1
|
Vosegaard T. Single-crystal NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 123:51-72. [PMID: 34078537 DOI: 10.1016/j.pnmrs.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Single-crystal (SC) NMR spectroscopy is a solid-state NMR method that has been used since the early days of NMR to study the magnitude and orientation of tensorial nuclear spin interactions in solids. This review first presents the field of SC NMR instrumentation, then provides a survey of software for analysis of SC NMR data, and finally it highlights selected applications of SC NMR in various fields of research. The aim of the last part is not to provide a complete review of all SC NMR literature but to provide examples that demonstrate interesting applications of SC NMR.
Collapse
Affiliation(s)
- Thomas Vosegaard
- Department of Chemistry and Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Awosanya EO, Lapin J, Nevzorov AA. NMR "Crystallography" for Uniformly ( 13 C, 15 N)-Labeled Oriented Membrane Proteins. Angew Chem Int Ed Engl 2020; 59:3554-3557. [PMID: 31887238 DOI: 10.1002/anie.201915110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/29/2019] [Indexed: 01/01/2023]
Abstract
In oriented-sample (OS) solid-state NMR of membrane proteins, the angular-dependent dipolar couplings and chemical shifts provide a direct input for structure calculations. However, so far only 1 H-15 N dipolar couplings and 15 N chemical shifts have been routinely assessed in oriented 15 N-labeled samples. The main obstacle for extending this technique to membrane proteins of arbitrary topology has remained in the lack of additional experimental restraints. We have developed a new experimental triple-resonance NMR technique, which was applied to uniformly doubly (15 N, 13 C)-labeled Pf1 coat protein in magnetically aligned DMPC/DHPC bicelles. The previously inaccessible 1 Hα -13 Cα dipolar couplings have been measured, which make it possible to determine the torsion angles between the peptide planes without assuming α-helical structure a priori. The fitting of three angular restraints per peptide plane and filtering by Rosetta scoring functions has yielded a consensus α-helical transmembrane structure for Pf1 protein.
Collapse
Affiliation(s)
- Emmanuel O Awosanya
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| | - Joel Lapin
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC, 27695-8204, USA
| |
Collapse
|
3
|
Awosanya EO, Lapin J, Nevzorov AA. NMR “Crystallography” for Uniformly (
13
C,
15
N)‐Labeled Oriented Membrane Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Emmanuel O. Awosanya
- Department of Chemistry North Carolina State University 2620 Yarbrough Drive Raleigh NC 27695-8204 USA
| | - Joel Lapin
- Department of Chemistry North Carolina State University 2620 Yarbrough Drive Raleigh NC 27695-8204 USA
| | - Alexander A. Nevzorov
- Department of Chemistry North Carolina State University 2620 Yarbrough Drive Raleigh NC 27695-8204 USA
| |
Collapse
|
4
|
Hansen SK, Bertelsen K, Paaske B, Nielsen NC, Vosegaard T. Solid-state NMR methods for oriented membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:48-85. [PMID: 26282196 DOI: 10.1016/j.pnmrs.2015.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Oriented-sample solid-state NMR represents one of few experimental methods capable of characterising the membrane-bound conformation of proteins in the cell membrane. Since the technique was developed 25 years ago, the technique has been applied to study the structure of helix bundle membrane proteins and antimicrobial peptides, characterise protein-lipid interactions, and derive information on dynamics of the membrane anchoring of membrane proteins. We will review the major developments in various aspects of oriented-sample solid-state NMR, including sample-preparation methods, pulse sequences, theory required to interpret the experiments, perspectives for and guidelines to new experiments, and a number of representative applications.
Collapse
Affiliation(s)
- Sara K Hansen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Berit Paaske
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Judge PJ, Taylor GF, Dannatt HRW, Watts A. Solid-state nuclear magnetic resonance spectroscopy for membrane protein structure determination. Methods Mol Biol 2015; 1261:331-47. [PMID: 25502207 DOI: 10.1007/978-1-4939-2230-7_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR (ssNMR) is a versatile technique that can provide high-resolution (sub-angstrom) structural data for integral membrane proteins embedded in native and model membrane environments. The methodologies for a priori structure determination have for the most part been developed using samples with crystalline and fibrous morphologies. However, the techniques are now being applied to large, polytopic membrane proteins including receptors, ion channels, and porins. ssNMR data may be used to annotate and refine existing structures in regions of the protein not fully resolved by crystallography (including ligand-binding sites and mobile solvent accessible loop regions). This review describes the spectroscopic experiments and data analysis methods (including assignment) used to generate high-resolution structural data for membrane proteins. We also consider the range of sample morphologies that are appropriate for study by this method.
Collapse
Affiliation(s)
- Peter J Judge
- Biomembrane Structure Unit, Biochemistry Department, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | |
Collapse
|
6
|
Bak M, Rasmussen JT, Nielsen NC. SIMPSON - an important driver for numerical simulations in solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 213:401-403. [PMID: 21903437 DOI: 10.1016/j.jmr.2011.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present a historical recollection on the development of the software package SIMPSON (SIMulation Package for SOlid-state Nmr). This covers a brief description of the underlying ideas and events leading to creation of SIMPSON and numerous auxiliary programs as well as comments on its impact on the development and application of solid-state NMR in research laboratories world-wide.
