentration during the process of macrophage differentiation we induced human myeloid HL-60 leukemia cells with phorbol 12-myristate 13-acetate (PMA) and quantitatively mapped their metal content using hard X-ray fluorescence micro-analysis. We found a transient increase in the zinc content of HL-60 cell nuclei during the early stages of differentiation induction. This finding was confirmed by spectrofluorometry in HL-60 cells and extended to U-937 leukemia cells. A role for protein kinase C-beta (PKC-beta) in this process was established by examining zinc content in an HL-60 variant, HL-525, which is PKC-beta deficient, and in HL-525 cells in which PKC-beta was restored by stable overexpression. Chemical chelation of both Cu and Zn served to inhibit macrophage differentiation in HL-60 cells, indicating a requirement for these metals during this process. Finally, we demonstrate that growth of HL-60 cells in a low-zinc environment removes their susceptibility to PMA-induced differentiation, and that this capacity can be partially restored by the addition of exogenous zinc.
Collapse
Affiliation(s)
- David Glesne
- Biosciences Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439, USA
| | | | | | | | | |
Collapse
|
22
|
Eide DJ. Zinc transporters and the cellular trafficking of zinc. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:711-22. [PMID: 16675045 DOI: 10.1016/j.bbamcr.2006.03.005] [Citation(s) in RCA: 565] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/08/2006] [Accepted: 03/16/2006] [Indexed: 11/19/2022]
Abstract
Zinc is an essential nutrient for all organisms because this metal serves as a catalytic or structural cofactor for many different proteins. Zinc-dependent proteins are found in the cytoplasm and within many organelles of the eukaryotic cell including the nucleus, the endoplasmic reticulum, Golgi, secretory vesicles, and mitochondria. Thus, cells require zinc transport mechanisms to allow cells to efficiently accumulate the metal ion and distribute it within the cell. Our current knowledge of these transport systems in eukaryotes is the focus of this review.
Collapse
Affiliation(s)
- David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Room 340B, Madison, WI 53706-1571, USA.
| |
Collapse
|
23
|
Abstract
Zinc deficiency is characterized by an attenuation of growth factor signaling pathways and an amplification of p53 pathways. This outcome is facilitated by hypo-phosphorylation of AKT and ERK secondary to zinc deficiency, which are permissive events to the activation of the intrinsic cell death pathway. Low zinc concentrations provide an environment that is also conducive to the production of reactive oxygen/reactive nitrogen species (ROS/RNS) and caspase activation. Additionally, during zinc deficiency endogenous survival pathways such as NF-kappaB are inhibited in their transactivation potential. The above factors contribute to the irreversible commitment of the zinc deficient cell to death.
Collapse
Affiliation(s)
- Michael S Clegg
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
24
|
Isarankura-Na-Ayudhya C, Suwanwong Y, Boonpangrak S, Kiatfuengfoo R, Prachayasittikul V. Co-expression of zinc binding motif and GFP as a cellular indicator of metal ions mobility. Int J Biol Sci 2005; 1:146-51. [PMID: 18167569 PMCID: PMC1345397 DOI: 10.7150/ijbs.1.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 11/21/2005] [Indexed: 11/06/2022] Open
Abstract
A significant role of zinc-binding motifs on metal mobility in Escherichia coli was explored using a chimeric metal-binding green fluorescent protein (GFP) as an intracellular zinc indicator. Investigation was initiated by co-transformation and co-expression of two chimeric genes encoding the chimeric GFP carrying hexahistidine (His6GFP) and the zinc-binding motif fused to outer membrane protein A (OmpA) in E. coli strain TG1. The presence of these two genes was confirmed by restriction endonucleases analysis. Co-expression of the two recombinant proteins exhibited cellular fluorescence activity and enhanced metal-binding capability of the engineered cells. Incorporation of the zinc-binding motif onto the membrane resulted in 60-fold more binding capability to zinc ions than those of the control cells. The high affinity to metal ions of the bacterial surface influenced influx of metal ions to the cells. This may affect the essential ions for triggering important cell metabolism. A declining of fluorescent intensity of GFP has been detected on the cell expressed of zinc binding motif. Meanwhile, balancing of metal homeostasis due to the presence of cytoplasmic chimeric His6GFP enhanced the fluorescent emission. These findings provide the first evidence of real-time monitoring of intracellular mobility of zinc by autofluorescent proteins.
