1
|
Tsakogiannis A, Manousaki T, Lagnel J, Papanikolaou N, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The Gene Toolkit Implicated in Functional Sex in Sparidae Hermaphrodites: Inferences From Comparative Transcriptomics. Front Genet 2019; 9:749. [PMID: 30713551 PMCID: PMC6345689 DOI: 10.3389/fgene.2018.00749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
Sex-biased gene expression is the mode through which sex dimorphism arises from a nearly identical genome, especially in organisms without genetic sex determination. Teleost fishes show great variations in the way the sex phenotype forms. Among them, Sparidae, that might be considered as a model family displays a remarkable diversity of reproductive modes. In this study, we sequenced and analyzed the sex-biased transcriptome in gonads and brain (the tissues with the most profound role in sexual development and reproduction) of two sparids with different reproductive modes: the gonochoristic common dentex, Dentex dentex, and the protandrous hermaphrodite gilthead seabream, Sparus aurata. Through comparative analysis with other protogynous and rudimentary protandrous sparid transcriptomes already available, we put forward common male and female-specific genes and pathways that are probably implicated in sex-maintenance in this fish family. Our results contribute to the understanding of the complex processes behind the establishment of the functional sex, especially in hermaphrodite species and set the groundwork for future experiments by providing a gene toolkit that can improve efforts to control phenotypic sex in finfish in the ever-increasingly important field of aquaculture.
Collapse
Affiliation(s)
- Alexandros Tsakogiannis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Tereza Manousaki
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Jacques Lagnel
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | | | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Constantinos C. Mylonas
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Costas S. Tsigenopoulos
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| |
Collapse
|
2
|
Ma WJ, Veltsos P, Sermier R, Parker DJ, Perrin N. Evolutionary and developmental dynamics of sex-biased gene expression in common frogs with proto-Y chromosomes. Genome Biol 2018; 19:156. [PMID: 30290841 PMCID: PMC6173898 DOI: 10.1186/s13059-018-1548-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The patterns of gene expression on highly differentiated sex chromosomes differ drastically from those on autosomes, due to sex-specific patterns of selection and inheritance. As a result, X chromosomes are often enriched in female-biased genes (feminization) and Z chromosomes in male-biased genes (masculinization). However, it is not known how quickly sexualization of gene expression and transcriptional degeneration evolve after sex-chromosome formation. Furthermore, little is known about how sex-biased gene expression varies throughout development. RESULTS We sample a population of common frogs (Rana temporaria) with limited sex-chromosome differentiation (proto-sex chromosome), leaky genetic sex determination evidenced by the occurrence of XX males, and delayed gonadal development, meaning that XY individuals may first develop ovaries before switching to testes. Using high-throughput RNA sequencing, we investigate the dynamics of gene expression throughout development, spanning from early embryo to froglet stages. Our results show that sex-biased expression affects different genes at different developmental stages and increases during development, reaching highest levels in XX female froglets. Additionally, sex-biased gene expression depends on phenotypic, rather than genotypic sex, with similar expression in XX and XY males; correlates with gene evolutionary rates; and is not localized to the proto-sex chromosome nor near the candidate sex-determining gene Dmrt1. CONCLUSIONS The proto-sex chromosome of common frogs does not show evidence of sexualization of gene expression, nor evidence for a faster rate of evolution. This challenges the notion that sexually antagonistic genes play a central role in the initial stages of sex-chromosome evolution.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Current address: Department of Biology, Amherst College, Amherst, MA USA
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Ma WJ, Veltsos P, Toups MA, Rodrigues N, Sermier R, Jeffries DL, Perrin N. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes. Genes (Basel) 2018; 9:E294. [PMID: 29895802 PMCID: PMC6027210 DOI: 10.3390/genes9060294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| | - Melissa A Toups
