1
|
Wei X, Xi P, Chen M, Wen Y, Wu H, Wang L, Zhu Y, Ren Y, Gu Z. Capsule robots for the monitoring, diagnosis, and treatment of intestinal diseases. Mater Today Bio 2024; 29:101294. [PMID: 39483392 PMCID: PMC11525164 DOI: 10.1016/j.mtbio.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
Current evidence suggests that the intestine as the new frontier for human health directly impacts both our physical and mental health. Therefore, it is highly desirable to develop the intelligent tool for the enhanced diagnosis and treatment of intestinal diseases. During the past 20 years, capsule robots have opened new avenues for research and clinical applications, potentially revolutionizing human health monitor, disease diagnosis and treatment. In this review, we summarize the research progress of edible multifunctional capsule robots in intestinal diseases. To begin, we introduce the correlation between the intestinal microbiome, intestinal gas and human diseases. After that, we focus on the technical structure of edible multifunctional robots. Subsequently, the biomedical applications in the monitoring, diagnosis and treatment of intestinal diseases are discussed in detail. Last but not least, the main challenges of multifunctional capsule robots during the development process are summarized, followed by a vision for future development opportunities.
Collapse
Affiliation(s)
- Xiangyu Wei
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Peipei Xi
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Minjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ya Wen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hao Wu
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yujuan Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yile Ren
- Department of Rheumatology, Affiliated Municipal Hospital of Xuzhou Medical University, Xuzhou, 221100, China
| | - Zhifeng Gu
- Department of Rheumatology, Research Center of Immunology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| |
Collapse
|
2
|
Hoffmann SV, O'Shea JP, Galvin P, Jannin V, Griffin BT. State-of-the-art and future perspectives in ingestible remotely controlled smart capsules for drug delivery: A GENEGUT review. Eur J Pharm Sci 2024; 203:106911. [PMID: 39293502 DOI: 10.1016/j.ejps.2024.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
An emerging concern globally, particularly in developed countries, is the rising prevalence of Inflammatory Bowel Disease (IBD), such as Crohn's disease. Oral delivery technologies that can release the active therapeutic cargo specifically at selected sites of inflammation offer great promise to maximise treatment outcomes and minimise off-target effects. Therapeutic strategies for IBD have expanded in recent years, with an increasing focus on biologic and nucleic acid-based therapies. Reliable site-specific delivery in the gastrointestinal (GI) tract is particularly crucial for these therapeutics to ensure sufficient concentrations in the targeted cells. Ingestible smart capsules hold great potential for precise drug delivery. Despite previous unsuccessful endeavours to commercialise drug delivery smart capsules, the current rise in demand and recent advancements in component development, manufacturing, and miniaturisation have reignited interest in ingestible devices. Consequently, this review analyses the advancements in various mechanical and electrical components associated with ingestible smart drug delivery capsules. These components include modules for device localisation, actuation and retention within the GI tract, signal transmission, drug release, power supply, and payload storage. Challenges and constraints associated with previous capsule design functionality are presented, followed by a critical outlook on future design considerations to ensure efficient and reliable site-specific delivery for the local treatment of GI disorders.
Collapse
Affiliation(s)
- Sophia V Hoffmann
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Joseph P O'Shea
- School of Pharmacy, University College Cork, College Road, Cork, Ireland
| | - Paul Galvin
- Tyndall National Institute, University College Cork, Cork T12R5CP, Ireland
| | | | - Brendan T Griffin
- School of Pharmacy, University College Cork, College Road, Cork, Ireland.
