1
|
Lee HA, Song BR, Kim HR, Kim JE, Yun WB, Park JJ, Lee ML, Choi JY, Lee HS, Hwang DY. Butanol extracts of Asparagus cochinchinensis fermented with Weissella cibaria inhibit iNOS-mediated COX-2 induction pathway and inflammatory cytokines in LPS-stimulated RAW264.7 macrophage cells. Exp Ther Med 2017; 14:4986-4994. [PMID: 29201203 PMCID: PMC5704323 DOI: 10.3892/etm.2017.5200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022] Open
Abstract
Roots of Asparagus cochinchinesis have been widely used to treat fever, cough, kidney disease, breast cancer, inflammatory and brain disease, although the effects of their fermented products have not been assessed until now. To investigate the anti-inflammatory effects on macrophages of a butanol extract from A. cochinchinensis roots fermented with Weissella cibaria (BAW), alterations in the inducible nitric oxide synthase (iNOS)-mediated cyclooxygenase-2 (COX-2) induction pathway and inflammatory cytokine expression were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following pretreatment with BAW. Briefly, W. cibaria was selected from two bacterial strains for the fermentation of A. cochinchinensis roots based on its hyaluronidase inhibition and NO suppression rates. Following fermentation with W. cibaria, the level of various key components including total phenols and protodioscin were significantly enhanced in BAW. In addition, BAW exhibited high free radical scavenging activity (IC50=31.62 µg/ml) and induced a decrease of intracellular ROS production in RAW264.7 cells following DCFH-DA staining. Significant suppressions in the expression level of important members of the iNOS-mediated COX-2 induction pathway and the phosphorylation of mitogen-activated protein kinase members were detected. The expressions of pro-inflammatory and anti-inflammatory cytokines were recovered in BAW pretreated RAW264.7 cells. Overall, these results suggest that BAW may suppress inflammatory responses through differential regulation of the iNOS-mediated COX-2 induction pathway and inflammatory cytokine expressions in LPS-activated RAW264.7 cells.
Collapse
Affiliation(s)
- Hyun Ah Lee
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Bo Ram Song
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Hye Ryeong Kim
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Woo Bin Yun
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Jin Ju Park
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Mi Lim Lee
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Jun Young Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Hee Seob Lee
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan 609-735, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| |
Collapse
|
2
|
Overturf MD, Anderson JC, Pandelides Z, Beyger L, Holdway DA. Pharmaceuticals and personal care products: A critical review of the impacts on fish reproduction. Crit Rev Toxicol 2015; 45:469-91. [PMID: 25945515 DOI: 10.3109/10408444.2015.1038499] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research in environmental toxicology involving pharmaceuticals and personal care products (PPCPs) has increased greatly over the last 10-15 years. Much research has been focused on the endocrine-disrupting potential of PPCPs, as they relate to negative population impacts of aquatic organisms. This review assesses the current data on the reported effects of PPCPs on fish reproduction with an emphasis on fecundity, a predictor of population effects. Studies of both individual PPCPs and PPCP mixtures are presented. As the majority of individual PPCP studies reviewed demonstrate negative effects on fish fecundity, we relate these findings to detected surface water concentrations of these compounds. Very few studies involving PPCP mixtures have been conducted; however, the need for these types of studies is warranted as fish are most likely exposed to mixtures of PPCPs in the wild. In addition, laboratory and field assessments of wastewater treatment plant (WWTP) effluents, a major source of PPCPs, are reviewed. Much of the data provided from these assessments are variable and do not generally demonstrate negative impacts on reproduction, or the studies are unable to directly associate observed effects with WWTP effluents. Finally, future research considerations are outlined to provide an avenue into understanding how wild populations of fish are affected by PPCPs. These considerations are aimed at determining the adaptation potential of fish exposed to mixtures of PPCPs over multiple generations. As global use of PPCPs continually rises, the need to discern the effects of chronic exposure to PPCPs is greatly increased.
