1
|
Ezekiel CI, Bapolisi AM, Walker RB, Krause RWM. Ultrasound-Triggered Release of 5-Fluorouracil from Soy Lecithin Echogenic Liposomes. Pharmaceutics 2021; 13:821. [PMID: 34205990 PMCID: PMC8229429 DOI: 10.3390/pharmaceutics13060821] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer is the third most diagnosed cancer and the second leading cause of death. The use of 5-fluorouracil (5-FU) has been the major chemotherapeutic treatment for colorectal cancer patients. However, the efficacy of 5-FU is limited by drug resistance, and bone marrow toxicity through high-level expression of thymidylate synthase, justifying the need for improvement of the therapeutic index. In this study, the effects of ultrasound on echogenic 5-FU encapsulated crude soy liposomes were investigated for their potential to address these challenges. Liposomes were prepared by thin-film hydration using crude soy lecithin and cholesterol. Argon gas was entrapped in the liposomes for sonosensitivity (that is, responsiveness to ultrasound). The nanoparticles were characterized for particle size and morphology. The physicochemical properties were also evaluated using differential scanning calorimetry, Fourier transform infrared and X-ray diffraction. The release profile of 5-FU was assessed with and without 20 kHz low-frequency ultrasound waves at various amplitudes and exposure times. The result reveal that 5-FU-loaded liposomes were spherical with an encapsulation efficiency of approximately 60%. Approximately 65% of 5-FU was released at the highest amplitude and exposure time was investigated. The results are encouraging for the stimulated and controlled release of 5-FU for the management of colorectal cancer.
Collapse
Affiliation(s)
- Charles Izuchukwu Ezekiel
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (C.I.E.); (A.M.B.)
| | - Alain Murhimalika Bapolisi
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (C.I.E.); (A.M.B.)
| | - Roderick Bryan Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, Eastern Cape, South Africa;
| | - Rui Werner Maçedo Krause
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (C.I.E.); (A.M.B.)
- Center for Chemico and Biomedicinal Research, Rhodes University, Makhanda 6140, Eastern Cape, South Africa
| |
Collapse
|
2
|
Peng X, He W, Xin F, Genin GM, Lu TJ. The acoustic radiation force of a focused ultrasound beam on a suspended eukaryotic cell. ULTRASONICS 2020; 108:106205. [PMID: 32615366 DOI: 10.1016/j.ultras.2020.106205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/02/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Although ultrasound tools for manipulating and permeabilizing suspended cells have been available for nearly a century, accurate prediction of the distribution of acoustic radiation force (ARF) continues to be a challenge. We therefore developed an analytical model of the acoustic radiation force (ARF) generated by a focused Gaussian ultrasound beam incident on a eukaryotic cell immersed in an ideal fluid. The model had three layers corresponding to the nucleus, cytoplasm, and membrane, of a eukaryotic cell. We derived an exact expression for the ARF in relation to the geometrical and acoustic parameters of the model cell components. The mechanics of the cell membrane and nucleus, the relative width of the Gaussian beam, the size, position and aspect ratio of the cell had significant influence on the ARF. The model provides a theoretical basis for improved acoustic control of cell trapping, cell sorting, cell assembly, and drug delivery.
Collapse
Affiliation(s)
- Xiangjun Peng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
| | - Wei He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Fengxian Xin
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Guy M Genin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; U.S. National Science Foundation Science and Technology Center for Engineering Mechanobiology, and McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; Nanjing Center for Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
| |
Collapse
|
3
|
Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Front Bioeng Biotechnol 2019; 7:324. [PMID: 31824930 PMCID: PMC6883936 DOI: 10.3389/fbioe.2019.00324] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/28/2019] [Indexed: 12/24/2022] Open
Abstract
While ultrasound is most widely known for its use in diagnostic imaging, the energy carried by ultrasound waves can be utilized to influence cell function and drug delivery. Consequently, our ability to use ultrasound energy at a given intensity unlocks the opportunity to use the ultrasound for therapeutic applications. Indeed, in the last decade ultrasound-based therapies have emerged with promising treatment modalities for several medical conditions. More recently, ultrasound in combination with nanomedicines, i.e., nanoparticles, has been shown to have substantial potential to enhance the efficacy of many treatments including cancer, Alzheimer disease or osteoarthritis. The concept of ultrasound combined with drug delivery is still in its infancy and more research is needed to unfold the mechanisms and interactions of ultrasound with different nanoparticles types and with various cell types. Here we present the state-of-art in ultrasound and ultrasound-assisted drug delivery with a particular focus on cancer treatments. Notably, this review discusses the application of high intensity focus ultrasound for non-invasive tumor ablation and immunomodulatory effects of ultrasound, as well as the efficacy of nanoparticle-enhanced ultrasound therapies for different medical conditions. Furthermore, this review presents safety considerations related to ultrasound technology and gives recommendations in the context of system design and operation.
Collapse
Affiliation(s)
- Priyanka Tharkar
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Ramya Varanasi
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Wu Shun Felix Wong
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Craig T Jin
- Faculty of Engineering, School of Electrical and Information Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Wojciech Chrzanowski
- Faculty of Medicine and Health, Sydney School of Pharmacy, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Salkho NM, Paul V, Kawak P, Vitor RF, Martins AM, Al Sayah M, Husseini GA. Ultrasonically controlled estrone-modified liposomes for estrogen-positive breast cancer therapy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:462-472. [DOI: 10.1080/21691401.2018.1459634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Najla M. Salkho
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Vinod Paul
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Pierre Kawak
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Rute F. Vitor
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ana M. Martins
- California Institute for Quantitative Biosciences, Berkeley, CA, USA
| | - Mohammad Al Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Anirudhan TS, Nair AS. Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. J Mater Chem B 2018; 6:428-439. [DOI: 10.1039/c7tb02292a] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The copolymer chains were grafted onto the mesopores of silica nanoparticles and could act as stimuli responsive ‘smart’ gatekeepers. With the aid of a transdermal delivery route and ultrasound penetration, even malignant sites of internal organs can be set as targets.
Collapse
Affiliation(s)
- T. S. Anirudhan
- Department of Chemistry
- School of Physical and Mathematical Sciences
- University of Kerala
- Trivandrum-695581
- India
| | - Anoop S. Nair
- Department of Chemistry
- School of Physical and Mathematical Sciences
- University of Kerala
- Trivandrum-695581
- India
| |
Collapse
|
6
|
Removal of ligand-bound liposomes from cell surfaces by microbubbles exposed to ultrasound. J Biol Phys 2017; 43:493-510. [PMID: 29124623 DOI: 10.1007/s10867-017-9465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022] Open
Abstract
Gas-filled microbubbles attached to cell surfaces can interact with focused ultrasound to create microstreaming of nearby fluid. We directly observed the ultrasound/microbubble interaction and documented that under certain conditions fluorescent particles that were attached to the surface of live cells could be removed. Fluorescently labeled liposomes that were larger than 500 nm in diameter were attached to the surface of endothelial cells using cRGD targeting to αvβ3 integrin. Microbubbles were attached to the surface of the cells through electrostatic interactions. Images taken before and after the ultrasound exposure were compared to document the effects on the liposomes. When exposed to ultrasound with peak negative pressure of 0.8 MPa, single microbubbles and groups of isolated microbubbles were observed to remove targeted liposomes from the cell surface. Liposomes were removed from a region on the cell surface that averaged 33.1 μm in diameter. The maximum distance between a single microbubble and a detached liposome was 34.5 μm. Single microbubbles were shown to be able to remove liposomes from over half the surface of a cell. The distance over which liposomes were removed was significantly dependent on the resting diameter of the microbubble. Clusters of adjoining microbubbles were not seen to remove liposomes. These observations demonstrate that the fluid shear forces generated by the ultrasound/microbubble interaction can remove liposomes from the surfaces of cells over distances that are greater than the diameter of the microbubble.