| |
Collapse
|
3
|
Ho AHY, Lui RN. The current and future clinical applications of capsule endoscopy. J Gastroenterol Hepatol 2024; 39:28-33. [PMID: 38238541 DOI: 10.1111/jgh.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Affiliation(s)
- Agnes H Y Ho
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rashid N Lui
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Jadhav H, Augustijns P, Tannergren C. Approaches to Account for Colon Absorption in Physiologically Based Biopharmaceutics Modeling of Extended-Release Drug Products. Mol Pharm 2023; 20:6272-6288. [PMID: 37902586 DOI: 10.1021/acs.molpharmaceut.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The rate and extent of colon absorption are important determinants of the in vivo performance of extended-release (ER) drug products. The ability to appropriately predict this at different stages of development using mechanistic physiologically based biopharmaceutic modeling (PBBM) is highly desirable. This investigation aimed to evaluate the prediction performance of three different approaches to account for colon absorption in predictions of the in vivo performance of ER drug product variants with different in vitro release profiles. This was done by mechanistic predictions of the absorption and plasma exposure of the ER drug products using GastroPlus and GI-Sim for five drugs with different degrees of colon absorption limitations in humans. Colon absorption was accounted for in the predictions using three different approaches: (1) by an a priori approach using the default colon models, (2) by fitting the colon absorption scaling factors to the observed plasma concentration-time profiles after direct administration to the colon in humans, or (3) from the ER drug product variant with the slowest in vitro release profile. The prediction performance was evaluated based on the percentage prediction error and the average absolute prediction error (AAPE). Two levels of acceptance criteria corresponding to highly accurate (AAPE ≤ 20%) and accurate (AAPE 20-50%) predictions were defined prior to the evaluation. For the a priori approach, the relative bioavailability (Frel), AUC0-t, and Cmax of the ER drug product variants for the low to medium colon absorption limitation risk drugs was accurately predicted with an AAPE range of 11-53 and 8-59% for GastroPlus and GI-Sim, respectively. However, the prediction performance was poor for the high colon absorption limitation risk drugs. Moreover, accounting for the human regional colon absorption data in the models did not improve the prediction performance. In contrast, using the colon absorption scaling factors derived from the slowest ER variant significantly improved the prediction performance regardless of colon absorption limitation, with a majority of the predictions meeting the high accuracy criteria. For the slowest ER approach, the AAPE ranges were 5-24 and 5-32% for GastroPlus and GI-Sim, respectively, excluding the low permeability drug. In conclusion, the a priori PBBM can be used during candidate selection and early product design to predict the in vivo performance of ER drug products for low to medium colon absorption limitation risk drugs with sufficient accuracy. The results also indicate a limited value in performing human regional absorption studies in which the drug is administered to the colon as a bolus to support PBBM development for ER drug products. Instead, by performing an early streamlined relative bioavailability study with the slowest relevant ER in vitro release profile, a highly accurate PBBM suitable for ER predictions for commercial and regulatory applications can be developed, except for permeability-limited drugs.
Collapse
Affiliation(s)
- Harshad Jadhav
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, S-431 83 Mölndal, Sweden
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49, 3000 Leuven, Belgium
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, ON2 Herestraat 49, 3000 Leuven, Belgium
| | - Christer Tannergren
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, S-431 83 Mölndal, Sweden
| |
Collapse
|
5
|
Cortegoso Valdivia P, Robertson AR, De Boer NKH, Marlicz W, Koulaouzidis A. An Overview of Robotic Capsules for Drug Delivery to the Gastrointestinal Tract. J Clin Med 2021; 10:5791. [PMID: 34945087 PMCID: PMC8707371 DOI: 10.3390/jcm10245791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
The introduction of capsule endoscopy two decades ago marked the beginning of the "small bowel revolution". Since then, the rapid evolution of microtechnology has allowed the development of drug delivery systems (DDS) designed to address some of the needs that are not met by standard drug delivery. To overcome the complex anatomy and physiology of the gastrointestinal (GI) tract, several DDS have been developed, including many prototypes being designed, built and eventually produced with ingenious drug-release mechanisms and anchoring systems allowing targeted therapy. This review highlights the currently available systems for drug delivery in the GI tract and discusses the needs, limitations, and future considerations of these technologies.