Collapse
Affiliation(s)
- Mads Bak
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Denmark
| | | | | |
Collapse
|
7
|
Straus SK, Scott WRP, Schwieters CD, Marvin DA. Consensus structure of Pf1 filamentous bacteriophage from X-ray fibre diffraction and solid-state NMR. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:221-34. [PMID: 21082179 PMCID: PMC5545983 DOI: 10.1007/s00249-010-0640-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/24/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
Filamentous bacteriophages (filamentous bacterial viruses or Inovirus) are simple and well-characterised macromolecular assemblies that are widely used in molecular biology and biophysics, both as paradigms for studying basic biological questions and as practical tools in areas as diverse as immunology and solid-state physics. The strains fd, M13 and f1 are virtually identical filamentous phages that infect bacteria expressing F-pili, and are sometimes grouped as the Ff phages. For historical reasons fd has often been used for structural studies, but M13 and f1 are more often used for biological experiments. Many other strains have been identified that are genetically quite distinct from Ff and yet have a similar molecular structure and life cycle. One of these, Pf1, gives the highest resolution X-ray fibre diffraction patterns known for filamentous bacteriophage. These diffraction patterns have been used in the past to derive a molecular model for the structure of the phage. Solid-state NMR experiments have been used in separate studies to derive a significantly different model of Pf1. Here we combine previously published X-ray fibre diffraction data and solid-state NMR data to give a consensus structure model for Pf1 filamentous bacteriophage, and we discuss the implications of this model for assembly of the phage at the bacterial membrane.
Collapse
Affiliation(s)
- S. K. Straus
- Department of Chemistry, University of British Columbia, Vancouver BC, Canada V6T 1Z1
| | - W. R. P Scott
- Department of Chemistry, University of British Columbia, Vancouver BC, Canada V6T 1Z1
| | - C. D. Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Building 12A, Bethesda MD 20892-5624, USA
| | - D. A. Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
8
|
Traaseth NJ, Gopinath T, Veglia G. On the performance of spin diffusion NMR techniques in oriented solids: prospects for resonance assignments and distance measurements from separated local field experiments. J Phys Chem B 2010; 114:13872-80. [PMID: 20936833 PMCID: PMC3000634 DOI: 10.1021/jp105718r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NMR spin diffusion experiments have the potential to provide both resonance assignment and internuclear distances for protein structure determination in oriented solid-state NMR. In this paper, we compared the efficiencies of three spin diffusion experiments: proton-driven spin diffusion (PDSD), cross-relaxation-driven spin diffusion (CRDSD), and proton-mediated proton transfer (PMPT). As model systems for oriented proteins, we used single crystals of N-acetyl-L-(15)N-leucine (NAL) and N-acetyl-L-(15)N-valyl-L-(15)N-leucine (NAVL) to probe long and short distances, respectively. We demonstrate that, for short (15)N/(15)N distances such as those found in NAVL (3.3 Å), the PDSD mechanism gives the most intense cross-peaks, while, for longer distances (>6.5 Å), the CRDSD and PMPT experiments are more efficient. The PDSD was highly inefficient for transferring magnetization across distances greater than 6.5 Å (NAL crystal sample), due to small (15)N/(15)N dipolar couplings (<4.5 Hz). Interestingly, the mismatched Hartmann-Hahn condition present in the PMPT experiment gave more intense cross-peaks for lower (1)H and (15)N RF spinlock amplitudes (32 and 17 kHz, respectively) rather than higher values (55 and 50 kHz), suggesting a more complex magnetization transfer mechanism. Numerical simulations are in good agreement with the experimental findings, suggesting a combined PMPT and CRDSD effect. We conclude that, in order to assign SLF spectra and measure short- and long-range distances, the combined use of homonuclear correlation spectra, such as the ones surveyed in this work, are necessary.
Collapse
Affiliation(s)
- Nathaniel J Traaseth
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
9
|
Vosegaard T. Challenges in numerical simulations of solid-state NMR experiments: spin exchange pulse sequences. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2010; 38:77-83. [PMID: 21330113 DOI: 10.1016/j.ssnmr.2011.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/14/2011] [Accepted: 01/24/2011] [Indexed: 05/30/2023]
Abstract
While simulations are essential for interpretation of solid-state NMR experiments, large spin systems involved in e.g. spin-diffusion experiments and/or dynamic effects like chemical exchange pose great challenges for the numerical simulations, where we typically want to include effects of finite pulses and other external manipulations in the simulation. In this paper, these topics are reviewed and addressed by simple numerical simulations. The numerical simulations comprise a 2-spin simulation of (2)H two-site jumps and a 332-spin simulation of a CHHC experiment for a small protein.