Collapse
|
7
|
Sengupta A, Gray MD, Kelly SC, Holguin SY, Thadhani NN, Prausnitz MR. Energy Transfer Mechanisms during Molecular Delivery to Cells by Laser-Activated Carbon Nanoparticles. Biophys J 2017; 112:1258-1269. [PMID: 28355552 DOI: 10.1016/j.bpj.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 11/26/2022] Open
Abstract
Previous studies have shown that exposure of carbon black nanoparticles to nanosecond pulsed near-infrared laser causes intracellular delivery of molecules through hypothesized transient breaks in the cell membrane. The goal of this study is to determine the underlying mechanisms of sequential energy transfer from laser light to nanoparticle to fluid medium to cell. We found that laser pulses on a timescale of 10 ns rapidly heat carbon nanoparticles to temperatures on the order of 1200 K. Heat is transferred from the nanoparticles to the surrounding aqueous medium on a similar timescale, causing vaporization of the surrounding water and generation of acoustic emissions. Nearby cells can be impacted thermally by the hot bubbles and mechanically by fluid mechanical forces to transiently increase cell membrane permeability. The experimental and theoretical results indicate that transfer of momentum and/or heat from the bubbles to the cells are the dominant mechanisms of energy transfer that results in intracellular uptake of molecules. We further conclude that neither thermal expansion of the nanoparticles nor a carbon-steam chemical reaction play a significant role in the observed effects on cells, and that acoustic pressure appears to be concurrent with, but not essential to, the observed bioeffects.
Collapse
Affiliation(s)
- Aritra Sengupta
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Michael D Gray
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Sean C Kelly
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Stefany Y Holguin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
8
|
Thakur SS, Ward MS, Popat A, Flemming NB, Parat MO, Barnett NL, Parekh HS. Stably engineered nanobubbles and ultrasound - An effective platform for enhanced macromolecular delivery to representative cells of the retina. PLoS One 2017; 12:e0178305. [PMID: 28542473 PMCID: PMC5444814 DOI: 10.1371/journal.pone.0178305] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/10/2017] [Indexed: 01/10/2023] Open
Abstract
Herein we showcase the potential of ultrasound-responsive nanobubbles in enhancing macromolecular permeation through layers of the retina, ultimately leading to significant and direct intracellular delivery; this being effectively demonstrated across three relevant and distinct retinal cell lines. Stably engineered nanobubbles of a highly homogenous and echogenic nature were fully characterised using dynamic light scattering, B-scan ultrasound and transmission electron microscopy (TEM). The nanobubbles appeared as spherical liposome-like structures under TEM, accompanied by an opaque luminal core and darkened corona around their periphery, with both features indicative of efficient gas entrapment and adsorption, respectively. A nanobubble +/- ultrasound sweeping study was conducted next, which determined the maximum tolerated dose for each cell line. Detection of underlying cellular stress was verified using the biomarker heat shock protein 70, measured before and after treatment with optimised ultrasound. Next, with safety to nanobubbles and optimised ultrasound demonstrated, each human or mouse-derived cell population was incubated with biotinylated rabbit-IgG in the presence and absence of ultrasound +/- nanobubbles. Intracellular delivery of antibody in each cell type was then quantified using Cy3-streptavidin. Nanobubbles and optimised ultrasound were found to be negligibly toxic across all cell lines tested. Macromolecular internalisation was achieved to significant, yet varying degrees in all three cell lines. The results of this study pave the way towards better understanding mechanisms underlying cellular responsiveness to ultrasound-triggered drug delivery in future ex vivo and in vivo models of the posterior eye.
Collapse
Affiliation(s)
- Sachin S. Thakur
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Micheal S. Ward
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Nicole B. Flemming
- Mater Research Institute, Translational Research Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Nigel L. Barnett
- Queensland Eye Institute, South Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane Queensland, Australia
| | - Harendra S. Parekh
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
- * E-mail:
| |
Collapse
|
9
|
Schoellhammer CM, Schroeder A, Maa R, Lauwers GY, Swiston A, Zervas M, Barman R, DiCiccio AM, Brugge WR, Anderson DG, Blankschtein D, Langer R, Traverso G. Ultrasound-mediated gastrointestinal drug delivery. Sci Transl Med 2016; 7:310ra168. [PMID: 26491078 DOI: 10.1126/scitranslmed.aaa5937] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is a significant clinical need for rapid and efficient delivery of drugs directly to the site of diseased tissues for the treatment of gastrointestinal (GI) pathologies, in particular, Crohn's and ulcerative colitis. However, complex therapeutic molecules cannot easily be delivered through the GI tract because of physiologic and structural barriers. We report the use of ultrasound as a modality for enhanced drug delivery to the GI tract, with an emphasis on rectal delivery. Ultrasound increased the absorption of model therapeutics inulin, hydrocortisone, and mesalamine two- to tenfold in ex vivo tissue, depending on location in the GI tract. In pigs, ultrasound induced transient cavitation with negligible heating, leading to an order of magnitude enhancement in the delivery of mesalamine, as well as successful systemic delivery of a macromolecule, insulin, with the expected hypoglycemic response. In a rodent model of chemically induced acute colitis, the addition of ultrasound to a daily mesalamine enema (compared to enema alone) resulted in superior clinical and histological scores of disease activity. In both animal models, ultrasound treatment was well tolerated and resulted in minimal tissue disruption, and in mice, there was no significant effect on histology, fecal score, or tissue inflammatory cytokine levels. The use of ultrasound to enhance GI drug delivery is safe in animals and could augment the efficacy of GI therapies and broaden the scope of agents that could be delivered locally and systemically through the GI tract for chronic conditions such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Carl M Schoellhammer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Avi Schroeder
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Faculty of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ruby Maa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory Yves Lauwers
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Albert Swiston
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Zervas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ross Barman
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angela M DiCiccio
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William R Brugge
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Giovanni Traverso
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 2015; 6:8264. [PMID: 26372413 PMCID: PMC4571289 DOI: 10.1038/ncomms9264] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/04/2015] [Indexed: 12/30/2022] Open
Abstract
A major challenge in neuroscience is to reliably activate individual neurons, particularly those in deeper brain regions. Current optogenetic approaches require invasive surgical procedures to deliver light of specific wavelengths to target cells to activate or silence them. Here, we demonstrate the use of low-pressure ultrasound as a non-invasive trigger to activate specific ultrasonically sensitized neurons in the nematode, Caenorhabditis elegans. We first show that wild-type animals are insensitive to low-pressure ultrasound and require gas-filled microbubbles to transduce the ultrasound wave. We find that neuron-specific misexpression of TRP-4, the pore-forming subunit of a mechanotransduction channel, sensitizes neurons to ultrasound stimulus, resulting in behavioural outputs. Furthermore, we use this approach to manipulate the function of sensory neurons and interneurons and identify a role for PVD sensory neurons in modifying locomotory behaviours. We suggest that this method can be broadly applied to manipulate cellular functions in vivo. Common optogenetic approaches require surgical procedures to deliver light of specific wavelengths to the target cells. Here the authors demonstrate the use of low-pressure ultrasound as a non-invasive trigger to activate specific neurons in Caenorhabditis elegans and find that the mechanotransduction channel TRP-4 sensitizes cells to the ultrasound stimulus.
Collapse
|
11
|
Duan X, Chan KT, Lee KKH, Mak AFT. Oxidative Stress and Plasma Membrane Repair in Single Myoblasts After Femtosecond Laser Photoporation. Ann Biomed Eng 2015; 43:2735-44. [PMID: 26014361 DOI: 10.1007/s10439-015-1341-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/14/2015] [Indexed: 02/01/2023]
Abstract
Cell membranes are susceptible to biophysical damages. These biophysical damages often present themselves in challenging oxidative environments, such as in chronic inflammation. Here we report the damage evolution after single myoblasts were individually subjected to femtosecond (fs) laser photoporation on their plasma membranes under normal and oxidative conditions. A well-characterized tunable fs laser was coupled with a laser scanning confocal microscope. The post-damage wound evolution was documented by real-time imaging. The fs laser could generate a highly focused hole at a targeted site of the myoblast plasma membrane. The initial hole size depended on the laser dosage in terms of power and exposure duration. With the same laser power and irradiation duration, photoporation invoked bigger holes in the oxidative groups than in the control. Myoblasts showed difficulty in repairing holes with initial size beyond certain threshold. Within the threshold, holes could apparently be resealed within 100 s under the normal condition; while in oxidative condition, the resealing process could take 100-300 s. The hole-resealing capacity of myoblasts was compromised under oxidative stress particularly when the oxidative exposure was chronic. It is interesting to note that brief exposure to oxidative stress apparently could promote resealing in myoblasts after photoporation.
