1
|
Born-Torrijos A, Riekenberg P, van der Meer MTJ, Nachev M, Sures B, Thieltges DW. Parasite effects on host's trophic and isotopic niches. Trends Parasitol 2023; 39:749-759. [PMID: 37451950 DOI: 10.1016/j.pt.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Wild animals are usually infected with parasites that can alter their hosts' trophic niches in food webs as can be seen from stable isotope analyses of infected versus uninfected individuals. The mechanisms influencing these effects of parasites on host isotopic values are not fully understood. Here, we develop a conceptual model to describe how the alteration of the resource intake or the internal resource use of hosts by parasites can lead to differences of trophic and isotopic niches of infected versus uninfected individuals and ultimately alter resource flows through food webs. We therefore highlight that stable isotope studies inferring trophic positions of wild organisms in food webs would benefit from routine identification of their infection status.
Collapse
Affiliation(s)
- Ana Born-Torrijos
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands.
| | - Philip Riekenberg
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Marcel T J van der Meer
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - David W Thieltges
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands; Groningen Institute for Evolutionary Life-Sciences, GELIFES, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Yoshioka RM, Brown S, Treneman NC, Schram JB, Galloway AWE. A Rhizocephalan Parasite Induces Pervasive Effects on Its Shrimp Host. THE BIOLOGICAL BULLETIN 2023; 244:201-216. [PMID: 38457679 DOI: 10.1086/729497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractRhizocephalan barnacles are parasites of crustaceans that are known for dramatic effects on hosts, including parasitic castration, feminization, molt inhibition, and the facilitation of epibiosis. Most research on rhizocephalans has focused on carcinized hosts, with relatively little research directed to shrimp hosts that may experience distinct consequences of infection. Here, we describe a high-prevalence rhizocephalan-shrimp system in which multiple host changes are associated with infection: the dock shrimp Pandalus danae infected by the rhizocephalan Sylon hippolytes. In field-collected P. danae, infection by Sylon was associated with development of female sex characters at a smaller size and greater probability of epibiosis. Standardized video observations showed that infected P. danae performed grooming activities at higher rates than uninfected shrimp, suggesting that inhibited molting rather than direct behavioral modification is a likely mechanism for higher epibiosis rates. There was no difference in the composition of grooming behavior types or in general activity between infected and uninfected shrimp. Fatty acid compositions differed with infection, but total lipid concentrations did not, suggesting that parasite-driven shifts in host resource allocation were compensated or redirected from unmeasured tissues. Our results show that Sylon alters its host's role by provisioning an epibiotic substrate and also that it influences host physiology, resulting in feminization and fatty acid shifts. This study lays the groundwork for expanding rhizocephalan-shrimp research and encourages recognition of oft-ignored roles of parasitism in ecological communities.
Collapse
|
3
|
Occurrence of Gastrointestinal Parasites in Synanthropic Neozoan Egyptian Geese (Alopochen aegyptiaca, Linnaeus 1766) in Germany. DIVERSITY 2023. [DOI: 10.3390/d15030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Various studies have shown that the transmission and passage of alien and native pathogens play a critical role in the establishment process of an invasive species and its further spread. Egyptian geese (Alopochen aegyptiaca) are neozotic birds on various continents. They live not only in the countryside near fresh water bodies but also in urban habitats in Central Europe with close contact to humans and their pets. Although their rapid distribution in Europe is widely debated, scientific studies on the anthropozoonotic risks of the population and studies on the present endoparasites in Egyptian geese are rare worldwide. In the present study, 114 shot Egyptian geese and 148 non-invasively collected faecal samples of wild Egyptian geese from 11 different Federal States in Germany were examined. A total of 13 metazoan endoparasite species in 12 different genera were identified. The main endoparasites found were Hystrichis tricolor, Polymorphus minutus, and, in lesser abundance, Cloacotaenia sp. and Echinuria uncinata. Adult stages of Echinostoma revolutum, an anthropozoonotic heteroxenic trematode, were found in 7.9% of the animals examined postmortem. This species was additionally identified by molecular analysis. Although Egyptian geese live in communities with native waterfowl, it appears that they have a lower parasitic load in general. The acquisition of generalistic parasites in an alien species and the associated increased risk of infection for native species is known as “spill-back” and raises the question of impacts on native waterfowl. Differences between animals from rural populations and urban populations were observed. The present study represents the first large-scale survey on gastrointestinal parasites of free-ranging Egyptian geese.