Collapse
Affiliation(s)
- Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
10
|
Ndao M, Ash JT, Stayton PS, Drobny GP. The Role of Basic Amino Acids in the Molecular Recognition of Hydroxyapatite by Statherin using Solid State NMR. SURFACE SCIENCE 2010; 604:L39-L42. [PMID: 20676391 PMCID: PMC2910444 DOI: 10.1016/j.susc.2010.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Organisms use proteins such as statherin to control the growth of hydroxyapatite (HAP), which is the principal component of teeth and bone. Though much emphasis has been placed on the acidic character of these proteins, the role of their basic amino acids is not well understood. In this work, solid state nuclear magnetic resonance was used to probe the interaction of the basic arginine side chains with the HAP surface. Statherin samples were individually labeled at each arginine site, and the distance to the surface was measured using the Rotational Echo DOuble Resonance (REDOR) technique. The results indicate a strong coupling between the R9 and R10 residues and the phosphorus atoms on the surface, with internuclear distances of 4.62 ± 0.29 Å and 4.53 ± 0.16 Å, respectively. Conversely, results also indicate weak coupling between R13 and the surface, suggesting this residue is more removed from the surface than R9 and R10. Combining these results with previous data, a new model for the molecular recognition of HAP by statherin is constructed.
Collapse
Affiliation(s)
- Moise Ndao
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - Jason T. Ash
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, Washington 98195
| | - Gary P. Drobny
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
11
|
Gopinath T, Traaseth NJ, Mote K, Veglia G. Sensitivity enhanced heteronuclear correlation spectroscopy in multidimensional solid-state NMR of oriented systems via chemical shift coherences. J Am Chem Soc 2010; 132:5357-63. [PMID: 20345172 PMCID: PMC3328406 DOI: 10.1021/ja905991s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present new sensitivity enhanced schemes for heteronuclear correlation spectroscopy (HETCOR) in solid-state NMR of oriented systems. These schemes will enhance the sensitivity of the HETCOR by 40% for the two-dimensional experiments (SE-HETCOR) and up to 180% for the 3D HETCOR-separated local field version (SE-PISEMAI-HETCOR). The signal enhancement is demonstrated for a single crystal of ((15)N)N-acetylleucine and the integral membrane protein sarcolipin oriented in lipid bicelles. These methods will significantly reduce the time needed to acquire multidimensional experiments for membrane proteins oriented in magnetically or mechanically aligned lipid bilayers as well as liquid crystalline materials.
Collapse
Affiliation(s)
- T. Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | | - Kaustubh Mote
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
12
|
Bertelsen K, Paaske B, Thøgersen L, Tajkhorshid E, Schiøtt B, Skrydstrup T, Nielsen NC, Vosegaard T. Residue-specific information about the dynamics of antimicrobial peptides from (1)H-(15)N and (2)H solid-state NMR spectroscopy. J Am Chem Soc 2010; 131:18335-42. [PMID: 19929000 DOI: 10.1021/ja908604u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new method to obtain information about the conformational dynamics of membrane-proteins using solid-state NMR experiments of oriented samples. By measuring the orientation-dependent (1)H-(15)N dipole-dipole coupling, (15)N anisotropic chemical shift, and (2)H quadrupole coupling parameters for a single residue, it is possible to obtain information about the local dynamics of each residue in the protein. This may be interpreted on an individual basis or through models extended to study conformational motion of membrane-protein segments. The method is demonstrated for the antimicrobial peptaibol alamethicin for which combined analysis of anisotropic interactions for the Aib(8) residue provides detailed information about helix-tilt angle, wobbling, and oscillatory rotation around the helix axis in the membrane bound state. This information is in very good agreement with coarse-grained MD simulations of the peptide in lipid bilayers.
Collapse
Affiliation(s)
- Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), and Department of Chemistry, Bioinformatics Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Naito A. Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 36:67-76. [PMID: 19647984 DOI: 10.1016/j.ssnmr.2009.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 06/16/2009] [Accepted: 06/22/2009] [Indexed: 05/28/2023]
Abstract
Solid-state NMR using magnetically oriented bilayer systems provides useful information on the structure and orientation of peptides and proteins bound to lipid bilayers. The ordering of the lipid bilayer along the magnetic field can be achieved in two ways. First, lipid can be macroscopically oriented by pressing lipid-water dispersion between flat glass plates, which is called a mechanically aligned system. Second, lipid molecules themselves can be aligned spontaneously in the magnetic field because of their diamagnetic anisotropy by forming bicelles or magnetically oriented vesicle systems. Structure and orientation of the membrane-associated peptides and proteins can be achieved by analyzing structural constraints obtained from anisotropic chemical shift interactions such as chemical shift oscillation or nuclear dipolar interactions such as dipolar wave and a combination of them such as PISA wheel. Detailed structure elucidation of various kinds of membrane peptides and proteins in such oriented bilayers is presented.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Japan.
| |
Collapse
|
14
|
Vosegaard T, Nielsen NC. Defining the sampling space in multidimensional NMR experiments: what should the maximum sampling time be? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 199:146-158. [PMID: 19428277 DOI: 10.1016/j.jmr.2009.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/06/2009] [Accepted: 04/09/2009] [Indexed: 05/27/2023]
Abstract
Efficient sampling of signals is a key issue for multiple-dimensional NMR experiments to establish the best ratio between experiment time and spectral quality. Focussing on the most widely used sampling strategy using standard rectangular sampling and data analysis by Fourier transformation, a central question is concerned with determining the optimal maximum sampling time in the individual dimensions. The spectral resolution depends directly on this choice, as do the overall experiment times when addressing the indirect dimensions. We present a theoretical, numerical, and experimental analysis of the sampling space problem and propose approaches to efficient sampling for typical cases.