Collapse
Affiliation(s)
- Xinxing Duan
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kam Tai Chan
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kenneth K H Lee
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Arthur F T Mak
- Division of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong. .,Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong. .,Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
12
|
Feng S, Li Z, Chen G, Lin D, Huang S, Huang Z, Li Y, Lin J, Chen R, Zeng H. Ultrasound-mediated method for rapid delivery of nano-particles into cells for intracellular surface-enhanced Raman spectroscopy and cancer cell screening. NANOTECHNOLOGY 2015; 26:065101. [PMID: 25598539 DOI: 10.1088/0957-4484/26/6/065101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful technology for providing finger-printing information of cells. A big challenge has been the long time duration and inefficient uptake of metal nano-particles into living cells as substrate for SERS analysis. Herein, a simple method (based on ultrasound) for the rapid transfer of silver nanoparticles (NPs) into living cells for intracellular SERS spectroscopy was presented. In this study, the ultrasound-mediated method for NP delivery overcame the shortcoming of 'passive uptake', and achieved quick acquisition of reproducible SERS spectra from living human nasopharyngeal carcinoma cell lines (C666 and CNE1) and normal nasopharyngeal cell line (NP69). Tentative assignment of the Raman bands in the measured SERS spectra showed cancer cell specific biomolecular differences, including significantly lower DNA concentrations and higher protein concentrations in cancerous nasopharyngeal cells as compared to those of normal cells. Combined with PCA-LDA multivariate analysis, ultrasound-mediated cell SERS spectroscopy differentiated the cancerous cells from the normal nasopharyngeal cells with high diagnostic accuracy (98.7%), demonstrating great potential for high-throughput cancer cell screening applications.
Collapse
Affiliation(s)
- Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cooper RA, Bjarnsholt T, Alhede M. Biofilms in wounds: a review of present knowledge. J Wound Care 2015; 23:570, 572-4, 576-80 passim. [PMID: 25375405 DOI: 10.12968/jowc.2014.23.11.570] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in diagnostic laboratories are mainly in a planktonic form that is unrepresentative of the way in which most microbial species exist naturally. Usually microbial species adhere to each other, as well as to living and non-living surfaces, where they form complex communities surrounded by collectively secreted extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of biofilms in chronic wounds has provided new insight into the reasons why. Increased tolerance of biofilms to antimicrobial agents explains the limited efficacy of antimicrobial agents in chronic wounds and illustrates the need to develop new management strategies. This review aims to explain the nature of biofilms, with a view to explaining their impact on wounds.
Collapse
Affiliation(s)
- R A Cooper
- Professor of Microbiology, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, S. Wales, UK
| | | | | |
Collapse
|
14
|
Evaluation of in vivo antitumor effects of ANT2 shRNA delivered using PEI and ultrasound with microbubbles. Gene Ther 2015; 22:325-32. [DOI: 10.1038/gt.2014.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 01/27/2023]
|
15
|
Rad I, Mobasheri H, Najafi F, Rezaei M. Efficient repairing effect of PEG based tri-block copolymer on mechanically damaged PC12 cells and isolated spinal cord. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1539-1551. [PMID: 24519755 DOI: 10.1007/s10856-014-5168-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Membrane sealing effects of polymersomes made of tri-block copolymer, PEG-co-FA/SC-co-PEG, (PFSP) were studied on isolated spinal cord strips, PC12 cell lines and artificial bilayer following mechanical impact implemented by aneurism clip, sonication and electric shock, respectively. The homogeneity and size of PFSP, membrane permeability and cell viability were assessed by dynamic light scattering, LDH release and MTT assays. According to the results, the biocompatible, physico-chemical, size, surface charge and amphipathic nature of PFSP polymersome makes it an ideal macromolecule to rapidly reseal damaged membranes of cells in injured spinal cord as well as in culture medium. Compound action potentials recorded from intentionally damaged spinal cord strips incubated with PFSP showed restoration of neural excitability by 82.24 % and conduction velocity by 96.72 % after 5 min that monitored in real time. Thus, they triggered efficient instant and sustained sealing of membrane and reactivation of temporarily inactivated axons. Treatment of ultrasonically damaged PC12 cells by PFSP caused efficient cell membrane repair and led to their increased viability. The optimum effects of PFSP on stabilization and impermeabilizing of the lipid bilayer occurred at the same concentrations applied to the damaged cells and spinal cord fibers and was approved by restoration of membrane conductance and calcein release manifested by NanoDrop technique. The unique physico-chemical characteristics of novel polymersomes introduced here, make them capable to reorganize membrane lipid molecules, reseal the breaches and restore the hydrophobic insulation in spinal cord damaged cells. Thus, they might be considered in the clinical treatment of SCI at early stages.
Collapse
Affiliation(s)
- Iman Rad
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry & Biophysics, University of Tehran, PO Box 13145-1384, Tehran, Iran,
| | | | | | | |
Collapse
|
16
|
Kouhzaei S, Rad I, Mousavidoust S, Mobasheri H. Protective effect of low molecular weight polyethylene glycol on the repair of experimentally damaged neural membranes in rat’s spinal cord. Neurol Res 2013; 35:415-23. [DOI: 10.1179/1743132812y.0000000133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
| | - Iman Rad
- University of TehranTehran, Iran
| | | | | |
Collapse
|
17
|
Longsine-Parker W, Wang H, Koo C, Kim J, Kim B, Jayaraman A, Han A. Microfluidic electro-sonoporation: a multi-modal cell poration methodology through simultaneous application of electric field and ultrasonic wave. LAB ON A CHIP 2013; 13:2144-52. [PMID: 23615834 DOI: 10.1039/c3lc40877a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A microfluidic device that simultaneously applies the conditions required for microelectroporation and microsonoporation in a flow-through scheme toward high-efficiency and high-throughput molecular delivery into mammalian cells is presented. This multi-modal poration microdevice using simultaneous application of electric field and ultrasonic wave was realized by a three-dimensional (3D) microelectrode scheme where the electrodes function as both electroporation electrodes and cell flow channel so that acoustic wave can be applied perpendicular to the electric field simultaneously to cells flowing through the microfluidic channel. This 3D microelectrode configuration also allows a uniform electric field to be applied while making the device compatible with fluorescent microscopy. It is hypothesized that the simultaneous application of two different fields (electric field and acoustic wave) in perpendicular directions allows formation of transient pores along two axes of the cell membrane at reduced poration intensities, hence maximizing the delivery efficiency while minimizing cell death. The microfluidic electro-sonoporation system was characterized by delivering small molecules into mammalian cells, and showed average poration efficiency of 95.6% and cell viability of 97.3%. This proof of concept result shows that by combining electroporation and sonoporation together, significant improvement in molecule delivery efficiency could be achieved while maintaining high cell viability compared to electroporation or sonoporation alone. The microfluidic electro-sonoporation device presented here is, to the best of our knowledge, the first multi-modal cell poration device using simultaneous application of electric field and ultrasonic wave. This new multi-modal cell poration strategy and system is expected to have broad applications in delivery of small molecule therapeutics and ultimately in large molecule delivery such as gene transfection applications where high delivery efficiency and high viability are crucial.
Collapse
Affiliation(s)
- Whitney Longsine-Parker
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:375-88. [PMID: 23667309 PMCID: PMC3650568 DOI: 10.2147/dddt.s31564] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Indexed: 01/05/2023]
Abstract
The inherently toxic nature of chemotherapy drugs is essential for them to kill cancer cells but is also the source of the detrimental side effects experienced by patients. One strategy to reduce these side effects is to limit the healthy tissue exposure by encapsulating the drugs in a vehicle that demonstrates a very low leak rate in circulation while simultaneously having the potential for rapid release once inside the tumor. Designing a vehicle with these two opposing properties is the major challenge in the field of drug delivery. A triggering event is required to change the vehicle from its stable circulating state to its unstable release state. A unique mechanical actuation type trigger is possible by harnessing the size changes that occur when microbubbles interact with ultrasound. These mechanical actuations can burst liposomes and cell membranes alike allowing for rapid drug release and facilitating delivery into nearby cells. The tight focusing ability of the ultrasound to just a few cubic millimeters allows for precise control over the tissue location where the microbubbles destabilize the vehicles. This allows the ultrasound to highlight the tumor tissue and cause rapid drug release from any carrier present. Different vehicle designs have been demonstrated from carrying drug on just the surface of the microbubble itself to encapsulating the microbubble along with the drug within a liposome. In the future, nanoparticles may extend the circulation half-life of these ultrasound triggerable drug-delivery vehicles by acting as nucleation sites of ultrasound-induced mechanical actuation. In addition to the drug delivery capability, the microbubble size changes can also be used to create imaging contrast agents that could allow the internal chemical environment of a tumor to be studied to help improve the diagnosis and detection of cancer. The ability to attain truly tumor-specific release from circulating drug-delivery vehicles is an exciting future prospect to reduce chemotherapy side effects while increasing drug effectiveness.