Collapse
|
4
|
Edwards DD, Edwards OM. RANGE EXPANSION OF GREEN TREEFROGS (HYLA CINEREA) IN SOUTHERN ILLINOIS: NO EVIDENCE OF PARASITE RELEASE. J Parasitol 2023; 109:51-55. [PMID: 36881747 DOI: 10.1645/22-50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
For several decades, green treefrogs (Hyla cinerea) have been undergoing rapid range expansion northward and eastward in Illinois, Indiana, and Kentucky. While range expansion of green treefrogs in these states may be linked to climate change, a recent study suggested this expansion could be facilitated by parasites, given that expanded range populations of green treefrogs from Kentucky and Indiana exhibited significant decreases in helminth species diversity compared to those examined from historical locations of Kentucky. Because rapid range expansion may lead to hosts escaping their parasites (= parasite release), a reprieve from parasitic infection could allocate additional resources to growth and reproduction and thus facilitate the expansion. The present study compares patterns of helminth diversity for green treefrogs from historical and 2 types (early and late expansion) of expanded range locations of southern Illinois to test whether these range-expansion populations are also experiencing a reduction in parasitism due to parasite release. The results of this study did not find significant differences in helminth diversity when helminth communities of green treefrogs from their historical and expanded ranges were compared. These results appear to downplay the putative role of parasite release in the northward range expansion of H. cinerea in Illinois. Studies are underway to determine whether local factors, including abiotic conditions and amphibian host diversity, play a more prominent role in influencing helminth diversity of green treefrogs.
Collapse
Affiliation(s)
- Dale D Edwards
- Department of Biology, University of Evansville, Evansville, Indiana 47722
| | - Owen M Edwards
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
5
|
Campos J, Ribas F, Bio A, Freitas V, Souza AT, van der Veer HW. Sacculina carcini impact on energy content of the shore crab Carcinus maenas L. Parasitology 2022; 149:1536-1545. [PMID: 35924593 PMCID: PMC11010527 DOI: 10.1017/s0031182022000993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/03/2022] [Accepted: 07/13/2022] [Indexed: 11/07/2022]
Abstract
The impact of Sacculina carcini infection on the nutritional status of the shore crab Carcinus maenas was investigated in the western Dutch Wadden Sea for a period of 20 months. About 3.3% of the population was sacculinized, i.e. externally infected with S. carcini and only 0.7% presented scars of previous infection. The results of mixed linear models showed that sacculinized and non-sacculinized crabs had similar morphometric condition, while the energy density of parasitized crabs (externa excluded) was significantly reduced by about 4.3% overall, and by up to 5.8% in crabs under 40 mm carapace width. However, when Sacculina externa was included in the energy determinations, the difference in energy density decreased to 1.2%, while total energy content of the pair infected crab-parasite including externa was 30.8% higher than non-sacculinized crabs of similar size. The total energy content of ovigerous females (eggs included) was even higher, near doubling the energy of similar-sized crabs. The same way, total energy content of Sacculina externa was about 4 times lower than total energy of egg mass. The results suggest that the rhizocephalan parasite is efficient in consuming the energy that the host may allocate for growth and maintenance, but require future studies to disentangle the impact of the degree of internal infection and the implications for the dynamics of the population.
Collapse
Affiliation(s)
- Joana Campos
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR-UP), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Felipe Ribas
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR-UP), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Ana Bio
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR-UP), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Vânia Freitas
- Interdisciplinary Centre of Marine and Environmental Research of the University of Porto (CIIMAR-UP), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Allan T. Souza
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic
| | - Henk W. van der Veer
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| |
Collapse
|
6
|
Costan CA, Godsoe WK, Bufford JL, Marris JWM, Hulme PE. Can the enemy release hypothesis explain the success of Rumex (Polygonaceae) species in an introduced range? Biol Invasions 2022. [DOI: 10.1007/s10530-022-02810-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe enemy release hypothesis states that introduced plants have a competitive advantage due to their release from co-evolved natural enemies (i.e., herbivores and pathogens), which allows them to spread rapidly in new environments. This hypothesis has received mixed support to date, but previous studies have rarely examined the herbivore community, plant damage, and performance simultaneously and largely ignored below-ground herbivores. We tested for enemy release by conducting large scale field surveys of insect diversity and abundance in both the native (United Kingdom) and introduced (New Zealand) ranges of three dock (Rumex, Polygonaceae) species: R. conglomeratus Murray (clustered dock), R. crispus L. (curly dock) and R. obtusifolius L. (broad-leaved dock). We captured both above- and below-ground insect herbivores, measured herbivore damage, and plant biomass as an indicator for performance. In the introduced range, Rumex plants had a lower diversity of insect herbivores, all insect specialists present in the native range were absent and plants had lower levels of herbivore damage on both roots and leaves. Despite this, only R. crispus had greater fresh weight in the introduced range compared to the native range. This suggests that enemy release, particularly from below-ground herbivores, could be a driver for the success of R. crispus plants in New Zealand, but not for R. conglomeratus and R. obtusifolius.