Collapse
Affiliation(s)
- Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Aarhus C, Denmark.
| | | |
Collapse
|
15
|
Vosegaard T, Bertelsen K, Pedersen JM, Thøgersen L, Schiøtt B, Tajkhorshid E, Skrydstrup T, Nielsen NC. Resolution enhancement in solid-state NMR of oriented membrane proteins by anisotropic differential linebroadening. J Am Chem Soc 2008; 130:5028-9. [PMID: 18341279 DOI: 10.1021/ja8000612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate that a significant improvement in the spectral resolution may be achieved in solid-state NMR experiments of proteins in inhomogeneously disordered oriented lipid bilayers. Using 1H homonuclear decoupling instead of standard 1H heteronuclear decoupling, the 15N line widths may be reduced by up to seven times for such samples. For large oriented membrane proteins, such resolution enhancements may be crucial for assignment and structural interpretation.
Collapse
Affiliation(s)
- Thomas Vosegaard
- Center for Insoluble Protein Structures and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Musial-Siwek M, Kendall DA, Yeagle PL. Solution NMR of signal peptidase, a membrane protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:937-44. [PMID: 18177734 DOI: 10.1016/j.bbamem.2007.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/09/2007] [Accepted: 11/26/2007] [Indexed: 11/16/2022]
Abstract
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.
Collapse
Affiliation(s)
- Monika Musial-Siwek
- Department of Molecular and Cell Biology, The University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
17
|
Dürr UH, Waskell L, Ramamoorthy A. The cytochromes P450 and b5 and their reductases—Promising targets for structural studies by advanced solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3235-59. [DOI: 10.1016/j.bbamem.2007.08.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/08/2007] [Indexed: 02/02/2023]
|
18
|
Bertelsen K, Pedersen JM, Rasmussen BS, Skrydstrup T, Nielsen NC, Vosegaard T. Membrane-Bound Conformation of Peptaibols with Methyl-Deuterated α-Amino Isobutyric Acids by 2H Magic Angle Spinning Solid-State NMR Spectroscopy. J Am Chem Soc 2007; 129:14717-23. [DOI: 10.1021/ja0749690] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kresten Bertelsen
- Contribution from the Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jan M. Pedersen
- Contribution from the Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Brian S. Rasmussen
- Contribution from the Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Troels Skrydstrup
- Contribution from the Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Niels Chr. Nielsen
- Contribution from the Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Contribution from the Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Vosegaard T, Kamihira-Ishijima M, Watts A, Nielsen NC. Helix conformations in 7TM membrane proteins determined using oriented-sample solid-state NMR with multiple residue-specific 15N labeling. Biophys J 2007; 94:241-50. [PMID: 17827220 PMCID: PMC2134869 DOI: 10.1529/biophysj.107.116004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oriented solid-state NMR in combination with multiple-residue-specific (15)N labeling and extensive numerical spectral analysis is proposed to determine helix conformations of large membrane proteins in native membranes. The method is demonstrated on uniaxially oriented samples of (15)N-methionine, -valine, and -glycine-labeled bacteriorhopsin in native purple membranes. Experimental two-dimensional (1)H-(15)N dipole-dipole coupling versus (15)N chemical shift spectra for all samples are analyzed numerically to establish combined constraints on the orientation of the seven transmembrane helices relative to the membrane bilayer normal. Since the method does not depend on specific resonance assignments and proves robust toward nonidealities in the sample alignment, it may be generally feasible for the study of conformational arrangement and function-induced conformation changes of large integral membrane proteins.
Collapse
Affiliation(s)
- Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, Aarhus, Denmark.
| | | | | | | |
Collapse
|
20
|
Fu R, Truong M, Saager RJ, Cotten M, Cross TA. High-resolution heteronuclear correlation spectroscopy in solid state NMR of aligned samples. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 188:41-8. [PMID: 17606394 DOI: 10.1016/j.jmr.2007.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/12/2007] [Accepted: 06/15/2007] [Indexed: 05/16/2023]
Abstract
A new two-dimensional scheme is proposed for accurate measurements of high-resolution chemical shifts and heteronuclear dipolar couplings in NMR of aligned samples. Both the (1)H chemical shifts and the (1)H-(15)N dipolar couplings are evolved in the indirect dimension while the (15)N chemical shifts are detected. This heteronuclear correlation (HETCOR) spectroscopy yields high-resolution (1)H chemical shifts split by the (1)H-(15)N dipolar couplings in the indirect dimension and the (15)N chemical shifts in the observed dimension. The advantages of the HETCOR technique are illustrated for a static (15)N-acetyl-valine crystal sample and a (15)N-labeled helical peptide sample aligned in hydrated lipid bilayers.