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Daniel L Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Micheletti SJ, Narum SR. Utility of pooled sequencing for association mapping in nonmodel organisms. Mol Ecol Resour 2018; 18:825-837. [PMID: 29633534 DOI: 10.1111/1755-0998.12784] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Abstract
High-density genome-wide sequencing increases the likelihood of discovering genes of major effect and genomic structural variation in organisms. While there is an increasing availability of reference genomes across broad taxa, the greatest limitation to whole-genome sequencing of multiple individuals continues to be the costs associated with sequencing. To alleviate excessive costs, pooling multiple individuals with similar phenotypes and sequencing the homogenized DNA (Pool-Seq) can achieve high genome coverage, but at the loss of individual genotypes. Although Pool-Seq has been an effective method for association mapping in model organisms, it has not been frequently utilized in natural populations. To extend bioinformatic tools for rapid implementation of Pool-Seq data in nonmodel organisms, we developed a pipeline called PoolParty and illustrate its effectiveness in genetic association mapping. Alignment expectations based on five pooled Chinook salmon (Oncorhynchus tshawytscha) libraries showed that approximately 48% genome coverage per library could be achieved with reasonable sequencing effort. We additionally examined male and female O. tshawytscha libraries to illustrate how Pool-Seq techniques can successfully map known genes associated with functional differences among sexes such as growth hormone 2. Finally, we compared pools of individuals of different spawning ages for each sex to discover novel genes involved with age at maturity in O. tshawytscha such as opsin4 and transmembrane protein19. While not appropriate for every system, Pool-Seq data processed by the PoolParty pipeline is a practical method for identifying genes of major effect in nonmodel organisms when high genome coverage is necessary and cost is a limiting factor.
Collapse
Affiliation(s)
- Steven J Micheletti
- Columbia River Inter-Tribal Fish Commission, Hagerman Fish Culture Experiment Station, Hagerman, Idaho
| | - Shawn R Narum
- Columbia River Inter-Tribal Fish Commission, Hagerman Fish Culture Experiment Station, Hagerman, Idaho
| |
Collapse
|
5
|
Tsakogiannis A, Manousaki T, Lagnel J, Sterioti A, Pavlidis M, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The transcriptomic signature of different sexes in two protogynous hermaphrodites: Insights into the molecular network underlying sex phenotype in fish. Sci Rep 2018; 8:3564. [PMID: 29476120 PMCID: PMC5824801 DOI: 10.1038/s41598-018-21992-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/14/2018] [Indexed: 01/22/2023] Open
Abstract
Sex differentiation is a puzzling problem in fish due to the variety of reproductive systems and the flexibility of their sex determination mechanisms. The Sparidae, a teleost family, reflects this remarkable diversity of sexual mechanisms found in fish. Our aim was to capture the transcriptomic signature of different sexes in two protogynous hermaphrodite sparids, the common pandora Pagellus erythrinus and the red porgy Pagrus pagrus in order to shed light on the molecular network contributing to either the female or the male phenotype in these organisms. Through RNA sequencing, we investigated sex-specific differences in gene expression in both species' brains and gonads. The analysis revealed common male and female specific genes/pathways between these protogynous fish. Whereas limited sex differences found in the brain indicate a sexually plastic tissue, in contrast, the great amount of sex-biased genes observed in gonads reflects the functional divergence of the transformed tissue to either its male or female character. Α common "crew" of well-known molecular players is acting to preserve either sex identity of the gonad in these fish. Lastly, this study lays the ground for a deeper understanding of the complex process of sex differentiation in two species with an evolutionary significant reproductive system.
Collapse
Affiliation(s)
- A Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - T Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - J Lagnel
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - A Sterioti
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - M Pavlidis
- Department of Biology, University of Crete, Heraklion, Greece
| | - N Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece.