Collapse
|
7
|
Romeo C, Piscitelli AP, Santicchia F, Martinoli A, Ferrari N, Wauters LA. Invading parasites: spillover of an alien nematode reduces survival in a native species. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractIt is widely assumed that spillover of alien parasites to native host species severely impacts naïve populations, ultimately conferring a competitive advantage to invading hosts that introduced them. Despite such host-switching events occurring in biological invasions, studies demonstrating the impact of alien macroparasites on native animal hosts are surprisingly few. In Europe, native red squirrels (Sciurus vulgaris) are replaced by introduced North American grey squirrels (S. carolinensis) mainly through resource competition, and, only in the United Kingdom and Ireland, by competition mediated by a viral disease. In Italy such disease is absent, but spillover of an introduced North American nematode (Strongyloides robustus) from grey to red squirrels is known to occur. Here, we used long-term (9 years) capture-mark-recapture and parasitological data of red squirrels in areas co-inhabited by grey squirrels in Northern Italy to investigate the impact of this alien helminth on naïve native squirrels’ body mass, local survival, and reproduction of females. We found no negative effect of the alien parasite on body mass or reproductive success, but intensity of infection by S. robustus reduced survival of both male and female squirrels. Significantly, survival of squirrels co-infected by their native nematode, Trypanoxyuris sciuri, was less affected by S. robustus, suggesting a protective effect of the native helminth against the new infection. Hence, we demonstrate that alien S. robustus spillover adds to the detrimental effects of resource competition and stress induced by grey squirrels, further reducing the fitness of the native species in the presence of the invasive competitor.
Collapse
|
8
|
Symbionts of invasive and native crabs, in Argentina: The most recently invaded area on the Southwestern Atlantic coastline. J Invertebr Pathol 2021; 184:107650. [PMID: 34352239 DOI: 10.1016/j.jip.2021.107650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023]
Abstract
Biological invasions have the capacity to introduce non-native parasites. This study aimed to determine whether the invasive green crab population, Carcinus spp., on the Southwestern Atlantic coast of Argentina harbours any symbionts, and whether these may spillover or spillback between native crabs, Cyrtograpsus altimanus and C. angulatus. Macroscopy, histology, and molecular analyses of some parasites were used to describe and compare their diversity across the three species of crab. We also evaluated the susceptibility of invasive Carcinus spp. to a native digenean, Maritrema madrynense, via experimental infections (exposure and cohabitation). Our results revealed that the green crab pathobiome included similar symbiotic groups to native crabs. This included putative viral, bacterial, and protozoan parasites. Haplosporidium-like observations were recorded in all crab species, and a single green crab was found to be parasitized by an Agmasoma-like microsporidium. Metagenomic analysis of one individual revealed additional symbiotic diversity (46 bacteria, 5 eukaryotic species). The green crabs were infected by more microparasite taxa than the native crabs (5:3). Wild populations of Carcinus spp. were free of metazoan parasites and are shown not to be susceptible to M. madryense under experimental conditions. Our results suggest a reduction/escape of macroparasites (trematode Maritrema madrynense; acanthocephalan Profilicollis chasmagnathi) in invasive Carcinus spp. compared to their native competitors.
Collapse
|
9
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
10
|
Schatz AM, Park AW. Host and parasite traits predict cross-species parasite acquisition by introduced mammals. Proc Biol Sci 2021; 288:20210341. [PMID: 33947240 PMCID: PMC8097221 DOI: 10.1098/rspb.2021.0341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
Species invasions and range shifts can lead to novel host-parasite communities, but we lack general rules on which new associations are likely to form. While many studies examine parasite sharing among host species, the directionality of transmission is typically overlooked, impeding our ability to derive principles of parasite acquisition. Consequently, we analysed parasite records from the non-native ranges of 11 carnivore and ungulate species. Using boosted regression trees, we modelled parasite acquisition within each zoogeographic realm of a focal host's non-native range, using a suite of predictors characterizing the parasites themselves and the host community in which they live. We found that higher parasite prevalence among established hosts increases the likelihood of acquisition, particularly for generalist parasites. Non-native host species are also more likely to acquire parasites from established host species to which they are closely related; however, the acquisition of several parasite groups is biased to phylogenetically specialist parasites, indicating potential costs of parasite generalism. Statistical models incorporating these features provide an accurate prediction of parasite acquisition, indicating that measurable host and parasite traits can be used to estimate the likelihood of new host-parasite associations forming. This work provides general rules to help anticipate novel host-parasite associations created by climate change and other anthropogenic influences.