Collapse
Affiliation(s)
- Pablo Cortegoso Valdivia
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, University of Parma, 43121 Parma, Italy;
| | | | - Nanne K. H. De Boer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centre, AGEM Research Institute, VU University, 1105 AZ Amsterdam, The Netherlands;
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Anastasios Koulaouzidis
- Department of Public Health and Social Medicine, Pomeranian Medical University, 70-204 Szczecin, Poland
- AJM Med-i-Caps Ltd., Nicosia 2020, Cyprus
| |
Collapse
|
6
|
Nigusse B, Gebre-Mariam T, Belete A. Design, development and optimization of sustained release floating, bioadhesive and swellable matrix tablet of ranitidine hydrochloride. PLoS One 2021; 16:e0253391. [PMID: 34170952 PMCID: PMC8232414 DOI: 10.1371/journal.pone.0253391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ranitidine HCl, a selective, competitive histamine H2-receptor antagonist with a short biological half-life, low bioavailability and narrow absorption window, is an ideal candidate for gastro-retentive drug delivery system (GRDDS). Controlled release with an optimum retentive formulation in the upper stomach would be an ideal formulation for this drug. The aim of the present study was therefore to develop, formulate and optimize floating, bioadhesive, and swellable matrix tablets of ranitidine HCl. The matrix tablets were prepared using a combination of hydroxypropyl methylcellulose (HPMC) and sodium carboxymethyl cellulose (NaCMC) as release retarding polymers, sodium bicarbonate (NaHCO3) as gas generating agent and microcrystalline cellulose (MCC) as direct compression diluent. Central composite design (CCD) was used to optimize the formulation and a total of thirteen formulations were prepared. Concentration of HPMC/NaCMC (3:1) (X1) and NaHCO3 (X2) were selected as independent variables; and floating lag time (Y1), bioadhesive strength (Y2), swelling index at 12 h (Y3), cumulative drug release at 1 h (Y4), time to 50% drug release (t50%) (Y5) and cumulative drug release at 12 h (Y6) were taken as the response variables. The optimized batch showed floating lag time of 5.09 sec, bioadhesive strength of 29.69 g, swelling index of 315.04% at 12 h, t50% of 3.86 h and drug release of 24.21% and 93.65% at 1h and 12 h, respectively, with anomalous release mechanism. The results indicate that sustained release matrix tablet of ranitidine HCl with combined floating, bioadhesive and swelling gastro-retentive properties can be considered as a strategy to overcome the low bioavailability and in vivo variation associated with the conventional ranitidine HCl tablet.
Collapse
Affiliation(s)
- Birhanu Nigusse
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Regional Bioequivalence Center, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsige Gebre-Mariam
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Regional Bioequivalence Center, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail:
| | - Anteneh Belete
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Regional Bioequivalence Center, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: An UNGAP review. Eur J Pharm Sci 2019; 134:153-175. [DOI: 10.1016/j.ejps.2019.04.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
|
9
|
A novel technique for intraduodenal administration of drug suspensions/solutions with concurrent pH monitoring applied to ibuprofen formulations. Eur J Pharm Biopharm 2019; 136:192-202. [PMID: 30659894 DOI: 10.1016/j.ejpb.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/31/2022]
Abstract
Characterization of dissolution of solid suspended drug particles in vivo is important for developing biopredictive in vitro tests. Therefore, methods to gain deeper insights into particle dissolution in vivo are needed. The soft Bioperm intubation method, a well established tool for investigation of permeability, absorption, metabolism, and drug interactions at predefined locations in the gastroinstinal tract, was modified. The novel intubation method involved pump-controlled infusion of pharmaceutical suspensions as well as simultaneous pH monitoring. This technique was used in a proof of concept study in healthy humans. Plasma sampling and non-compartmental analysis allowed comparison of three different ibuprofen drug products, a solution and two suspensions with different particle size distribution, as well as two different infusion rates. Both a particle size effect and an effect of altering infusion rates on pharmacokinetic parameters were shown. Moreover, it was possible to monitor intestinal pH changes after intestinal infusion. Infusion of ibuprofen resulted in a pH drop that was quantified by the concept of Area Between Curves (ABC).