| |
Collapse
|
6
|
Liu H, Lamm MS, Rutherford K, Black MA, Godwin JR, Gemmell NJ. Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish. Biol Sex Differ 2015; 6:26. [PMID: 26613014 PMCID: PMC4660848 DOI: 10.1186/s13293-015-0044-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Background Teleost fishes exhibit remarkably diverse and plastic sexual developmental patterns. One of the most astonishing is the rapid socially controlled female-to-male (protogynous) sex change observed in bluehead wrasses (Thalassoma bifasciatum). Such functional sex change is widespread in marine fishes, including species of commercial importance, yet its underlying molecular basis remains poorly explored. Methods RNA sequencing was performed to characterize the transcriptomic profiles and identify genes exhibiting sex-biased expression in the brain (forebrain and midbrain) and gonads of bluehead wrasses. Functional annotation and enrichment analysis were carried out for the sex-biased genes in the gonad to detect global differences in gene products and genetic pathways between males and females. Results Here we report the first transcriptomic analysis for a protogynous fish. Expression comparison between males and females reveals a large set of genes with sex-biased expression in the gonad, but relatively few such sex-biased genes in the brain. Functional annotation and enrichment analysis suggested that ovaries are mainly enriched for metabolic processes and testes for signal transduction, particularly receptors of neurotransmitters and steroid hormones. When compared to other species, many genes previously implicated in male sex determination and differentiation pathways showed conservation in their gonadal expression patterns in bluehead wrasses. However, some critical female-pathway genes (e.g., rspo1 and wnt4b) exhibited unanticipated expression patterns. In the brain, gene expression patterns suggest that local neurosteroid production and signaling likely contribute to the sex differences observed. Conclusions Expression patterns of key sex-related genes suggest that sex-changing fish predominantly use an evolutionarily conserved genetic toolkit, but that subtle variability in the standard sex-determination regulatory network likely contributes to sexual plasticity in these fish. This study not only provides the first molecular data on a system ideally suited to explore the molecular basis of sexual plasticity and tissue re-engineering, but also sheds some light on the evolution of diverse sex determination and differentiation systems. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Kim Rutherford
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - John R Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC USA
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak AJ. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system. Chromosome Res 2014; 23:187-97. [PMID: 25394583 PMCID: PMC4430600 DOI: 10.1007/s10577-014-9446-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022]
Abstract
Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species.
Collapse
|
8
|
|
9
|
Brunelli JP, Wertzler KJ, Sundin K, Thorgaard GH. Y-specific sequences and polymorphisms in rainbow trout and Chinook salmon. Genome 2008; 51:739-48. [PMID: 18772952 DOI: 10.1139/g08-060] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Improved methods for genetically sexing salmonids and for characterization of Y-chromosome homologies between species can contribute to understanding the evolution of sex chromosomes and sex-determining mechanisms. In this study we have explored 12.5 kb of Y-chromosome-specific sequence flanking the previously described OtY2 locus in Chinook salmon (Oncorhynchus tshawytscha) and 21 kb of homologous rainbow trout (Oncorhynchus mykiss) Y-chromosome-specific sequence. This is the first confirmed Y-specific sequence for rainbow trout. New Y-specific markers are described for Chinook salmon (OtY3) and rainbow trout (OmyY1), which are readily detected by PCR assays and are advantageous because they also produce autosomal control amplification products. Additionally, AFLP analysis of Chinook salmon yielded another potential Y-chromosome marker. These descriptions will facilitate genotypic sexing and should be useful for population studies of Y-chromosome polymorphisms and for future studies to characterize what appears to be a common sex-determining mechanism between these species.