Collapse
Affiliation(s)
- Riqiang Fu
- Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, USA.
| | | | | | | | | |
Collapse
|
21
|
Sinha N, Grant CV, Park SH, Brown JM, Opella SJ. Triple resonance experiments for aligned sample solid-state NMR of (13)C and (15)N labeled proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 186:51-64. [PMID: 17293139 PMCID: PMC3760591 DOI: 10.1016/j.jmr.2007.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/11/2007] [Accepted: 01/21/2007] [Indexed: 05/11/2023]
Abstract
Initial steps in the development of a suite of triple-resonance (1)H/(13)C/(15)N solid-state NMR experiments applicable to aligned samples of (13)C and (15)N labeled proteins are described. The experiments take advantage of the opportunities for (13)C detection without the need for homonuclear (13)C/(13)C decoupling presented by samples with two different patterns of isotopic labeling. In one type of sample, the proteins are approximately 20% randomly labeled with (13)C in all backbone and side chain carbon sites and approximately 100% uniformly (15)N labeled in all nitrogen sites; in the second type of sample, the peptides and proteins are (13)C labeled at only the alpha-carbon and (15)N labeled at the amide nitrogen of a few residues. The requirement for homonuclear (13)C/(13)C decoupling while detecting (13)C signals is avoided in the first case because of the low probability of any two (13)C nuclei being bonded to each other; in the second case, the labeled (13)C(alpha) sites are separated by at least three bonds in the polypeptide chain. The experiments enable the measurement of the (13)C chemical shift and (1)H-(13)C and (15)N-(13)C heteronuclear dipolar coupling frequencies associated with the (13)C(alpha) and (13)C' backbone sites, which provide orientation constraints complementary to those derived from the (15)N labeled amide backbone sites. (13)C/(13)C spin-exchange experiments identify proximate carbon sites. The ability to measure (13)C-(15)N dipolar coupling frequencies and correlate (13)C and (15)N resonances provides a mechanism for making backbone resonance assignments. Three-dimensional combinations of these experiments ensure that the resolution, assignment, and measurement of orientationally dependent frequencies can be extended to larger proteins. Moreover, measurements of the (13)C chemical shift and (1)H-(13)C heteronuclear dipolar coupling frequencies for nearly all side chain sites enable the complete three-dimensional structures of proteins to be determined with this approach.
Collapse
Affiliation(s)
- Neeraj Sinha
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, 0307 La Jolla, CA 92093-0307, USA
| | - Christopher V. Grant
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, 0307 La Jolla, CA 92093-0307, USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, 0307 La Jolla, CA 92093-0307, USA
| | | | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, 0307 La Jolla, CA 92093-0307, USA
| |
Collapse
|
22
|
Bertelsen K, Pedersen JM, Nielsen NC, Vosegaard T. 2D separated-local-field spectra from projections of 1D experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 184:330-6. [PMID: 17084651 DOI: 10.1016/j.jmr.2006.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/02/2006] [Accepted: 10/16/2006] [Indexed: 05/12/2023]
Abstract
A novel procedure for reconstruction of 2D separated-local-field (SLF) NMR spectra from projections of 1D NMR data is presented. The technique, dubbed SLF projection reconstruction from one-dimensional spectra (SLF-PRODI), is particularly useful for uniaxially oriented membrane protein samples and represents a fast and robust alternative to the popular PISEMA experiment which correlates (1)H-(15)N dipole-dipole couplings with (15)N chemical shifts. The different 1D projections in the SLF-PRODI experiment are obtained from 1D spectra recorded under influence of homonuclear decoupling sequences with different scaling factors for the heteronuclear dipolar couplings. We demonstrate experimentally and numerically that as few as 2-4 1D projections will normally be sufficient to reconstruct a 2D SLF-PRODI spectrum with a quality resembling typical PISEMA spectra, leading to significant reduction of the acquisition time.
Collapse
Affiliation(s)
- Kresten Bertelsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO), University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
23
|
Park SH, Prytulla S, De Angelis AA, Brown JM, Kiefer H, Opella SJ. High-resolution NMR spectroscopy of a GPCR in aligned bicelles. J Am Chem Soc 2006; 128:7402-3. [PMID: 16756269 PMCID: PMC3236030 DOI: 10.1021/ja0606632] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-state NMR spectra with single-site resolution of CXCR1, a G protein-coupled receptor (GPCR), were obtained in magnetically aligned phospholipid bicelles. These results demonstrate that GPCRs in phospholipid bilayers are suitable samples for structure determination by solid-state NMR. The spectra also enable studies of drug-receptor interactions.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry. University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Stefan Prytulla
- m-phasys GmbH, Vor dem Kreuzberg 17, Tubingen 72070, Germany
| | - Anna A. De Angelis
- Department of Chemistry and Biochemistry. University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | | | - Hans Kiefer
- m-phasys GmbH, Vor dem Kreuzberg 17, Tubingen 72070, Germany
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry. University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| |
Collapse
|
24
|
Smurnyy Y, Opella SJ. Calculating protein structures directly from anisotropic spin interaction constraints. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44:283-93. [PMID: 16477675 DOI: 10.1002/mrc.1761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Protein structure determination by solid-state NMR of aligned samples relies on the fundamental characteristics of the anisotropic nuclear spin interactions present in isotopically labeled proteins. Progress in the implementation of algorithms that calculate protein structures from the orientational constraints in the chemical shift and heteronuclear dipolar coupling interactions is described using both simulated and experimental data.