Collapse
|
10
|
Abstract
INTRODUCTION In pharmacotherapy, drugs are mostly taken orally to be absorbed systemically from the small intestine, and some drugs are known to have preferential absorption sites in the small intestine. It would therefore be valuable to know the absorption sites of orally administered drugs and the influencing factors. Areas covered:In this review, the author summarizes the reported absorption sites of orally administered drugs, as well as, influencing factors and experimental techniques. Information on the main absorption sites and influencing factors can help to develop ideal drug delivery systems and more effective pharmacotherapies. Expert opinion: Various factors including: the solubility, lipophilicity, luminal concentration, pKa value, transporter substrate specificity, transporter expression, luminal fluid pH, gastrointestinal transit time, and intestinal metabolism determine the site-dependent intestinal absorption. However, most of the dissolved fraction of orally administered drugs including substrates for ABC and SLC transporters, except for some weakly basic drugs with higher pKa values, are considered to be absorbed sequentially from the proximal small intestine. Securing the solubility and stability of drugs prior to reaching to the main absorption sites and appropriate delivery rates of drugs at absorption sites are important goals for achieving effective pharmacotherapy.
Collapse
Affiliation(s)
- Teruo Murakami
- a Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences , Hiroshima International University , Hiroshima , Japan
| |
Collapse
|
11
|
Thombre AG, Shamblin SL, Malhotra BK, Connor AL, Wilding IR, Caldwell WB. Pharmacoscintigraphy studies to assess the feasibility of a controlled release formulation of ziprasidone. J Control Release 2015; 213:10-17. [DOI: 10.1016/j.jconrel.2015.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/08/2015] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
|
12
|
Sjögren E, Dahlgren D, Roos C, Lennernäs H. Human in Vivo Regional Intestinal Permeability: Quantitation Using Site-Specific Drug Absorption Data. Mol Pharm 2015; 12:2026-39. [DOI: 10.1021/mp500834v] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Erik Sjögren
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| | - David Dahlgren
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Carl Roos
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
13
|
Assessment of tacrolimus absorption from the human intestinal tract: open-label, randomized, 4-way crossover study. Clin Ther 2014; 36:748-59. [PMID: 24680768 DOI: 10.1016/j.clinthera.2014.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Tacrolimus is an established immunosuppressant used for the prevention and treatment of allograft rejection in solid organ transplantation. An immediate-release oral formulation of tacrolimus has been commercially available since 1994 that is administered orally BID. To improve the compliance and quality of life of transplant patients, a once-daily modified release (MR) formulation is an attractive option. However, to be successful, the drug of interest must be sufficiently well absorbed from the distal region of the gastrointestinal tract. OBJECTIVE To facilitate the development of an MR formulation, we investigated the absorption of tacrolimus from different regions of the human gastrointestinal tract, proximal and distal small bowels, and ascending colon. METHODS The study was performed as an open-label, randomized, 4-way crossover design in 6 healthy white male subjects. For each subject, 1 mg (2 mg/mL) of tacrolimus solution in polyethylene glycol 400 was administered to each location in the gastrointestinal tract via a site-specific radiolabeled delivery capsule, which can release tacrolimus solution at specific sites of the gastrointestinal tract. Real-time visualization of capsule location and tacrolimus release at each target site was performed by using γ-scintigraphy. Blood samples were collected to determine tacrolimus levels in the blood. The pharmacokinetic parameters Cmax, Tmax after the capsule activation, AUC0-24, and mean residence time were determined from the concentration-time profiles. RESULTS Ten healthy male subjects underwent dosing. Six subjects completed all 4 treatments. Three adverse events (mild headache [n = 1], small amount of blood in stool [n = 1], and mild syncopal episode [n = 1]) that were possibly study drug related were reported in 3 different subjects. Tacrolimus was absorbed from not only the small intestine but also from the colonic region of the gastrointestinal tract. Although AUC0-24 values revealed some site-specific absorption tendencies, the mean AUC0-24 values obtained were similar regardless of the location of tacrolimus release from the capsule. CONCLUSIONS Tacrolimus was absorbed from the duodenum to the colon in these male subjects, although differences were observed in the value of AUC0-24, possibly due to variation in cytochrome P450 3A4 activity in the intestine. Although this study was conducted in small group of healthy fasting men, the present results indicate that tacrolimus is suitable for MR formulation development due to a wide absorption window throughout the intestine in humans.