Collapse
Affiliation(s)
- Joseph P Brunelli
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4236, USA
| | | | | | | |
Collapse
|
10
|
Aguilar CTD, Galetti Junior PM. Chromosome mapping of 5S rRNA genes differentiates Brazilian populations of Leporellus vittatus (Anostomidae, Characiformes). Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000200004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Ghigliotti L, Mazzei F, Ozouf-Costaz C, Christiansen JS, Fevolden SE, Pisano E. First cytogenetic characterization of the sub-arctic marine fish Mallotus villosus (Müller, 1776), Osmeriformes, Osmeridae. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000200003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Rossi AR, Gornung E. Cytogenetic analysis of three Italian populations of Coregonus lavaretus (Pisces, Salmoniformes) with chromosomal localization of major and minor ribosomal genes, and telomeric repeats. Hereditas 2006; 142:15-21. [PMID: 16970606 DOI: 10.1111/j.1601-5223.2005.01901.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The European whitefish, Coregonus lavaretus, widely distributed in freshwater of northern Europe and introduced into the major lakes of northern Italy, has been restocked in central Italian lakes. In accordance with current managing practices, a reduced number of spawners contribute to reproduction within each lake and a certain degree of isolation is to be expected between populations from different lakes, resulting in the rapid fixing of chromosomal changes. A detailed survey of three populations from different lakes was carried out using classical and molecular cytogenetic techniques, to verify if specific chromosomal markers are present in the distinct populations. The comparative analysis revealed intraspecific variability of NORs and fixed differences in their number in the three populations. A co-localization of major and minor rRNA genes on one chromosome site was also observed. The original data regarding the chromosome mapping of the (TTAGGG)(n) telomeric repeat obtained in this study, demonstrated their exclusively terminal distribution, and a conspicuous inter-chromosomal variation in the number of repeats. The results are compared with data available for populations from native geographic ranges.
Collapse
Affiliation(s)
- Anna Rita Rossi
- Department of Animal and Human Biology, University of Rome La Sapienza, Rome, Italy.
| | | |
Collapse
|
13
|
Artieri CG, Mitchell LA, Ng SHS, Parisotto SE, Danzmann RG, Hoyheim B, Phillips RB, Morasch M, Koop BF, Davidson WS. Identification of the sex-determining locus of Atlantic salmon (Salmo salar) on chromosome 2. Cytogenet Genome Res 2006; 112:152-9. [PMID: 16276105 DOI: 10.1159/000087528] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 04/27/2005] [Indexed: 11/19/2022] Open
Abstract
We have integrated data from linkage mapping, physical mapping and karyotyping to gain a better understanding of the sex-determining locus, SEX, in Atlantic salmon (Salmo salar). SEX has been mapped to Atlantic salmon linkage group 1 (ASL1) and is associated with several microsatellite markers. We have used probes designed from the flanking regions of these sex-linked microsatellite markers to screen a bacterial artificial chromosome (BAC) library, representing an 11.7x coverage of the Atlantic salmon genome, which has been HindIII fingerprinted and assembled into contigs. BACs containing sex-linked microsatellites and their related contigs have been identified and representative BACs have been placed on the Atlantic salmon chromosomes by fluorescent in situ hybridization (FISH). This identified chromosome 2, a large metacentric, as the sex chromosome. By positioning several BACs on this chromosome by FISH, it was possible to orient ASL1 with respect to chromosome 2. The region containing SEX appears to lie on the long arm between marker Ssa202DU and a region of heterochromatin identified by DAPI staining. BAC end-sequencing of clones within sex-linked contigs revealed five hitherto unmapped genes along the sex chromosome. We are using an in silico approach coupled with physical probing of the BAC library to extend the BAC contigs to provide a physical map of ASL1, with a view to sequencing chromosome 2 and, in the process, identifying the sex-determining gene.
Collapse
Affiliation(s)
- C G Artieri
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Felip A, Fujiwara A, Young WP, Wheeler PA, Noakes M, Phillips RB, Thorgaard GH. Polymorphism and differentiation of rainbow trout Y chromosomes. Genome 2004; 47:1105-13. [PMID: 15644968 DOI: 10.1139/g04-059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.Key words: sex chromosomes, sex markers, cytogenetics, rainbow trout, fish.