Collapse
|
25
|
Zago MP, Mackenzie GG, Adamo AM, Keen CL, Oteiza PI. Differential modulation of MAP kinases by zinc deficiency in IMR-32 cells: role of H(2)O(2). Antioxid Redox Signal 2005; 7:1773-82. [PMID: 16356139 DOI: 10.1089/ars.2005.7.1773] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The influence of zinc deficiency on the modulation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK) was studied. Using human IMR-32 cells as a model of neuronal cells, the role of oxidants on MAPKs and activator protein-1 (AP-1) activation in zinc deficiency was investigated, characterizing the participation of these events in the triggering of apoptosis. Relative to controls, cells incubated in media with low zinc concentrations showed increased cell oxidants and hydrogen peroxide (H(2)O(2)) release, increased JNK and p38 activation, high nuclear AP-1-DNA binding activity, and AP-1-dependent gene expression. Catalase addition to the media prevented the increase of cellular oxidants and inhibited JNK, p38, and AP-1 activation. Low levels of ERK1/2 phosphorylation were observed in the zinc-deficient cells in association with a reduction in cell proliferation. Catalase treatment did not prevent the above events nor the increased rate of apoptosis in the zinc-deficient cells. It is first demonstrated that a decrease in cellular zinc triggers H(2)O(2)-independent, as well as H(2)O(2)-dependent effects on MAPKs. Zinc deficiency-induced increases in cellular H(2)O(2) can trigger the activation of JNK and p38, leading to AP-1 activation, events that are not involved in zinc deficiency-induced apoptosis.
Collapse
|
26
|
Chou S, Clegg M, Momma T, Niles B, Duffy J, Daston G, Keen C. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death. Biochem J 2005; 383:63-71. [PMID: 15198639 PMCID: PMC1134044 DOI: 10.1042/bj20040074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 06/10/2004] [Accepted: 06/15/2004] [Indexed: 11/17/2022]
Abstract
Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.
Collapse
Affiliation(s)
- Susan S. Chou
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
| | - Michael S. Clegg
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
| | - Tony Y. Momma
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
| | - Brad J. Niles
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
| | - Jodie Y. Duffy
- †Division of Pediatric Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, U.S.A
| | - George P. Daston
- ‡Procter and Gamble Company, Miami Valley Laboratories, Cincinnati, OH 45239-8707, U.S.A
| | - Carl L. Keen
- *Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
- §Department of Internal Medicine, University of California, One Shields Avenue, Davis, CA 95616-8669, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Verstraeten SV, Zago MP, MacKenzie GG, Keen CL, Oteiza PI. Influence of zinc deficiency on cell-membrane fluidity in Jurkat, 3T3 and IMR-32 cells. Biochem J 2004; 378:579-87. [PMID: 14629198 PMCID: PMC1223981 DOI: 10.1042/bj20031054] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 11/14/2003] [Accepted: 11/20/2003] [Indexed: 01/28/2023]
Abstract
We investigated whether zinc deficiency can affect plasma membrane rheology. Three cell lines, human leukaemia T-cells (Jurkat), rat fibroblasts (3T3) and human neuroblastoma cells (IMR-32), were cultured for 48 h in control medium, in zinc-deficient medium (1.5 microM zinc; 1.5 Zn), or in the zinc-deficient medium supplemented with 15 microM zinc (15 Zn). The number of viable cells was lower in the 1.5 Zn group than in the control and 15 Zn groups. The frequency of apoptosis was higher in the 1.5 Zn group than in the control and 15 Zn groups. Membrane fluidity was evaluated using the 6-(9-anthroyloxy)stearic acid and 16-(9-anthroyloxy)palmitic acid probes. Membrane fluidity was higher in 1.5 Zn cells than in the control cells; no differences were observed between control cells and 15 Zn cells. The effect of zinc deficiency on membrane fluidity at the water/lipid interface was associated with a higher phosphatidylserine externalization. The higher membrane fluidity in the hydrophobic region of the bilayer was correlated with a lower content of arachidonic acid. We suggest that the increased fluidity of the membrane secondary to zinc deficiency is in part due to a decrease in arachidonic acid content and the apoptosis-related changes in phosphatidylserine distribution.
Collapse
Affiliation(s)
- Sandra V Verstraeten
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
28
|
Ganju N, Eastman A. Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Differ 2003; 10:652-61. [PMID: 12761574 DOI: 10.1038/sj.cdd.4401234] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Zinc has been known for many years to inhibit apoptosis but the mechanism remains unclear. Originally thought to inhibit an apoptotic endonuclease, zinc has subsequently been shown to inhibit steps earlier in the pathway. Since many additional steps in apoptosis have now been defined, we have re-evaluated the steps inhibited by zinc. In response to activation of the chemical-mediated death pathway by anisomycin, 0.3 mM zinc inhibited Bax and Bak activation, cytochrome c release, and all of the subsequent steps in apoptosis. In the receptor-mediated death pathway initiated by Fas or tumor necrosis factor, 3 mM zinc was required to inhibit apoptosis as judged by inhibition of caspase 3 activity and DNA digestion, but it failed to inhibit cytochrome c release, activation of Bax and Bak, or upstream signaling events in this pathway. These results are consistent with zinc selectively inhibiting activation of BH3-only proteins required in the chemical pathway but inhibiting downstream caspase activation in the death-receptor pathway.