Collapse
Affiliation(s)
- Yegor Smurnyy
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307, USA
| | | |
Collapse
|
25
|
Tang M, Waring AJ, Lehrer RI, Hong M. Orientation of a beta-hairpin antimicrobial peptide in lipid bilayers from two-dimensional dipolar chemical-shift correlation NMR. Biophys J 2006; 90:3616-24. [PMID: 16500957 PMCID: PMC1440742 DOI: 10.1529/biophysj.105.062075] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The orientation of a beta-sheet membrane peptide in lipid bilayers is determined, for the first time, using two-dimensional (2D) (15)N solid-state NMR. Retrocyclin-2 is a disulfide-stabilized cyclic beta-hairpin peptide with antibacterial and antiviral activities. We used 2D separated local field spectroscopy correlating (15)N-(1)H dipolar coupling with (15)N chemical shift to determine the orientation of multiply (15)N-labeled retrocyclin-2 in uniaxially aligned phosphocholine bilayers. Calculated 2D spectra exhibit characteristic resonance patterns that are sensitive to both the tilt of the beta-strand axis and the rotation of the beta-sheet plane from the bilayer normal and that yield resonance assignment without the need for singly labeled samples. Retrocyclin-2 adopts a transmembrane orientation in dilauroylphosphatidylcholine bilayers, with the strand axis tilted at 20 degrees +/- 10 degrees from the bilayer normal, but changes to a more in-plane orientation in thicker 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyl-choline (POPC) bilayers with a tilt angle of 65 degrees +/- 15 degrees . These indicate that hydrophobic mismatch regulates the peptide orientation. The 2D spectra are sensitive not only to the peptide orientation but also to its backbone (phi, psi) angles. Neither a bent hairpin conformation, which is populated in solution, nor an ideal beta-hairpin with uniform (phi, psi) angles and coplanar strands, agrees with the experimental spectrum. Thus, membrane binding orders the retrocyclin conformation by reducing the beta-sheet curvature but does not make it ideal. (31)P NMR spectra of lipid bilayers with different compositions indicate that retrocyclin-2 selectively disrupts the orientational order of anionic membranes while leaving zwitteronic membranes intact. These structural results provide insights into the mechanism of action of this beta-hairpin antimicrobial peptide.
Collapse
Affiliation(s)
- Ming Tang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
26
|
Marvin DA, Welsh LC, Symmons MF, Scott WRP, Straus SK. Molecular Structure of fd (f1, M13) Filamentous Bacteriophage Refined with Respect to X-ray Fibre Diffraction and Solid-state NMR Data Supports Specific Models of Phage Assembly at the Bacterial Membrane. J Mol Biol 2006; 355:294-309. [PMID: 16300790 DOI: 10.1016/j.jmb.2005.10.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/13/2005] [Accepted: 10/18/2005] [Indexed: 11/20/2022]
Abstract
Filamentous bacteriophage (Inovirus) is a simple and well-characterized model system. The phage particle, or virion, is about 60 angstroms in diameter and several thousand angstrom units long. The virions are assembled at the bacterial membrane as they extrude out of the host without killing it, an example of specific transport of nucleoprotein assemblages across membranes. The Ff group (fd, f1 and M13) has been especially widely studied. Models of virion assembly have been proposed based on a molecular model of the fd virion derived by X-ray fibre diffraction. A somewhat different model of the fd virion using solid-state NMR data has been proposed, not consistent with these models of assembly nor with the X-ray diffraction data. Here we show that reinterpreted NMR data are also consistent with the model derived from X-ray fibre diffraction studies, and discuss models of virion assembly.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | | | | | | | | |
Collapse
|
27
|
Triba MN, Zoonens M, Popot JL, Devaux PF, Warschawski DE. Reconstitution and alignment by a magnetic field of a β-barrel membrane protein in bicelles. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:268-75. [PMID: 16187128 DOI: 10.1007/s00249-005-0014-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/12/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
A protocol is described for the reconstitution of a transmembrane beta-barrel protein domain, tOmpA, into lipid bicelles. tOmpA is the largest protein to be reconstituted in bicelles to date. Its insertion does not prevent bicelles from orienting with their plane either parallel or perpendicular to the magnetic field, depending on the absence or presence of paramagnetic ions. In the latter case, tOmpA is shown to align with the axis of the beta-barrel parallel to the magnetic field, i.e. perpendicular to the plane of the bilayer, an orientation conforming to that in natural membranes and favourable to structural studies by solid-state NMR. Reconstitution into bicelles may offer an interesting approach for structural studies of membrane proteins in a medium resembling a biological membrane, using either NMR or other biophysical techniques. Our data suggest that alignment in the magnetic field of membrane proteins included into bicelles may be facilitated if the protein is folded as a beta-barrel structure.
Collapse
Affiliation(s)
- Mohamed N Triba
- Unité Mixte de Recherche No 7099, Institut de Biologie Physico-Chimique, CNRS - Université Paris 7-Denis Diderot, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | |
Collapse
|
28
|
Watts A. Solid-state NMR in drug design and discovery for membrane-embedded targets. Nat Rev Drug Discov 2005; 4:555-68. [PMID: 16052240 DOI: 10.1038/nrd1773] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Observing drugs and ligands at their site of action in membrane proteins is now possible through the use of a development in biomolecular NMR spectroscopy known as solid-state NMR. Even large, functionally active complexes are being examined using this method, with structural details being resolved at super-high subnanometre resolution. This is supplemented by detailed dynamic and electronic information about the surrounding ligand environment, and gives surprising new insights into the way in which ligands bind, which can aid drug design.