Collapse
Affiliation(s)
- Stuart Ibsen
- Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
19
|
Nabili M, Patel H, Mahesh SP, Liu J, Geist C, Zderic V. Ultrasound-enhanced delivery of antibiotics and anti-inflammatory drugs into the eye. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:638-646. [PMID: 23415283 PMCID: PMC3770302 DOI: 10.1016/j.ultrasmedbio.2012.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 11/06/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
Delivery of sufficient amounts of therapeutic drugs into the eye is often a challenging task. In this study, ultrasound application (frequencies of 400 KHz to 1 MHz, intensities of 0.3-1.0 W/cm(2) and exposure duration of 5 min) was investigated to overcome the barrier properties of cornea, which is a typical route for topical administration of ophthalmic drugs. Permeability of ophthalmic drugs, tobramycin and dexamethasone and sodium fluorescein, a drug-mimicking compound, was studied in ultrasound- and sham-treated rabbit corneas in vitro using a standard diffusion cell setup. Light microscopy observations were used to determine ultrasound-induced structural changes in the cornea. For tobramycin, an increase in permeability for ultrasound- and sham-treated corneas was not statistically significant. Increase of 46%-126% and 32%-109% in corneal permeability was observed for sodium fluorescein and dexamethasone, respectively, with statistical significance (p < 0.05) achieved at all treatment parameter combinations (compared with sham treatments) except for 1-MHz ultrasound applications for dexamethasone experiments. This permeability increase was highest at 400 kHz and appeared to be higher at higher intensities applied. Histologic analysis showed structural changes that were limited to epithelial layers of cornea. In summary, ultrasound application provided enhancement of drug delivery, increasing the permeability of the cornea for the anti-inflammatory ocular drug dexamethasone. Future investigations are needed to determine the effectiveness and safety of this application in in vivo long-term survival studies.
Collapse
Affiliation(s)
- Marjan Nabili
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC 20052, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK. Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug Deliv 2013; 10:573-92. [PMID: 23448121 DOI: 10.1517/17425247.2013.772578] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Ultrasound (US) has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. These effects can be mediated by mechanical oscillations of circulating microbubbles, or US contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi or direct drugs to optimal locations for delivery. AREAS COVERED The present review summarizes investigations that have provided evidence for US-mediated drug delivery as a potent method to deliver therapeutics to diseased tissue for cardiovascular treatment. In particular, the focus will be on investigations of specific aspects relating to US-mediated drug delivery, such as delivery vehicles, drug transport routes, biochemical mechanisms and molecular targeting strategies. EXPERT OPINION These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery and new US technologies. Successful implementation of US-mediated drug delivery has the potential to change the way many drugs are administered systemically, resulting in more effective and economical therapeutics, and less-invasive treatments.
Collapse
Affiliation(s)
- Jonathan T Sutton
- University of Cincinnati, College of Medicine, Internal Medicine, Division of Cardiovascular Diseases, and Biomedical Engineering Program, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
21
|
Hamano N, Negishi Y, Omata D, Takahashi Y, Manandhar M, Suzuki R, Maruyama K, Nomizu M, Aramaki Y. Bubble Liposomes and Ultrasound Enhance the Antitumor Effects of AG73 Liposomes Encapsulating Antitumor Agents. Mol Pharm 2013; 10:774-9. [DOI: 10.1021/mp300463h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nobuhito Hamano
- Department of Drug Delivery
and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery
and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Daiki Omata
- Department of Drug Delivery
and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yoko Takahashi
- Department of Drug Delivery
and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Maya Manandhar
- Department of Drug Delivery
and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery,
Faculty of Pharma Sciences, Teikyo University, Kaga, Itabashi-ku,
Japan
| | - Kazuo Maruyama
- Laboratory of Drug and Gene Delivery,
Faculty of Pharma Sciences, Teikyo University, Kaga, Itabashi-ku,
Japan
| | - Motoyoshi Nomizu
- Department of Clinical
Biochemistry,
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences,
Hachioji, Tokyo, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery
and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University
of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
22
|
Lafon C, Somaglino L, Bouchoux G, Mari JM, Chesnais S, Ngo J, Mestas JL, Fossheim SL, Nilssen EA, Chapelon JY. Feasibility study of cavitation-induced liposomal doxorubicin release in an AT2 Dunning rat tumor model. J Drug Target 2012; 20:691-702. [PMID: 22845841 DOI: 10.3109/1061186x.2012.712129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Targeted and triggered release of liposomal drug using heat or ultrasound represents a promising treatment modality able to increase the therapeutic-totoxicity ratio of encapsulated drugs. PURPOSE To study the ability for high-intensity focused ultrasound to induce liposomal drug release mainly by focused inertial cavitation in vitro and in an animal model. METHODS A 1 MHz ultrasound setup has been developed for in vitro and in vivo drug release from a specific liposomal doxorubicin formulation at a target cavitation dose. RESULTS Controlled cavitation at 1 MHz was applied within the tumors 48 hours after liposome injection according to preliminary pharmacokinetic study. A small non-significant therapeutic effect of US-liposomal treatment was observed compared to liposomes alone suggesting no beneficial effect of ultrasound in the current setup. CONCLUSION The in vitro study provided a suitable ultrasound setup for delivering a cavitation dose appropriate for safe liposomal drug release. However, when converting to an in vivo model, no therapeutic benefit was observed. This may be due to a number of reasons, one of which may be the difficulty in converting in vitro findings to an in vivo model. In light of these findings, we discuss important design features for future studies.
Collapse
Affiliation(s)
- Cyril Lafon
- INSERM U1032, Université de Lyon, 151 Cours Albert Thomas, Lyon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shi SF, Zhang XL, Zhu C, Chen DES, Guo YY. Ultrasonically enhanced rifampin activity against internalized Staphylococcus aureus. Exp Ther Med 2012; 5:257-262. [PMID: 23251279 PMCID: PMC3524287 DOI: 10.3892/etm.2012.758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/12/2012] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is the principle causative agent of osteomyelitis, accounting for 80% of all human cases. S. aureus internalized in osteoblasts escapes immune response, including engulfment by phagocytes. It also escapes the action of a number of antibiotics. Ultrasound increases cell membrane permeability to a number of drugs. Following an internalization assay, we used low-frequency, low-power ultrasound combined with the antibiotic rifampin to target S. aureus internalized in human osteoblasts. Tryptic soy agar (TSA) was used to quantitate the antibacterial effect of rifampin combined with low-frequency ultrasound. A Cell Counting Kit-8 (CCK-8) assay was used to evaluate cell viability following exposure to ultrasound. Our data revealed that rifampin successfully penetrates into osteoblasts and kills internalized S. aureus in osteoblasts, while low-frequency ultrasound promotes this process. Ultrasound had a negative impact on the cell viability of osteoblasts; however, this damage was slight and reversible. Ultrasound-enhanced antibiotic efficiency to bacteria internalized in the osteoblasts may contribute to the control of chronic infection to reduce recurrence.