Collapse
|
14
|
Lee L, Hossain M, Wang Y, Sedek G. Absorption of Rivastigmine from Different Regions of the Gastrointestinal Tract in Humans. J Clin Pharmacol 2013; 44:599-604. [PMID: 15145967 DOI: 10.1177/0091270004265645] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to evaluate the rate and extent of absorption and metabolism of rivastigmine (Exelon), ENA 713) after site-specific delivery of the drug in the gastrointestinal (GI) tract using a naso-intestinal intubation technique. Healthy adult subjects (n = 7) received, on four separate occasions, a 3-mg dose of a rivastigmine solution (2 mg/mL) orally and via a naso-intestinal tube to three GI sites (jejunum, ileum, and ascending colon). On each of the 3 treatment days for regional GI dosing, the tube was progressed to each of the three GI sites, which was determined by a radiographical technique prior to dosing. On the fourth day, following tube withdrawal, the subject received a 3-mg oral dose of a rivastigmine solution. Plasma samples were obtained at different multiple time points, and the plasma concentrations of rivastigmine and its metabolite, NAP 226-90, were determined using a gas chromatography/mass spectrometry (GC/MS) method. Rivastigmine was rapidly absorbed following both oral administration and site-specific delivery to different regions of the GI tract (jejunum, ileum, and ascending colon). Compared with oral administration (AUV(0- infinity ) = 21 ng*h/mL, C(max) = 12.8 ng/mL, and t(max) = 0.87 h), delivery of the drug directly into the ileum, jejunum, and ascending colon did not change the extent of absorption, but the time to peak concentration appeared to be smaller (mean t(max) ranged from 0.4-0.6 h, with no change in C(max)). The relative bioavailability of rivastigmine from all three regions of the GI tract was comparable to that following oral administration. The metabolite levels (AUC, C(max)) were also similar among the three different regions of the GI tract when compared to the oral dose. It was concluded that rivastigmine is rapidly and equally well absorbed following an oral dose and after specific delivery to different regions of the small intestine and ascending colon. GI metabolism of rivastigmine to its major metabolite, NAP 226-90, occurs to a similar extent in different segments of the GI tract.
Collapse
Affiliation(s)
- Lucy Lee
- PharmD, Clinical Pharmacology, One Health Plaza, Building 105 2W078F, Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
| | | | | | | |
Collapse
|
15
|
Dietzel CT, Richert H, Abert S, Merkel U, Hippius M, Stallmach A. Magnetic Active Agent Release System (MAARS): evaluation of a new way for a reproducible, externally controlled drug release into the small intestine. J Control Release 2012; 161:722-7. [PMID: 22634074 DOI: 10.1016/j.jconrel.2012.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 01/26/2023]
Abstract
Human absorption studies are used to test new drug candidates for their bioavailability in different regions of the gastrointestinal tract. In order to replace invasive techniques (e.g. oral or rectal intubation) a variety of externally controlled capsule-based drug release systems has been developed. Most of these use ionizing radiation, internal batteries, heating elements or even chemicals for the localization and disintegration process of the capsule. This embodies potential harms for volunteers and patients. We report about a novel technique called "Magnetic Active Agent Release System" (MAARS), which uses purely magnetic effects for this purpose. In our trial thirteen healthy volunteers underwent a complete monitoring and release procedure of 250 mg acetylsalicylic acid (ASA) targeting the flexura duodenojejunalis and the mid-part of the jejunum. During all experiments MAARS initiated a sufficient drug release and was well tolerated. Beside this we also could show that the absorption of ASA is about two times faster in the more proximal region of the flexura duodenojejunalis with a tmax of 47±13 min compared to the more distal jejunum with tmax values of 100±10 min (p=0.031).