Collapse
Affiliation(s)
- Anthony Watts
- Biomembrane Structure Unit, Biochemistry Department, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
29
|
Bleile DW, Scott WRP, Straus SK. Can PISEMA experiments be used to extract structural parameters for mobile beta-barrels? JOURNAL OF BIOMOLECULAR NMR 2005; 32:101-11. [PMID: 16034662 DOI: 10.1007/s10858-005-5094-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of mobility on 15N chemical shift/15N-(1)H dipolar coupling (PISEMA) solid state NMR experiments applied to macroscopically oriented beta-barrels is assessed using molecular dynamics simulation data of the NalP autotransporter domain embedded in a DMPC bilayer. In agreement with previous findings for alpha-helices, the fast librational motion of the peptide planes is found to have a considerable effect on the calculated PISEMA spectra. In addition, the dependence of the chemical shift anisotropy (CSA) and dipolar coupling parameters on the calculated spectra is evaluated specifically for the beta-barrel case. It is found that the precise choice of the value of the CSA parameters sigma11, sigma22 and sigma33 has only a minor effect, whereas the choice of the CSA parameter theta shifts the position of the peaks by up to 20 ppm and changes the overall shape of the spectrum significantly. As was found for alpha-helices, the choice of the NH bond distance has a large effect on the dipolar coupling constant used for the calculations. Overall, it is found that the alternating beta-strands in the barrel occupy distinct regions of the PISEMA spectra, forming patterns which may prove useful in peak assignment.
Collapse
Affiliation(s)
- Dustin W Bleile
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada
| | | | | |
Collapse
|
30
|
De Angelis AA, Nevzorov AA, Park SH, Howell SC, Mrse AA, Opella SJ. High-resolution NMR spectroscopy of membrane proteins in aligned bicelles. J Am Chem Soc 2005; 126:15340-1. [PMID: 15563135 DOI: 10.1021/ja045631y] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-resolution solid-state NMR spectra can be obtained from uniformly (15)N-labeled membrane proteins in magnetically aligned bicelles. Fast uniaxial diffusion about the axis of the bilayer normal results in single-line spectra that contain the orientational information necessary for protein structure determination.
Collapse
Affiliation(s)
- Anna A De Angelis
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | | | | | | | | | | |
Collapse
|
31
|
Bechinger B, Aisenbrey C, Bertani P. The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:190-204. [PMID: 15519315 DOI: 10.1016/j.bbamem.2004.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Solid-state NMR spectroscopy is being developed at a fast pace for the structural investigation of immobilized and non-crystalline biomolecules. These include proteins and peptides associated with phospholipid bilayers. In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. In static samples the orientation dependence of chemical shift, dipolar or quadrupolar interactions, therefore, provides angular constraints when the polypeptides have been reconstituted into oriented membranes. Furthermore, solid-state NMR spectroscopy of aligned samples offers distinct advantages in allowing access to dynamic processes such as topological equilibria or rotational diffusion in membrane environments. Alternatively, magic angle sample spinning (MAS) results in highly resolved NMR spectra, provided that the sample is sufficiently homogenous. MAS spinning solid-state NMR spectra allow to measure distances and dihedral angles with high accuracy. The technique has recently been developed to selectively establish through-space and through-bond correlations between nuclei, similar to the approaches well-established in solution-NMR spectroscopy.
Collapse
Affiliation(s)
- Burkhard Bechinger
- Faculté de chimie, Institut le Bel, 4, rue Blaise Pascal, 67000 Strasbourg, France.
| | | | | |
Collapse
|
32
|
Kamihira M, Vosegaard T, Mason AJ, Straus SK, Nielsen NC, Watts A. Structural and orientational constraints of bacteriorhodopsin in purple membranes determined by oriented-sample solid-state NMR spectroscopy. J Struct Biol 2005; 149:7-16. [PMID: 15629653 DOI: 10.1016/j.jsb.2004.10.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 09/23/2004] [Indexed: 11/30/2022]
Abstract
We report for the first time, oriented-sample solid-state NMR experiments, specifically polarization inversion spin exchange at the magic angle (PISEMA) and 1H-15N heteronuclear chemical shift correlation (HETCOR), applied to an integral seven-transmembrane protein, bacteriorhodopsin (bR), in natural membranes. The spectra of [15N]Met-bR revealed clearly distinguishable signals from the helical and loop regions. By deconvolution of the helix resonances, it was possible to establish constraints for some helix tilt angles. It was estimated that the extracellular section of helix B has a tilt of less than 5 degrees from the membrane normal, while the tilt of helix A was estimated to be 18-22 degrees , both of which are in agreement with most crystal structures. Comparison of the experimental PISEMA spectrum with simulated spectra based on crystal structures showed that PISEMA and HETCOR experiments are extremely sensitive to the polytopic protein structure, and the solid-state NMR spectra for membrane-embedded bR matched most favorably with the recent 1FBB electron crystallography structure. These results suggest that this approach has the potential to yield structural and orientational constraints for large integral polytopic proteins whilst intercalated and functionally competent in a natural membrane.