Collapse
Affiliation(s)
- Si-Feng Shi
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P.R. China
| | | | | | | | | |
Collapse
|
24
|
Zhu Z, Wei H, Wu G, Yang H, He Y, Xie S. Synergistic effect of hyperosmotic agents and sonophoresis on breast tissue optical properties and permeability studied with spectral domain optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:086002. [PMID: 23224189 DOI: 10.1117/1.jbo.17.8.086002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Hyperosmotic agents have shown great potential in tissue optical clearing. However, the low efficiency of the permeation in biological tissues seriously restricts its application in reality. The synergy of sonophoresis as a penetration enhancer and hyperosmotic agents, 20% glucose (G) and 20% mannitol (M), in optical clearing has been investigated by analyzing the variation of the attenuation coefficients and the permeability coefficients. In the sonophoresis experiments, ultrasound (US) was applied for 10 min before applying hyperosmotic agents. Along with the administration of hyperosmotic agents, the samples were monitored with optical coherence tomography (OCT) functional imaging for the next 2 h. The attenuation coefficients of each group were obtained from the 2-D OCT images based on Beer's Law. The original attenuation coefficient is 12.38 ± 0.73 cm-1 in normal breast tissue. After 45 min treatment, it changes to be 5.91 ± 0.82 cm-1 and 4.14 ± 0.67 cm-1 for 20% G and 20% G/US, respectively. The attenuation coefficient of breast cancer tissue is 18.17 ± 1.45 cm-1 at the beginning, and it becomes 8.70 ± 0.87 cm-1 for 20% G and 6.80 ± 0.92 cm-1 for 20% G/US after 30 min. Meanwhile, the permeability coefficients of hyperosmotic agents were much enlarged by the treatment of ultrasound in both breast normal tissue and breast cancer tissue. A significant difference in permeability coefficients between health tissue and tumor tissue was also observed in the experiment (p<0.01).
Collapse
Affiliation(s)
- Zhenguo Zhu
- South China Normal University, College of Biophotonics, MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou 510631, China
| | | | | | | | | | | |
Collapse
|
25
|
Lye HS, Khoo BY, Karim AA, Rusul G, Liong MT. Ultrasound enhanced growth and cholesterol removal of Lactobacillus fermentum FTDC 1311 in the parent cells but not the subsequent passages. ULTRASONICS SONOCHEMISTRY 2012; 19:901-908. [PMID: 22265020 DOI: 10.1016/j.ultsonch.2011.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to evaluate the effect of ultrasound on the intestinal adherence ability, cell growth, and cholesterol removal ability of parent cells and subsequent passages of Lactobacillus fermentum FTDC 1311. Ultrasound significantly decreased the intestinal adherence ability of treated parent cells compared to that of the control by 11.32% (P<0.05), which may be due to the protein denaturation upon local heating. Growth of treated parent cells also decreased by 4.45% (P<0.05) immediately upon ultrasound (0-4h) and showed an increase (P<0.05) in the viability by 2.18-2.34% during the later stage of fermentation (12-20 h) compared to that of the control. In addition, an increase (P<0.05) in assimilation of cholesterol (>9.74%) was also observed for treated parent cells compared to that of the control, accompanied by increased (P<0.05) incorporation of cholesterol into the cellular membrane. This was supported by the increased ratio of membrane cholesterol:phospholipids (C:P), saturation of cholesterol in the apolar regions, upper phospholipids regions, and polar regions of membrane phospholipids of parent cells compared to that of the control (P<0.05). However, such traits were not inherited by the subsequent passages of treated cells (first, second, and third passages). Our data suggested that ultrasound treatment could be used to improve cholesterol removal ability of parent cells without inducing permanent damage/defects on treated cells of subsequent passages.
Collapse
Affiliation(s)
- H S Lye
- School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | | | | | | | | |
Collapse
|
26
|
Afadzi M, Davies CDL, Hansen YH, Johansen T, Standal OK, Hansen R, Måsøy SE, Nilssen EA, Angelsen B. Effect of ultrasound parameters on the release of liposomal calcein. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:476-486. [PMID: 22264409 DOI: 10.1016/j.ultrasmedbio.2011.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/17/2011] [Accepted: 11/27/2011] [Indexed: 05/31/2023]
Abstract
The ultrasound exposure parameters that maximize drug release from dierucoyl-phosphatidylcholine (DEPC)-based liposomes were studied using two transducers operating at 300 kHz and 1 MHz. Fluorescent calcein was used as a model drug, and the release from liposomes in solution was measured using a spectrophotometer. The release of calcein was more efficient at 300 kHz than at 1 MHz, with thresholds of peak negative pressures of 0.9 MPa and 1.9 MPa, respectively. Above this threshold, the release increased with increasing peak negative pressure, mechanical index (MI), and duty cycle. The amount of drug released followed first-order kinetics and increased with exposure time to a maximal release. To increase the release further, the MI had to be increased. The results demonstrate that the MI and the overall exposure time are the major parameters that determine the drug's release. The drug's release is probably due to mechanical (cavitation) rather than thermal effects, and that was also confirmed by the detection of hydroxide radicals.
Collapse
Affiliation(s)
- Mercy Afadzi
- Department of Physics, The Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Elia P, Azoulay A, Zeiri Y. On the efficiency of water soluble antioxidants. ULTRASONICS SONOCHEMISTRY 2012; 19:314-324. [PMID: 21798788 DOI: 10.1016/j.ultsonch.2011.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/03/2011] [Accepted: 01/05/2011] [Indexed: 05/31/2023]
Abstract
The wide use of high intensity ultrasound (HIU) in modern medicine raises the question of bio-safety. It has been shown that the effect of HIU in biological media may have similarity to the effects of ionizing radiation. Exposure of biological media to HIU field may lead to cavitation phenomenon followed by formation of free radicals such as hydroxyl radical (OH(·)) and the super-oxide ion (O(2)(·-)). These are highly reactive species that may cause harmful effects and induce oxidative stress. In the present study we employed electron spin resonance (ESR) spectroscopy together with spin traps to quantify the dynamics of hydroxyl radical formation during exposure to HIU field in the presence of different amounts of six antioxidants. Thus, the efficiency of water-soluble antioxidants, namely Allicin, Melatonin, Deoxyribose, Trolox, Nuphlutine and Hermidin, to suppress accumulation of OH radicals was examined. The results show that among the six, Trolox and Allicin reduce hydroxyl concentration with the highest efficiency.
Collapse
Affiliation(s)
- Paz Elia
- Biomedical Engineering, Ben-Gurion University, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
28
|
Chen YC, Jiang LP, Liu NX, Wang ZH, Hong K, Zhang QP. P85, Optison microbubbles and ultrasound cooperate in mediating plasmid DNA transfection in mouse skeletal muscles in vivo. ULTRASONICS SONOCHEMISTRY 2011; 18:513-519. [PMID: 20863738 DOI: 10.1016/j.ultsonch.2010.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/22/2010] [Accepted: 08/31/2010] [Indexed: 05/29/2023]
Abstract
Pluronic block copolymers, a kind of non-ionic surfactant, also known as poloxamers, and ultrasound-targeted microbubble destruction have been respectively investigated as vectors for gene delivery in vitro and in vivo. However, they are limited for clinical application due to the relatively low transfer efficiency of each individual vector. In the present study, we explored if the combination of P85, a pluronic block copolymer, Optison, a microbubble contrast agent and ultrasound enhances the transfection of plasmid DNA in vivo using mouse skeletal muscle models. Plasmid encoding green fluorescent protein (GFP) was respectively conjugated with 0.05%P85, 10%Optison, or 0.05%P85 plus 10%Optison, and injected into mouse tibialis anterior (TA) muscles with or without ultrasound irradiation (1 MHz, 1 W/cm(2), 2 min and 20% duty cycle). Mice were sacrificed 1 week after injection. The TA muscles were collected and cryo-sectioned into a series of 7 μm slices. To assess the efficiency of plasmid DNA transfection, tissue sections were counterstained with DAPI and scored by counting the number of GFP-positive fibers. Meanwhile the area of damaged muscles was measured based on the tissues stained with hematoxylin and eosin. Both P85 and Optison significantly enhanced the delivery of plasmid DNA in mouse TA skeletal muscles (P<0.01 and P<0.05 respectively, compared to saline control). In combination with Ultrasound irradiation, P85 (P<0.01, compared to P85 alone) but not Optison (P>0.05, compared to Optison alone) exerted a more pronounced effect on the transfection efficiency. Furthermore P85-induced gene delivery was higher than that by Optison regardless of the presence of ultrasound (P<0.01). The highest transfection efficiency was observed when P85, Optison and ultrasound irradiation were administrated together (P<0.01, compared to any other treatment in this study). The area of damaged muscles was enlarged by ultrasound irradiation in the presence of Optison microbubbles (P<0.01, compared to those groups without ultrasound irradiation). These results suggest that P85, microbubbles and ultrasound irradiation synergistically enhance plasmid DNA delivery in mouse skeletal muscles in vivo.