Collapse
Affiliation(s)
- Christian T Dietzel
- Department of Clinical Pharmacology, Jena University Hospital, Drackendorfer Strasse 1, 07747 Jena, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Ermer JC, Haffey MB, Doll WJ, Martin P, Sandefer EP, Dennis K, Corcoran M, Trespidi L, Page RC. Pharmacokinetics of Lisdexamfetamine Dimesylate after Targeted Gastrointestinal Release or Oral Administration in Healthy Adults. Drug Metab Dispos 2011; 40:290-7. [DOI: 10.1124/dmd.111.040691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Site-specific drug delivery systems within the gastro-intestinal tract: From the mouth to the colon. Int J Pharm 2010; 395:44-52. [DOI: 10.1016/j.ijpharm.2010.05.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 05/04/2010] [Indexed: 11/18/2022]
|
18
|
Xitian P, Hongying L, Kang W, Yulin L, Xiaolin Z, Zhiyu W. A novel remote controlled capsule for site-specific drug delivery in human GI tract. Int J Pharm 2009; 382:160-4. [PMID: 19716870 DOI: 10.1016/j.ijpharm.2009.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 08/03/2009] [Accepted: 08/23/2009] [Indexed: 02/03/2023]
Abstract
Remote controlled capsule (RCC) has been extensively used in the field of site-specific drug delivery. It is a potent tool to study the regional drug absorption of the gastrointestinal (GI) tract that provides pharmaceutical scientists with significant pharmacokinetics data for oral drug formulation development. In present investigations, a patented novel RCC has been devised based on micro-electronic mechanical system (MEMS) technology. Micro-thrusters were for the first time exploited as drug release actuators of RCCs. As the micro-thruster is ignited by a radio frequency (RF) signal, the thrust force generated by the propellants pushes the piston forward and leads to a rapid and complete expulsion of therapeutic agents from the capsule. The micro-thruster merely consumes 120 mW for ignition and the duration time of drug release is decreased to less than 1 s. The feasibility of the novel RCC was evaluated through animal experiments in beagles using aminophylline as the model drug. The novel RCC developed is a promising alternative for site-specific drug delivery in human GI tract.
Collapse
Affiliation(s)
- Pi Xitian
- Laboratory of Pharmaceutical and Controlled Release Technology, College of Bioengineering of Chongqing University, Chongqing 400044, PR China.
| | | | | | | | | | | |
Collapse
|
19
|
Gröning R, Bensmann H, Müller R. Control of drug release from capsules using high frequency energy transmission systems. Int J Pharm 2008; 364:9-13. [DOI: 10.1016/j.ijpharm.2008.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 11/30/2022]
|
20
|
Nyberg L, Månsson W, Abrahamsson B, Seidegård J, Borgå O. A convenient method for local drug administration at predefined sites in the entire gastrointestinal tract: experiences from 13 phase I studies. Eur J Pharm Sci 2007; 30:432-40. [PMID: 17336045 DOI: 10.1016/j.ejps.2007.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 01/01/2007] [Accepted: 01/22/2007] [Indexed: 11/17/2022]
Abstract
For local administration of drugs or enzyme inhibitors in the human gut, a small-bore, smooth tube was introduced through the nose, retrieved from the pharynx, equipped with a firm radio-opaque capsule, and swallowed. Peristalsis moves the capsule to the desired location in the gut where it is anchored before administration via the tube. Drug uptake is followed by plasma sampling. One capsule type is used for solutions, another for solid formulations. With solutions, repeated administrations could be done with the capsule being anchored for 24h or longer or, alternatively, at several locations along the gut. This communication presents the method and an overview of 13 uptake and enzyme/transporter localization studies. Altogether, 268 intubations were undertaken in a total of 128 subjects. Plasma concentrations found with terbutaline and metoprolol are presented showing that terbutaline has its best uptake in the upper small intestine, whereas metoprolol shows the same bioavailability along the whole gut. Subjects could undertake most of their normal activities while carrying the equipment. No serious adverse events (AEs) occurred. Possibly intubation-related AEs were abdominal pain (n=8) and constipation (n=5). In conclusion, the method has been found to be safe, convenient and multifunctional for studies of drug uptake at predetermined gut locations in healthy subjects.
Collapse
Affiliation(s)
- Lars Nyberg
- Bioperm AB, Dalbyvägen 23, SE-224 60 Lund, Sweden
| | | | | | | | | |
Collapse
|
21
|
Kortejärvi H, Yliperttula M, Dressman JB, Junginger HE, Midha KK, Shah VP, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: Ranitidine hydrochloride. J Pharm Sci 2005; 94:1617-25. [PMID: 15959881 DOI: 10.1002/jps.20392] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Literature and experimental data relevant to the decision to allow a waiver of in vivo bioequivalence testing for the approval of immediate release (IR) solid oral dosage forms containing ranitidine hydrochloride are reviewed. According to the current Biopharmaceutics Classification System (BCS), ranitidine hydrochloride should be assigned to Class III. However, based on its therapeutic and therapeutic index, pharmacokinetic properties and data related to the possibility of excipient interactions, a biowaiver can be recommended for IR solid oral dosage forms that are rapidly dissolving and contain only those excipients as reported in this study.