Collapse
Affiliation(s)
- Matthew D Overturf
- Faculty of Science, University of Ontario Institute of Technology , Oshawa, ON , Canada
| | | | | | | | | |
Collapse
|
3
|
Bachiega TF, Orsatti CL, Pagliarone AC, Sforcin JM. The effects of propolis and its isolated compounds on cytokine production by murine macrophages. Phytother Res 2012; 26:1308-13. [PMID: 22275284 DOI: 10.1002/ptr.3731] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 11/14/2011] [Indexed: 02/04/2023]
Abstract
Since propolis and phenolic compounds, such as cinnamic and coumaric acids, have several biological properties, their immunomodulatory effect on cytokine production (IL-1β, IL-6 and IL-10) was investigated. Peritoneal macrophages from BALB/c mice were incubated with propolis, coumaric and cinnamic acids in different concentrations and the concentrations that inhibited cytokine production were tested before or after macrophage challenge with LPS, to evaluate a possible immunomodulatory action. Propolis and the acids stimulated IL-1β production, while IL-6 production was significantly inhibited after incubation with propolis (5, 50 and 100 µg/well), coumaric and cinnamic acids (50 and 100 µg/well). In LPS-challenge protocols, inhibitory concentrations of cinnamic and coumaric acids after LPS incubation prevented efficiently its effects on IL-6 production, whereas propolis inhibited LPS effects both before and after its addition. Propolis, coumaric and cinnamic acids (50 and 100 µg/well) inhibited IL-10 production as well. Both acids showed a similar inhibitory activity on IL-10 production when added after LPS challenge, while propolis counteracted LPS action when added before and after LPS incubation. Propolis modulated the immune/inflammatory response, depending on the concentration. Its efficiency may occur due to the synergistic effect of its compounds, and cinnamic and coumaric acids may be involved in the action of propolis on cytokine production.
Collapse
Affiliation(s)
- T F Bachiega
- Department of Microbiology and Immunology, Biosciences Institute, UNESP, Botucatu, SP 18618-970, Brazil
| | | | | | | |
Collapse
|
4
|
Mesquita AR, Wegerich Y, Patchev AV, Oliveira M, Leão P, Sousa N, Almeida OFX. Glucocorticoids and neuro- and behavioural development. Semin Fetal Neonatal Med 2009; 14:130-5. [PMID: 19084485 DOI: 10.1016/j.siny.2008.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Epidemiological evidence links exposure to stress hormones during fetal or early postnatal development with lifetime prevalence of cardiac, metabolic, auto-immune, neurological and psychiatric disorders. This has led to the concept of 'developmental programming through stress'. Importantly, these effects (specifically, hypertension, hyperglycaemia and neurodevelopmental and behavioural abnormalities) can be reproduced by exposure to high glucocorticoid levels, indicating a crucial role of glucocorticoids in their causation. However, there can be important differences in outcome, depending on the exact time of exposure, as well as duration and receptor selectivity of the glucocorticoid applied. The mechanisms underlying programming by stress are still unclear but it appears that these environmental perturbations exploit epigenetic modifications of DNA and/or histones to induce stable modifications of gene expression. Programming of neuro- and behavioural development by glucocorticoids and stress are important determinants of lifetime health and should be a consideration when choosing treatments in obstetric and neonatal medicine.
Collapse
Affiliation(s)
- Ana Raquel Mesquita
- Life & Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
5
|
Oster H, Damerow S, Kiessling S, Jakubcakova V, Abraham D, Tian J, Hoffmann MW, Eichele G. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab 2006; 4:163-73. [PMID: 16890544 DOI: 10.1016/j.cmet.2006.07.002] [Citation(s) in RCA: 376] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 05/26/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
In mammals, the master clock of the suprachiasmatic nuclei (SCN) and subordinate clocks found throughout the body coordinate circadian rhythms of behavior and physiology. We characterize the clock of the adrenal, an important endocrine gland that synchronizes physiological and metabolic rhythms. Clock gene expression was detected in the outer adrenal cortex prefiguring a role of the clock in regulating gluco- and mineral corticoid biogenesis. In Per2/Cry1 double mutant mice, which lack a circadian clock, hypothalamus/pituitary/adrenal axis regulation was defective. Organ culture and tissue transplantation suggest that the adrenal pacemaker gates glucocorticoid production in response to adrenocorticotropin (ACTH). In vivo the adrenal circadian clock can be entrained by light. Transcriptome profiling identified rhythmically expressed genes located at diverse nodes of steroid biogenesis that may mediate gating of the ACTH response by the adrenal clock.