Collapse
Affiliation(s)
- Yun-Chao Chen
- Ultrasound Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
29
|
Chen YC, Jiang LP, Liu NX, Ding L, Liu XL, Wang ZH, Hong K, Zhang QP. Enhanced Gene Transduction into Skeletal Muscle of Mice In Vivo with Pluronic Block Copolymers and Ultrasound Exposure. Cell Biochem Biophys 2011; 60:267-73. [DOI: 10.1007/s12013-010-9149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Evjen TJ, Nilssen EA, Barnert S, Schubert R, Brandl M, Fossheim SL. Ultrasound-mediated destabilization and drug release from liposomes comprising dioleoylphosphatidylethanolamine. Eur J Pharm Sci 2011; 42:380-6. [PMID: 21238586 DOI: 10.1016/j.ejps.2011.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/16/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
Novel sonosensitive doxorubicin-containing liposomes comprising dioleoylphosphatidylethanolamine (DOPE) as the main lipid constituent were developed and characterized in terms of ultrasound-mediated drug release in vitro. The liposome formulation showed high sonosensitivity; where approximately 95% doxorubicin was released from liposomes after 6min of 40kHz US exposure in buffered sucrose solution. This represented a 30% increase in release extent in absolute terms compared to liposomes comprising the saturated lipid analogue distearoylphosphatidylethanolamine (DSPE), and a 9-fold improvement in release extent when compared to standard pegylated liposomal doxorubicin, respectively. Ultrasound release experiments in the presence of serum showed a significantly reduction in sonosensitivity of DSPE-based liposomes, whilst the release properties of DOPE-based liposomes were essentially maintained. Dynamic light scattering measurements and cryo-transmission electron microscopy of DOPE-based liposomes after ultrasound treatment indicated liposome disruption and formation of various lipid structures, corroborating the high release extent. The results point to the potential of DOPE-based liposomes as a new class of drug carriers for ultrasound-mediated drug delivery.
Collapse
|
31
|
Hasanzadeh H, Mokhtari-Dizaji M, Bathaie SZ, Hassan ZM, Nilchiani V, Goudarzi H. Enhancement and control of acoustic cavitation yield by low-level dual frequency sonication: a subharmonic analysis. ULTRASONICS SONOCHEMISTRY 2011; 18:394-400. [PMID: 20678953 DOI: 10.1016/j.ultsonch.2010.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/26/2010] [Accepted: 07/07/2010] [Indexed: 05/08/2023]
Abstract
Evaluation of inertial cavitation is a significant problem where this mechanism of action is responsible for therapeutic applications such as drug delivery. It has shown that using multiple frequencies one is able to enhance and control induced cavitation. In this study, we used different sonication frequencies as 28 kHz, 130 kHz, 1 MHz, 3 MHz and their dual combinations to enhance acoustic cavitation. At each frequency, two different intensities were used and the subharmonic amplitude of each frequency in combinations was measured. It was observed that in combinations which include 28 kHz, the cavitation activity is enhanced. The 28 kHz subharmonic amplitude was used to compare these protocols in their ability to enhance cavitation. Besides, the area of cavitation damage was determined using an aluminum foil. Our results showed that the inertial cavitation activity increased at higher intensities and there is a significant correlation between the subharmonic amplitude and sonication intensity at each frequency (R>0.90). In addition, simultaneous combined dual-frequency orthogonal sonication at 28 kHz with other frequencies used can significantly increase the inertial cavitation activity as compared to the algebraic sum of the individual ultrasound irradiations in 28 kHz subharmonic frequency. The 28 kHz subharmonic amplitude for 28 kHz (0.04 W/cm(2)) and 3 MHz (2 and 1 W/cm(2)) combined dual frequency were about 4.6 and 1.5 times higher than that obtained from the algebraic sum of 28 kHz and 3 MHz irradiation, respectively. Also the 28 kHz subharmonic amplitude for combination of 28 kHz (0.04 W/cm(2)) and 1 MHz (2 and 1 W/cm(2)) were about 2.4 and 1.6 times higher than that obtained with their algebraic sum. Among different combinations, the continuous mode for two ultrasound sources of 28 kHz (0.04 W/cm(2)) and 3 MHz (2 W/cm(2)) is more effective than other combinations (p-value<0.05). The results of effective irradiation area showed no damaged aluminum foil in MHz sonication alone. However, there is significant difference between the effective irradiation area of combined dual frequency 28 kHz and 3 MHz with other irradiation modes (p-value<0.05) and it is limited locally.
Collapse
Affiliation(s)
- Hadi Hasanzadeh
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
32
|
Cancelos S, Moraga FJ, Lahey RT, Shain W, Parsons RH. The effect of acoustically-induced cavitation on the permeance of a bullfrog urinary bladder. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 128:2726-2738. [PMID: 21110568 DOI: 10.1121/1.3493442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is well known that ultrasound enhances drug delivery to tissues, although there is not a general consensus about the responsible mechanisms. However, it is known that the most important factor associated with ultrasonically-enhanced drug permeance through tissues is cavitation. Here we report results from research conducted using a experimental approach adapted from single bubble sonoluminescence experiments which generates very well defined acoustic fields and allows controlled activation and location of cavitation. The experimental design requires that a biological tissue be immersed inside a highly degassed liquid media to avoid random bubble nucleation. Therefore, live frog bladders were used as the living tissue due to their high resistance to hypoxia. Tissue membrane permeance was measured using radiolabeled urea. The results show that an increase in tissue permeance only occurs when cavitation is present near the tissue membrane. Moreover, confocal microscopy shows a direct correlation between permeance increases and physical damage to the tissue.
Collapse
Affiliation(s)
- Silvina Cancelos
- Center for Multiphase Research, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA.
| | | | | | | | | |
Collapse
|
33
|
Chen Y, Huang D, Li K, Wang Z, Hong K, Wang F, Zang Q. Ultrasound and microbubbles: their functions in gene transfer in vitro. ACTA ACUST UNITED AC 2010; 27:479-82. [PMID: 17828517 DOI: 10.1007/s11596-007-0434-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Indexed: 11/30/2022]
Abstract
To examine the role of ultrasound in gene delivery in vitro, three cells lines were exposed to the low-frequency ultrasound of varying intensities and for different durations to evaluate their effect on gene transfection and cell viability of the cells. Microbubble (MB), Optison (10%), was also used to observe the role of the microbubbles in gene transfection. The results demonstrated that as the ultrasound intensity and the exposure time increased, the gene transfer rate increased and the cell viability decreased, but at high energy intensities, the cell viability decreased dramatically, which caused the transfer rate to decrease. The most efficient ultrasound intensity for inducing gene transfer was 1 W/cm(2) with duration being 20 s. At the same energy intensity, higher ultrasound intensity could achieve maximal gene transfer rate earlier. Microbubbles could increase ultrasound-induced cell gene transfer rate by about 2 to 3 times mainly at lower energy intensities. Moreover, microbubbles could raise the maximum gene transfer rate mediated by ultrasound. It is concluded that the low-frequency ultrasound can induce cell gene transfer and the cell gene transfer rate and viability are correlated with not only the ultrasound energy intensity but also the ultrasound intensity, the higher ultrasound intensity achieves its maximal transfer rate more quickly and the ultrasound intensity that can induce optimal gene transfer is 1 W/cm(2) with duration being 20 s, and microbubbles can significantly increase the maximal gene transfer rate in vitro.
Collapse
Affiliation(s)
- Yunchao Chen
- Department of Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang YXJ, Leung KCF, Cheung WH, Wang HH, Shi L, Wang DF, Qin L, Ahuja AT. Low-intensity pulsed ultrasound increases cellular uptake of superparamagnetic iron oxide nanomaterial: results from human osteosarcoma cell line U2OS. J Magn Reson Imaging 2010; 31:1508-13. [PMID: 20512908 DOI: 10.1002/jmri.22173] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To determine whether low-intensity pulsed ultrasound (LIPUS) is able to facilitate the uptake of a superparamagnetic iron oxide (SPIO) nanomaterial by cells that do not express high endocytosis capacity. MATERIALS AND METHODS The human osteosarcoma cell line U2OS and a silica-coated SPIO functionalized peripherally with amines groups (overall diameter 8 nm) were used in this study. Adherent U2OS cells were labeled with SPIO by incubating with culture media containing the SPIO at 4.5 microg[Fe]/mL. LIPUS with the same parameters as those used in clinical application to accelerate bone fracture healing (1.5 MHz, duty cycle 1:4, spatial-average temporal-average intensity 30 mW/cm(2)) was applied to the cells at the beginning of the labeling process for 0, 0.5, 1, or 3 hours. The total incubation time with SPIO was 12 hours. SPIO labeling efficiency was evaluated with Prussian blue staining and a blueness measurement method, and magnetic resonance imaging (MRI) of cell pellets via measuring areas of SPIO-induced signal void. RESULTS Both Prussian blue staining and in vitro MRI demonstrated that LIPUS application increased the SPIO nanomaterial labeling efficiency for U2OS cells in an exposure-duration-dependent manner. CONCLUSION This study is a "proof of concept" that LIPUS can facilitate the cellular take-up of SPIO nanomaterial.