Collapse
Affiliation(s)
- Alicia Felip
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Phillips RB, Noakes MA, Morasch M, Felip A, Thorgaard GH. Does differential selection on the 5S rDNA explain why the rainbow trout sex chromosome heteromorphism is not linked to the SEX locus? Cytogenet Genome Res 2004; 105:122-5. [PMID: 15218267 DOI: 10.1159/000078018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 12/08/2003] [Indexed: 11/19/2022] Open
Abstract
Many but not all rainbow trout strains have morphologically distinguishable sex chromosomes. In these strains, the short arm of the X has multiple copies of 5S rDNA and a bright DAPI band near the centromere, both of which are missing from the Y chromosome, which has a very small short arm. We examined the presence of these markers using fluorescence in situ hybridization (FISH) in four different YY clonal lines derived from different strains and compared the results with sexed fish of the Donaldson strain with the normal X/Y heteromorphism. The Y chromosome in two of the YY clonal lines (Arlee and Swanson) is indistinguishable from the X chromosome and it is positive for 5S rDNA and the DAPI bright band. On the other hand, both 5S rDNA sequences and the DAPI band were not found on the Y chromosome in Hot Creek and Clearwater which have the normal Y. Thus the presence of these two cytogenetic markers may account for the size difference between the short arm of the X and Y chromosome found in most rainbow trout strains. In fishes the expression of one type of 5S rRNA is restricted to oocytes and previous work suggests that although XX males are fairly common, XY females are rare, implying a selective disadvantage for XY females. A hypothesis is presented to explain why this sex chromosome heteromorphism is not closely linked to the SEX locus, which is found on the long arm of the Y chromosome in rainbow trout.
Collapse
Affiliation(s)
- R B Phillips
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, USA.
| | | | | | | | | |
Collapse
|
16
|
Nichols KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes M, Phillips RB, Bentzen P, Spies I, Knudsen K, Allendorf FW, Cunningham BM, Brunelli J, Zhang H, Ristow S, Drew R, Brown KH, Wheeler PA, Thorgaard GH. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet 2003; 34:102-15. [PMID: 12648093 DOI: 10.1046/j.1365-2052.2003.00957.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Androgenetic doubled haploid progeny produced from a cross between the Oregon State University and Arlee clonal rainbow trout (Oncorhynchus mykiss) lines, used for a previous published rainbow trout map, were used to update the map with the addition of more amplified fragment length polymorphic (AFLP) markers, microsatellites, type I and allozyme markers. We have added more than 900 markers, bringing the total number to 1359 genetic markers and the sex phenotype including 799 EcoRI AFLPs, 174 PstI AFLPs, 226 microsatellites, 72 VNTR, 38 SINE markers, 29 known genes, 12 minisatellites, five RAPDs, and four allozymes. Thirty major linkage groups were identified. Synteny of linkage groups in our map with the outcrossed microsatellite map has been established for all except one linkage group in this doubled haploid cross. Putative homeologous relationships among linkage groups, resulting from the autotetraploid nature of the salmonid genome, have been revealed based on the placement of duplicated microsatellites and type I loci.
Collapse
Affiliation(s)
- K M Nichols
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Woram RA, Gharbi K, Sakamoto T, Hoyheim B, Holm LE, Naish K, McGowan C, Ferguson MM, Phillips RB, Stein J, Guyomard R, Cairney M, Taggart JB, Powell R, Davidson W, Danzmann RG. Comparative genome analysis of the primary sex-determining locus in salmonid fishes. Genome Res 2003; 13:272-80. [PMID: 12566405 PMCID: PMC420375 DOI: 10.1101/gr.578503] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We compared the Y-chromosome linkage maps for four salmonid species (Arctic charr, Salvelinus alpinus; Atlantic salmon, Salmo salar; brown trout, Salmo trutta; and rainbow trout, Oncorhynchus mykiss) and a putative Y-linked marker from lake trout (Salvelinus namaycush). These species represent the three major genera within the subfamily Salmoninae of the Salmonidae. The data clearly demonstrate that different Y-chromosomes have evolved in each of the species. Arrangements of markers proximal to the sex-determining locus are preserved on homologous, but different, autosomal linkage groups across the four species studied in detail. This indicates that a small region of DNA has been involved in the rearrangement of the sex-determining region. Placement of the sex-determining region appears telomeric in brown trout, Atlantic salmon, and Arctic charr, whereas an intercalary location for SEX may exist in rainbow trout. Three hypotheses are proposed to account for the relocation: translocation of a small chromosome arm; transposition of the sex-determining gene; or differential activation of a primary sex-determining gene region among the species.
Collapse
Affiliation(s)
- Rachael A Woram
- Department of Zoology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|