Collapse
Affiliation(s)
- Henrik Oster
- Max Planck Institute of Biophysical Chemistry, Goettingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Liu YW, Gao W, Teh HL, Tan JH, Chan WK. Prox1 is a novel coregulator of Ff1b and is involved in the embryonic development of the zebra fish interrenal primordium. Mol Cell Biol 2003; 23:7243-55. [PMID: 14517294 PMCID: PMC230334 DOI: 10.1128/mcb.23.20.7243-7255.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic factor 1 (SF-1) plays an essential role in adrenal development, although the exact molecular mechanisms are unclear. Our previous work established that Ff1b is the zebra fish homologue of SF-1 and that its disruption by antisense morpholinos leads to a complete ablation of the interrenal organ. In this study, results of biochemical analyses suggest that Ff1b and other Ff1 members interact with Prox1, a homeodomain protein. Fine mapping using site-directed mutants showed that this interaction requires an intact Ff1b heptad 9 and AF2, as well as Prox1 NR Box I. In vivo, this physical interaction led to the inhibition of Ff1-mediated transactivation of pLuc3XFRE, indicating that Prox1 acts to repress the transcriptional activity of Ff1b. In situ hybridization demonstrates that prox1 colocalizes with ff1a and ff1b in the liver and interrenal primordia, respectively. Embryos microinjected with prox1 morpholino displayed a consistent partial reduction of 3 eta-Hsd activity in the interrenal organ, while ff1b morpholino led to a disappearance of prox1. Based on these results, we propose that during the course of interrenal organogenesis, Prox1 functions as a tissue-specific coregulator of Ff1b and that the subsequent inhibition of Ff1b activity, after its initial roles in the specification of interrenal primordium, is critical for the maturation of the interrenal organ.
Collapse
Affiliation(s)
- Yi-Wen Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | | | | | | | | |
Collapse
|
7
|
Abstract
DAX1 encoded by NR0B1, when mutated, is responsible for X-linked adrenal hypoplasia congenita (AHC). AHC is due to failure of the adrenal cortex to develop normally and is fatal if untreated. When duplicated, this gene is associated with an XY sex-reversed phenotype. DAX1 expression is present during development of the steroidogenic hypothalamic-pituitary-adrenal-gonadal (HPAG) axis and persists into adult life. Despite recognition of the crucial role for DAX1, its function remains largely undefined. The phenotypes of patients and animal models are complex and not always in agreement. Investigations using cell lines have proved difficult to interpret, possibly reflecting cell line choices and their limited characterization. We will review the efforts of our group and others to identify appropriate cell lines for optimizing ex vivo analysis of NR0B1 function throughout development. We will examine the role of DAX1 and its network partners in development of the hypothalamic-pituitary-adrenal/gonadal axis (HPAG) using a variety of different types of investigations, including those in model organisms. This network analysis will help us to understand normal and abnormal development of the HPAG. In addition, these studies permit identification of candidate genes for human inborn errors of HPAG development.
Collapse
|
8
|
Chai C, Liu YW, Chan WK. Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Dev Biol 2003; 260:226-44. [PMID: 12885566 DOI: 10.1016/s0012-1606(03)00219-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The zebrafish ftz-f1 gene, ff1b, is activated in two cell clusters lateral to the midline in the trunk during late embryogenesis. These cell clusters coalesce to form a discrete organ at around 30 hpf, which then begins to acquire a steroidogenic identity as evidenced by the expression of the steroidogenic enzyme genes, cyp11a and 3beta-hsd. The migration of the cell clusters to the midline is impaired in zebrafish midline signaling mutants. Knockdown of Ff1b activity by antisense ff1b morpholino oligonucleotide (ff1bMO) leads to phenotypes that are consistent with impaired osmoregulation. Injection of ff1bMO was also shown to downregulate the expression of cyp11a and 3beta-hsd. Histological comparison of wild-type and ff1b morphants at various embryonic and juvenile stages revealed the absence of interrenal tissue development in ff1b morphants. The morphological defects of ff1b morphants could be mimicked by treatment with aminoglutethimide, an inhibitor of de novo steroid synthesis. Based on these data, we propose that ff1b is required for the development of the steroidogenic tissue of the interrenal organ.