Collapse
Affiliation(s)
- Miya Kamihira
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The fact that membrane proteins are notoriously difficult to analyse using standard protocols for atomic-resolution structure determination methods have motivated adaptation of these techniques to membrane protein studies as well as development of new technologies. With this motivation, liquid-state nuclear magnetic resonance (NMR) has recently been used with success for studies of peptides and membrane proteins in detergent micelles, and solid-state NMR has undergone a tremendous evolution towards characterization of membrane proteins in native membrane and oriented phospholipid bilayers. In this mini-review, we describe some of the technological challenges behind these efforts and provide examples on their use in membrane biology.
Collapse
Affiliation(s)
- Nielschr Nielsen
- Department of Chemistry, University of Aarhus, Aarhus C, Denmark.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
35
|
Mason AJ, Siarheyeva A, Haase W, Lorch M, van Veen H, Glaubitz C. Amino acid type selective isotope labelling of the multidrug ABC transporter LmrA for solid-state NMR studies. FEBS Lett 2004; 568:117-21. [PMID: 15196931 DOI: 10.1016/j.febslet.2004.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 05/05/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
The ABC transporter LmrA in Lactococcus lactis confers resistance to a wide range of antibiotics and cytotoxic drugs and is a functional homologue of P-glycoprotein. Recently, solid-state NMR methods have shown potential for structural- and non-perturbing, site directed functional studies. These experiments require isotopic labelling of selected sites. We have developed a strategy to produce large quantities of selectively labelled LmrA reconstituted at a high density in lipid membranes. This makes the 64 kDa integral membrane protein LmrA and therefore the ABC transporter superfamily accessible to NMR analysis.
Collapse
Affiliation(s)
- A James Mason
- Centre for Biomolecular Magnetic Resonance and Institut für Biophysikalische Chemie, J.W. Goethe Universität, Marie-Curie Str. 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Vosegaard T, Nielsen NC. Improved pulse sequences for pure exchange solid-state NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2004; 42:285-290. [PMID: 14745809 DOI: 10.1002/mrc.1339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spin-exchange experiments are useful for improving the resolution and establishment of sequential assignments in solid-state NMR spectra of uniformly (15)N-labeled proteins oriented macroscopically in phospholipid bilayers. To exploit this advantage fully, it is crucial that the diagonal peaks in the two-dimensional exchange spectra are suppressed. This may be accomplished using the recent pure-exchange (PUREX) experiments, which, however, suffer from up to a threefold reduction of the cross-peak intensity relative to experiments without diagonal-peak suppression. This loss in sensitivity may severely hamper the applicability for the study of membrane proteins. In this paper, we present a two-dimensional exchange experiment (iPUREX) which improves the PUREX sensitivity by 50%. The performance of iPUREX is demonstrated experimentally by proton-mediated (15)N-(15)N spin-exchange experiments for a (15)N-labeled N-acetyl-L-valyl-L-leucine dipeptide. The relevance of exchange experiments with diagonal-peak suppression for large, uniformly (15)N-labeled membrane proteins in oriented phospholipid bilayers is demonstrated numerically for the G-protein coupled receptor rhodopsin.
Collapse
Affiliation(s)
- Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO) and Laboratory for Biomolecular NMR Spectroscopy, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark.
| | | |
Collapse
|
37
|
Mesleh MF, Opella SJ. Dipolar Waves as NMR maps of helices in proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2003; 163:288-299. [PMID: 12914844 DOI: 10.1016/s1090-7807(03)00119-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dipolar Waves describe the periodic variation in the magnitudes of dipolar couplings in the backbone of a protein as a function of residue number. They provide a direct link between experimental measurements of dipolar couplings in aligned samples and the periodicity inherent in regular secondary structure elements. It is possible to identify the residues in a helix and the type of helix, deviations from ideality, and to orient the helices relative to an external axis in completely aligned samples and relative to each other in a common frame in weakly aligned samples with Dipolar Waves. They provide a tool for accurately describing helices and a step towards high throughput structure determination of proteins.
Collapse
Affiliation(s)
- Michael F Mesleh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
38
|
Bjerring M, Vosegaard T, Malmendal A, Nielsen N. Methodological development of solid-state NMR for characterization of membrane proteins. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/cmr.a.10069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Nielsen G, Malmendal A, Meissner A, Møller JV, Nielsen NC. NMR studies of the fifth transmembrane segment of sarcoplasmic reticulum Ca2+-ATPase reveals a hinge close to the Ca2+-ligating residues. FEBS Lett 2003; 544:50-6. [PMID: 12782289 DOI: 10.1016/s0014-5793(03)00448-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two recent X-ray structures have tremendously increased the understanding of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and related proteins. Both structures show the fifth transmembrane span (M5) as a single continuous alpha-helix. The inherent structural and dynamic features of this span (Lys758-Glu785) were studied in isolation in sodium dodecyl sulfate (SDS) micelles using liquid-state nuclear magnetic resonance (NMR) spectroscopy. We find that a flexible region (Ile765-Asn768) is interrupting the alpha-helix. The location of the flexible region near the Ca(2+) binding residues Asn768 and Glu771 suggests that together with a similar region in M6 it has a hinge function that may be important for cooperative Ca(2+) binding and occlusion.
Collapse
Affiliation(s)
- Gerd Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology, University of Aarhus, Langelandsgade 140, Denmark
| | | | | | | | | |
Collapse
|