Collapse
Affiliation(s)
- Yi-Xiang J Wang
- Department of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Qiu B, Xie D, Walczak P, Li X, Ruiz-Cabello J, Minoshima S, Bulte JWM, Yang X. Magnetosonoporation: instant magnetic labeling of stem cells. Magn Reson Med 2010; 63:1437-41. [PMID: 20512844 DOI: 10.1002/mrm.22348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of this study was to develop an instant MR cell labeling technique, called magnetosonoporation. First, a magnetosonoporation apparatus was successfully established for MR labeling of stem cells. Then, the safety of this new cell labeling approach was confirmed by evaluation of cell viability, proliferation, and differentiation of magnetosonoporation-labeled and unlabeled C17.2 neural stem cells. Subsequently, the feasibility of using in vivo MRI to detect magnetosonoporation/Feridex-labeled stem cells was validated in living animals and confirmed by histologic correlation. The magnetosonoporation technique is expected to be convenient, efficient, and safe for future clinical application of MRI-guided cell therapies.
Collapse
Affiliation(s)
- Bensheng Qiu
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Xie D, Qiu B, Walczak P, Li X, Ruiz-Cabello J, Minoshima S, Bulte JWM, Yang X. Optimization of magnetosonoporation for stem cell labeling. NMR IN BIOMEDICINE 2010; 23:480-484. [PMID: 20213856 DOI: 10.1002/nbm.1485] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent advances in magnetic cell labeling have taken place with the development of a magnetosonoporation (MSP) technique. The aim of this study was to optimize the MSP protocol in order to achieve high cell viability and intracellular uptake of MR contrast agents. First, we determined the sub-optimal MSP parameters by evaluating the viabilities of C17.2 neural stem cells without Feridex using various MSP intensities ranging from 0.1 to 1 w/cm(2), duty cycles at 20%, 50% or 100%, and exposure times from 1-15 min. The sub-optimized MSP parameters with cell viabilities greater than 90% were further optimized by evaluating both cell viability and intracellular iron uptake when Feridex was used. We then used the optimized MSP parameters to determinate the optimal concentration of Feridex for magnetic cell labeling. Subsequently, we validated the feasibility of using MRI to track the migration of neural stem cells from the transplanted sites to glioma masses in four mouse brains when the cells had been labeled with Feridex using the optimized MSP protocol. The MRI findings were confirmed by histological correlations. In vitro experiments demonstrated that the optimal MSP protocol was achieved at 20% duty cycle, 0.3 w/cm(2) ultrasound intensity, 5-min exposure time and 1 mg/mL Feridex. This study demonstrated that the optimized MSP cell labeling technique can achieve both high cell viability and intracellular uptake of MR contrast agents, and has the potential to be a useful cell labeling technique to facilitate future clinical translation of MRI-integrated cell therapy.
Collapse
Affiliation(s)
- Daohai Xie
- Image-Guided Bio-Molecular Interventions Section, Department of Radiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Ultrasound is a very effective modality for drug delivery and gene therapy because energy that is non-invasively transmitted through the skin can be focused deeply into the human body in a specific location and employed to release drugs at that site. Ultrasound cavitation, enhanced by injected microbubbles, perturbs cell membrane structures to cause sonoporation and increases the permeability to bioactive materials. Cavitation events also increase the rate of drug transport in general by augmenting the slow diffusion process with convective transport processes. Drugs and genes can be incorporated into microbubbles, which in turn can target a specific disease site using ligands such as the antibody. Drugs can be released ultrasonically from microbubbles that are sufficiently robust to circulate in the blood and retain their cargo of drugs until they enter an insonated volume of tissue. Local drug delivery ensures sufficient drug concentration at the diseased region while limiting toxicity for healthy tissues. Ultrasound-mediated gene delivery has been applied to heart, blood vessel, lung, kidney, muscle, brain, and tumour with enhanced gene transfection efficiency, which depends on the ultrasonic parameters such as acoustic pressure, pulse length, duty cycle, repetition rate, and exposure duration, as well as microbubble properties such as size, gas species, shell material, interfacial tension, and surface rigidity. Microbubble-augmented sonothrombolysis can be enhanced further by using targeting microbubbles.
Collapse
Affiliation(s)
- H-D Liang
- School of Engineering, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
38
|
Xenariou S, Liang HD, Griesenbach U, Zhu J, Farley R, Somerton L, Singh C, Jeffery PK, Scheule RK, Cheng SH, Geddes DM, Blomley M, Alton EWFW. Low-frequency ultrasound increases non-viral gene transfer to the mouse lung. Acta Biochim Biophys Sin (Shanghai) 2010; 42:45-51. [PMID: 20043046 DOI: 10.1093/abbs/gmp100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of the study was to assess if low-frequency ultrasound (US), in the range of 30-35 kHz, increases non-viral gene transfer to the mouse lung. US is greatly attenuated in the lung due to large energy losses at the air/tissue interfaces. The advantages of low-frequency US, compared with high-frequency US are: (i) increased cavitation (responsible for the formation of transient pores in the cell membrane) and (ii) reduced energy losses during lung penetration. Cationic lipid GL67/plasmid DNA (pDNA), polyethylenimine (PEI)/pDNA and naked pDNA were delivered via intranasal instillation and the animals were then exposed to US (sonoporation) at 0.07 or 0.1 MPa for 10 min. Under these conditions, US did not enhance GL67 or PEI-mediated transfection. It did, however, increase naked pDNA gene transfer by approximately 4 folds. Importantly, this was achieved in the absence of microbubbles, which are crucial for the commonly used high-frequency (1 MHz) sonoporation but may not be able to withstand nebulization in a clinically relevant setup. Lung hemorrhage was also assessed and shown to increase with US pressure in a dose-dependent manner. We have thus, established that low-frequency US can enhance lung gene transfer with naked pDNA and this enhancement is more effective than the previously reported 1 MHz US.
Collapse
Affiliation(s)
- Stefania Xenariou
- Department of Gene Therapy, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Husseini GA, Pitt WG. Ultrasonic-activated micellar drug delivery for cancer treatment. J Pharm Sci 2009; 98:795-811. [PMID: 18506804 DOI: 10.1002/jps.21444] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of nanoparticles and ultrasound in medicine continues to evolve. Great strides have been made in the areas of producing micelles, nanoemulsions, and solid nanoparticles that can be used in drug delivery. An effective nanocarrier allows for the delivery of a high concentration of potent medications to targeted tissue while minimizing the side effect of the agent to the rest of the body. Polymeric micelles have been shown to encapsulate therapeutic agents and maintain their structural integrity at lower concentrations. Ultrasound is currently being used in drug delivery as well as diagnostics, and has many advantages that elevate its importance in drug delivery. The technique is noninvasive, thus no surgery is needed; the ultrasonic waves can be easily controlled by advanced electronic technology so that they can be focused on the desired target volume. Additionally, the physics of ultrasound are widely used and well understood; thus ultrasonic application can be tailored towards a particular drug delivery system. In this article, we review the recent progress made in research that utilizes both polymeric micelles and ultrasonic power in drug delivery.
Collapse
Affiliation(s)
- Ghaleb A Husseini
- Chemical Engineering Department, American University of Sharjah, Sharjah, United Arab Emirates.
| | | |
Collapse
|
40
|
Liu HL, Hsieh CM. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation. ULTRASONICS SONOCHEMISTRY 2009; 16:431-438. [PMID: 18951828 DOI: 10.1016/j.ultsonch.2008.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/06/2008] [Accepted: 08/28/2008] [Indexed: 05/27/2023]
Abstract
Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.