Collapse
Affiliation(s)
- Chou Chai
- Institute of Molecular Agrobiology, 1 Research Link, 117604, Singapore
| | | | | |
Collapse
|
9
|
Koch CA, Pacak K, Chrousos GP. The molecular pathogenesis of hereditary and sporadic adrenocortical and adrenomedullary tumors. J Clin Endocrinol Metab 2002; 87:5367-84. [PMID: 12466322 DOI: 10.1210/jc.2002-021069] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modern imaging modalities lead to frequent detection of adrenal masses, most of them incidental findings. Although the majority of adrenocortical and adrenomedullary tumors are benign, there are no reliable clinical and laboratory markers to distinguish most of them from malignant neoplasms. The molecular mechanisms underlying the pathogenesis of these tumors have recently begun to be unraveled. A fruitful avenue for the elucidation of tumorigenesis has been the study of adrenal tumors that are manifestations of hereditary or postzygotic genetic syndromes, because one knows the "first hit", i.e. the primary gene defect. In contrast, in sporadic adrenal tumors the first hit, possibly a somatic mutation of a tumor-related gene, is unknown, and therefore the sequence of genetic alterations is difficult to establish. In this article we review in addition to our own work the literature on molecular aspects of adrenocortical and adrenomedullary tumorigenesis.
Collapse
Affiliation(s)
- Christian A Koch
- Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
10
|
Clipsham R, Zhang YH, Huang BL, McCabe ERB. Genetic network identification by high density, multiplexed reversed transcriptional (HD-MRT) analysis in steroidogenic axis model cell lines. Mol Genet Metab 2002; 77:159-78. [PMID: 12359144 DOI: 10.1016/s1096-7192(02)00119-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcriptional network analysis in steroidogenic axis cell lines requires an understanding of cellular network composition and complexity. Previous studies have shown that absence of transcriptional network components in a cell line compromises that cell line's functional capacity for transcriptional regulation. Our goal was to analyze qualitatively steroidogenic axis-derived cell lines' expression of a putative transcriptional network involved in human and mouse development. To pursue this analysis we used Northern blots and a high density-multiplexed reverse transcription-polymerase chain reaction (HD-MRT-PCR) approach. Our results revealed that, while some members of this putative network were universally expressed, only a minority of the non-constitutive targeted transcripts were present in any single line. Based on our data and previously published results for contextual expression of these transcription factors, a model was constructed possessing the topology suggestive of a scale-free network: certain network members were highly connected nodes and would represent critical sites of vulnerability. The importance of these highly connected nodes for network function is supported by the severe phenotypes exhibited by human patients and animal models when these genes are mutated. We conclude that knowledge of network composition in specific cell lines is essential for their use as models to investigate functional interactions within selected subnetworks.
Collapse
Affiliation(s)
- R Clipsham
- UCLA Molecular Biology Institute, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Adrenocortical carcinoma is a rare tumor that carries a very poor prognosis. Despite efforts to develop new therapeutic regimens to treat this disease, surgery remains the mainstay of treatment. Laboratory studies of adrenocortical cancers have revealed a wide variety of signaling pathways that can be altered in these neoplasms. Although ACTH signaling through adenylyl cyclase and protein kinase A is important for normal adrenal cellular physiology, there is evidence to suggest that this pathway may inhibit the growth of adrenocortical tumors, and that inactivation of the ACTH receptor may promote tumor formation. Although multiple signal transduction pathways are essential for normal adrenal growth and hormone secretion, efforts to identify events required for neoplastic transformation have met with limited success. Alterations that have frequently been observed in adrenocortical carcinoma include up-regulation of the IGF-II system, as well as mutations in TP53 and RAS. Current studies aim to elucidate the mechanisms of tumor growth by studying proproliferative signaling pathways, such as those involving Akt/PKB and the mitogen-activated protein kinases (MAPKs). Although studies of single pathways have been helpful in guiding investigations, new tools to study the integration and multiplicity of signaling pathways hold the hope of improved understanding of the signaling pathway alterations in adrenocortical cancer.
Collapse
Affiliation(s)
- Lawrence S Kirschner
- Unit on Genetics and Endocrinology, DEB, NICHD, National Instutes of Health, Bethesda, Maryland 20892-1862, USA
| |
Collapse
|