Collapse
Affiliation(s)
- H Kortejärvi
- Orion Pharma, Research and Development, Espoo, Finland
| | | | | | | | | | | | | |
Collapse
|
22
|
Basit AW, Podczeck F, Newton JM, Waddington WA, Ell PJ, Lacey LF. The use of formulation technology to assess regional gastrointestinal drug absorption in humans. Eur J Pharm Sci 2004; 21:179-89. [PMID: 14757489 DOI: 10.1016/j.ejps.2003.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to assess the feasibility of using oral modified-release formulations for the purposes of site-specific targeting and regional drug absorption assessment in man. An immediate release pellet formulation containing ranitidine as the model drug of choice for the study was fabricated by extrusion-spheronisation, and then film coated with either the enteric polymer polyvinyl acetate phthalate or the bacteria-degradable polymer amylose, in combination with ethylcellulose, to effect drug release within the small intestine and colon, respectively. Optimised formulations were evaluated in vivo in ten healthy volunteers, who each received, on four separate occasions, the immediate release, small intestinal release and colonic release formulations (each equivalent to 150mg ranitidine), and an intravenous injection of ranitidine (equivalent to 50mg ranitidine). Blood samples were collected and assessed for ranitidine concentration, and radiolabelled placebo pellets were co-administered with the coated ranitidine pellets to monitor their gastrointestinal transit using a gamma camera. Ranitidine was rapidly released and absorbed from the immediate release formulation, whereas the enteric formulation (10% coat weight gain) delayed drug release until some or all of the pellets had emptied into the small intestine. The amylose-ethylcellulose coated formulation (coat ratio 1:3, coat weight gain 25%) retarded ranitidine release until the pellets had reached the colon. The mean absolute bioavailability of ranitidine from the immediate release, small intestinal release and colonic release formulations were 50.6, 46.1 and 5.5%, respectively. These data are in general agreement to those obtained from a previous regional intubation study. The present study therefore demonstrates the practical potential of utilising a non-invasive, formulation-based approach to assess drug absorption from different regions of the human gastrointestinal tract.
Collapse
Affiliation(s)
- Abdul W Basit
- Department of Pharmaceutics, The School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The aim of this study was to assess the in vitro stability of ranitidine to colonic bacteria by utilising a batch culture fermentation system to simulate the conditions of the colon. Three quantities of ranitidine, 100, 200 and 500 mg, in the form of the hydrochloride salt, were introduced into individual 100 ml fermenters consisting of buffer medium inoculated with freshly voided human faeces (10% w/v). Control experiments were also run in parallel using equivalent drug quantities in buffer medium without the presence of faeces. Samples were removed at pre-determined time intervals over a 24 h period and were subsequently analysed by high-performance liquid chromatography (HPLC) for drug concentration. A selection of the samples removed from the fermenters was also analysed by conventional UV spectroscopy and mass spectrometry. Subsequent to an initial dissolution phase in the fermentation system, a marked decline in ranitidine concentration was noted over time, thereby suggesting degradation and metabolism of the drug by colonic bacteria. No such decline in concentration was noted in the control buffer systems. The rate and extent of metabolism was rapid and complete within 12 and 24 h for the 100 mg and 200 mg samples, respectively, although the largest sample size, 500 mg, was only partly metabolised over the course of the experiment. UV and mass spectrometry analysis indicated that metabolism occurred via cleavage of an N-oxide bond within the molecule with the resultant loss of an oxygen atom, although further metabolic reactions are possible. Such metabolism may in part be responsible for the poor bioavailability of ranitidine from the colon.
Collapse
Affiliation(s)
- A W Basit
- Department of Pharmaceutics, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | |
Collapse
|