Collapse
Affiliation(s)
- Hao-Li Liu
- Department of Electrical Engineering and Biomedical Engineering Center, Chang-Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | | |
Collapse
|
41
|
Hao Q, Liu Q, Wang X, Wang P, Li T, Tong WY. Membrane Damage Effect of Therapeutic Ultrasound on Ehrlich Ascitic Tumor Cells. Cancer Biother Radiopharm 2009; 24:41-8. [DOI: 10.1089/cbr.2008.0495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qiao Hao
- College of Life Sciences and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an China
| | - Quanhong Liu
- College of Life Sciences and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an China
- Key Laboratory of Medicinal Plant Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an China
| | - Xiaobing Wang
- College of Life Sciences and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an China
| | - Pan Wang
- College of Life Sciences and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an China
| | - Tao Li
- College of Life Sciences and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an China
- Key Laboratory of Medicinal Plant Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an China
| | - Wan Yan Tong
- College of Life Sciences and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an China
| |
Collapse
|
42
|
Molecular MRI of hematopoietic stem-progenitor cells: in vivo monitoring of gene therapy and atherosclerosis. ACTA ACUST UNITED AC 2008; 5:396-404. [PMID: 18477983 DOI: 10.1038/ncpcardio1217] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 02/22/2008] [Indexed: 11/09/2022]
Abstract
A characteristic feature of atherosclerotic cardiovascular disease is the diffuse involvement of arteries across the entire human body and the presence of multiple, simultaneous lesions. The diffuse nature of this disease creates a unique challenge for early diagnosis and effective treatment. We believe that recent progress in the field of molecular MRI has opened new avenues towards solving the problem. A new technology has been developed that uses molecular MRI to monitor the migration and homing of hematopoietic stem-progenitor cells to injured arteries and atherosclerosis. In this Review, we introduce several novel technical developments in the field of molecular MRI of atherosclerosis, including advanced techniques for magnetic labeling of stem-progenitor cells and molecular MRI of hematopoietic bone marrow cells migrating to injured arteries and homing to atherosclerotic plaques. In addition, we examine molecular MRI of vascular gene therapy mediated by stem-progenitor cells. These new techniques provide the basis for the further development of in vivo MRI techniques to monitor stem-cell-mediated vascular gene therapy for multiple and diffuse atherosclerotic cardiovascular lesions.
Collapse
|
43
|
Abstract
Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.
Collapse
Affiliation(s)
- Abdullah Mahmud
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
44
|
Deckers R, Rome C, Moonen CT. The role of ultrasound and magnetic resonance in local drug delivery. J Magn Reson Imaging 2008; 27:400-9. [DOI: 10.1002/jmri.21272] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Rome C, Deckers R, Moonen CTW. The use of ultrasound in transfection and transgene expression. Handb Exp Pharmacol 2008:225-243. [PMID: 18626604 DOI: 10.1007/978-3-540-77496-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The interaction of ultrasound with tissue leads to radiation pressure, heat generation, and cavitation. These phenomena have been utilised for local gene delivery, transfection and control of expression. Specially designed nanocarriers or adapted ultrasound contrast agents can further enhance local delivery by: (1) increased permeability of cell membranes; (2) local release of genes. Biological carriers may also be used for local gene delivery. Stem cells and immune cells appear especially promising because of their homing capabilities to lesion sites. Imaging methods can be employed for pharmacodistribution and pharmacokinetics. MRI contrast agents can serve as non-invasive reporters on gene distribution when co-delivered with the gene. They can be used to label nanocarriers and cellular transport systems in gene therapy strategies such as those based on stem cells. Finally, ultrasound heating together with the use of a temperature sensitive promoter allows a local, physical, spatio-temporal control of transgene expression, in particular when combined with MRI temperature mapping for monitoring and even controlling ultrasound heating.
Collapse
Affiliation(s)
- Claire Rome
- Laboratory for Molecular and Functional Imaging, UMR5231 CNRS, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
46
|
|
47
|
Murata R, Nakagawa K, Ohtori S, Ochiai N, Arai M, Saisu T, Sasho T, Takahashi K, Moriya H. The effects of radial shock waves on gene transfer in rabbit chondrocytes in vitro. Osteoarthritis Cartilage 2007; 15:1275-82. [PMID: 17537650 DOI: 10.1016/j.joca.2007.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 04/03/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to develop a new technique of gene transfer utilizing radial shock waves. The effects of radial shock waves on gene transfer in rabbit chondrocytes were examined by varying the parameters of exposure conditions in vitro. METHODS Chondrocytes were obtained from New Zealand white rabbits and cultured in a monolayer. A luciferase-encoding gene expression vector, or vector alone, was added to chondrocyte cell suspensions, and the cells were then exposed to radial shock waves. Parameters such as pressure amplitude, number of pulses, frequency, and DNA concentration were varied, and luciferase activity was measured 48h after transfection. Transfection efficiency of radial shock waves was compared with the FuGENE6 transfection method using a green fluorescence protein (GFP)-encoding gene vector by fluorescent-activated cell sorter (FACS) analysis. RESULTS Radial shock wave exposure significantly increased luciferase activity over 140-fold as compared to the control under the optimal exposure conditions. Both pressure amplitude and number of pulses were relevant to transfection efficiency and cell viability, but frequency was not. Transfection efficiency increased in a dose-dependent manner with DNA concentration. FACS analysis showed 4.74% of GFP-encoding gene using radial shock waves. FuGENE6 transfection was almost similar in transfection efficiency to radial shock wave. CONCLUSION In spite of certain degree of cell disruption, radial shock waves significantly augmented reporter gene transfection in rabbit chondrocytes in vitro. Radial shock waves may potentially contribute to the treatment of the cartilage morbidities by enhancing the potency of tissue healing and gene transfection of growth factors.
Collapse
Affiliation(s)
- R Murata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Azencott HR, Peter GF, Prausnitz MR. Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:1805-17. [PMID: 17602827 PMCID: PMC2094718 DOI: 10.1016/j.ultrasmedbio.2007.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/26/2007] [Accepted: 05/10/2007] [Indexed: 05/03/2023]
Abstract
To assess the cell wall's role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare directly the effects of electroporation and sonication in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it nonspecifically disrupts cell-surface barriers.
Collapse
Affiliation(s)
- Harold R. Azencott
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Gary F. Peter
- Institute for Paper Science and Technology, Atlanta, GA 30332
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32605
| | - Mark R. Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
49
|
Besić E. Physical mechanisms and methods employed in drug delivery to tumors. ACTA PHARMACEUTICA 2007; 57:249-68. [PMID: 17878107 DOI: 10.2478/v10007-007-0021-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to several well-known drug delivery strategies developed to facilitate effective chemotherapy with anticancer agents, some new approaches have been recently established, based on specific effects arising from the applications of ultrasound, magnetic and electric fields on drug delivery systems. This paper gives an overview of newly developed methods of drug delivery to tumors and of the related anticancer therapies based on the combined use of different physical methods and specific drug carriers. The conventional strategies and new approaches have been put into perspective to revisit the existing and to propose new directions to overcome the threatening problem of cancer diseases.
Collapse
Affiliation(s)
- Erim Besić
- Department of Biophysics, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10002 Zagreb, Croatia.
| |
Collapse
|
50
|
Abstract
The potential of transdermal drug delivery systems has been demonstrated in recent years with the approval of several medicines for use by patients who are unable to use conventional dosage routes, like oral administration or injection. To enhance the TDDS (Transdermal Drug Delivery System) potential to include other drug candidates, many researchers have been exploring enhancement approaches to increase the permeability of various drugs through the skin. Recently, physical enhancement systems are being reported as having big potential by many researchers. In particular, iontophoresis is a very attractive way of delivering ionized drugs by the application of an electric field to the skin. This has been marketed with some topical and systemic drugs (lidocaine and fentanyl). Sonophoresis is also an attractive method to deliver a drug through the skin using ultrasound. Besides these technologies, various physical approaches are under study. Such technologies can be expected to deliver not only small MW compounds but also macromolecules like peptides. In this article, after looking back through the history of TDDS development, I would like to summarize with new physical and chemical approaches and outline of the new trend of TDDS development with those enhancement system.
Collapse
Affiliation(s)
- Naruhito Higo
- R&D Division, Formulation Research Laboratories, Hisamitsu Pharmaceutical Co., Inc., Saga, Japan.
| |
Collapse
|