Collapse
Affiliation(s)
- N Ganju
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
29
|
Hanna LA, Clegg MS, Momma TY, Daston GP, Rogers JM, Keen CL. Zinc influences the in vitro development of peri-implantation mouse embryos. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2003; 67:414-20. [PMID: 12962285 DOI: 10.1002/bdra.10046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND For humans, it is estimated that over 70% of concepti are lost during early development. In culture, mouse peri-implantation embryos can mimic development from the blastocyst to the egg cylinder stage of development, a period during which implantation occurs in vivo. We describe a novel application of this model to investigate nutritional factors that may influence this stage of development. We investigated the influence of zinc (Zn) deficiency on embryonic development at the time of embryo implantation. METHODS Mouse blastocysts were cultured for 144 hr in low Zn, Zn-replete or control medium. RESULTS Embryos developed normally when they were cultured in the control and Zn-replete media. Embryos cultured in the low Zn medium were significantly impaired in forming egg cylinder morphology. This was associated with a reduction in extraembryonic endoderm as determined by immunohistochemistry for markers of visceral and parietal endoderm and correlated with an increase in TUNEL positive cells in the low Zn group. There was no change in the frequency of cells positive for phosphorylated Histone H3, a marker for S-phase, indicating that an increase in apoptosis was primarily responsible for the smaller size and reduction in extraembryonic endoderm. The increased cell death was not associated with an increase in reactive oxygen species (ROS) detected by dichlorodihydrofluorescein staining. CONCLUSIONS These data support an important role for Zn in promoting differentiation and cell survival in the early embryo and suggest that sub-optimal nutrition is an important factor that contributes to defects in primary germ layers and early embryonic loss.
Collapse
Affiliation(s)
- Lynn A Hanna
- Department of Nutrition, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
30
|
Keen CL, Hanna LA, Lanoue L, Uriu-Adams JY, Rucker RB, Clegg MS. Developmental consequences of trace mineral deficiencies in rodents: acute and long-term effects. J Nutr 2003; 133:1477S-80S. [PMID: 12730447 DOI: 10.1093/jn/133.5.1477s] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Approximately 3% of infants born have at least one serious congenital malformation. In the U.S., an average of 10 infants per thousand die before 1 y of life; about half of these deaths can be attributed to birth defects, low birth weight or prematurity. Although the causes of developmental abnormalities are clearly multifactorial in nature, we suggest that a common factor contributing to the occurrence of developmental abnormalities is suboptimal mineral nutrition during embryonic and fetal development. Using zinc and copper as examples, evidence is presented that nutritional deficiencies can rapidly affect the developing conceptus and result in gross structural abnormalities. Deficits of zinc or copper can result in rapid changes in cellular redox balance, tissue oxidative stress, inappropriate patterns of cell death, alterations in the migration of neural crest cells and changes in the expression of key patterning genes. In addition to well-recognized malformations, mineral deficiencies during perinatal development can result in behavioral, immunological and biochemical abnormalities that persist into adulthood. Although these persistent defects can in part be attributed to subtle morphological abnormalities, in other cases they may be secondary to epigenetic or developmental changes in DNA methylation patterns. Epigenetic defects combined with subtle morphological abnormalities can influence an individual's risk for certain chronic diseases and thus influence his or her risk for morbidity and mortality later in life.
Collapse
Affiliation(s)
- Carl L Keen
- Department of Nutrition, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Mackenzie GG, Keen CL, Oteiza PI. Zinc status of human IMR-32 neuroblastoma cells influences their susceptibility to iron-induced oxidative stress. Dev Neurosci 2003; 24:125-33. [PMID: 12401950 DOI: 10.1159/000065691] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The current work tested the hypothesis that the zinc status of a cell influences its sensitivity to iron-induced oxidative stress. Human IMR-32 neuroblastoma cells were cultured for 24 h in nonchelated control media (5 microM zinc; 4.5 microM iron), or in media that was treated with DTPA to reduce its zinc content (chelated media). Chelated media was supplemented with zinc to achieve concentrations of 1.5-50 microM Zn. The media was then replaced with serum-free complex media (0.9 microM Zn) with either no added iron (0.6 microM Fe), or iron (FeCl(3)) added at concentrations ranging from 15 to 100 microM. Cells were cultured for an additional 3- to 24-hour period. Over the 24-hour period, cells cultured in the control iron media had good viability, and they displayed the gross morphology typical of these cells in culture. With 100 microM iron, cell viability was low in all groups. After 24 h and at iron concentrations between 15-50 microM, cells that had been cultured in the low zinc-chelated media (1.5 microM Zn) showed a concentration-dependent increase in 5 (or 6)-carboxy-2'7'-dichlorodihydrofluorescein diacetate (DCDCDHF) fluorescence (oxidative stress) and decrease in cell viability. A positive correlation between both parameters was observed (r = 0.92). These cells had altered morphology and high level of nucleosomes suggestive of cell death by apoptosis. These results support the concept that the zinc status of IMR-32 neuroblastoma cells modulates their sensitivity to iron overload.
Collapse
Affiliation(s)
- Gerardo G Mackenzie
- Department of Biological Chemistry-IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | | |
Collapse
|