Collapse
Affiliation(s)
- Annakate M. Schatz
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Andrew W. Park
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Patterns of infection in a native and an invasive crayfish across the UK. J Invertebr Pathol 2021; 184:107595. [PMID: 33878331 DOI: 10.1016/j.jip.2021.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Invasive crayfish and the introduction of non-native diseases pose a significant risk for the conservation of endangered, white-clawed crayfish (Austropotamobius pallipes). Continued pollution of waterways is also of concern for native species and may be linked with crayfish disease dynamics. We explore whether crayfish species or environmental quality are predictors of infection presence and prevalence in native A. pallipes and invasive signal crayfish (Pacifastacus leniusculus). We use a seven-year dataset of histology records, and a field survey comparing the presence and prevalence of infectious agents in three isolated A. pallipes populations; three isolated P. leniusculus populations, and three populations where the two species had overlapped in the past. We note a lower diversity of parasites (Simpson's Index) in P. leniusculus ('Pacifastacus leniusculus Bacilliform Virus' - PlBV) (n = 1 parasite) relative to native A. pallipes (n = 4 parasites), which host Thelohania contejeani, 'Austropotamobius pallipes bacilliform virus' (ApBV), Psorospermium haeckeli and Branchiobdella astaci, at the sites studied. The infectious group present in both species was an intranuclear bacilliform virus of the hepatopancreas. The prevalence of A. astaci in A. pallipes populations was higher in more polluted water bodies, which may reflect an effect of water quality, or may be due to increased chance of transmission from nearby P. leniusculus, a species commonly found in poor quality habitats.
Collapse
|
12
|
Ho P, Nguyen HQ, Kern EMA, Won Y. Locomotor responses to salt stress in native and invasive mud-tidal gastropod populations ( Batillaria). Ecol Evol 2021; 11:458-470. [PMID: 33437442 PMCID: PMC7790626 DOI: 10.1002/ece3.7065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022] Open
Abstract
Plasticity in salt tolerance can be crucial for successful biological invasions of novel habitats by marine gastropods. The intertidal snail Batillaria attramentaria, which is native to East Asia but invaded the western shores of North America from Japan 80 years ago, provides an opportunity to examine how environmental salinity may shape behavioral and morphological traits. In this study, we compared the movement distance of four B. attramentaria populations from native (Korea and Japan) and introduced (United States) habitats under various salinity levels (13, 23, 33, and 43 PSU) during 30 days of exposure in the lab. We sequenced a partial mitochondrial CO1 gene to infer phylogenetic relationships among populations and confirmed two divergent mitochondrial lineages constituting our sample sets. Using a statistical model-selection approach, we investigated the effects of geographic distribution and genetic composition on locomotor performance in response to salt stress. Snails exposed to acute low salinity (13 PSU) reduced their locomotion and were unable to perform at their normal level (the moving pace of snails exposed to 33 PSU). We did not detect any meaningful differences in locomotor response to salt stress between the two genetic lineages or between the native snails (Japan vs. Korea populations), but we found significant locomotor differences between the native and introduced groups (Japan or Korea vs. the United States). We suggest that the greater magnitude of tidal salinity fluctuation at the US location may have influenced locomotor responses to salt stress in introduced snails.
Collapse
Affiliation(s)
- Phuong‐Thao Ho
- Institute of Fundamental and Applied SciencesDuy Tan UniversityHo Chi Minh CityVietnam
- Faculty of Natural SciencesDuy Tan UniversityDanang CityVietnam
| | - Hoa Quynh Nguyen
- Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
- Division of EcoScienceEwha Womans UniversitySeoulKorea
- Institute of ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
| | | | - Yong‐Jin Won
- Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
- Division of EcoScienceEwha Womans UniversitySeoulKorea
| |
Collapse
|
13
|
Lianguzova AD, Ilyutkin SA, Korn OM, Miroliubov AA. Specialised rootlets of Sacculina pilosella (Rhizocephala: Sacculinidae) used for interactions with its host's nervous system. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101009. [PMID: 33307518 DOI: 10.1016/j.asd.2020.101009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
Parasitic rhizocephalan barnacles induce morphological, physiological, and behavioural changes in their hosts. The mechanisms of these intimate host-parasite interactions remain unknown. We have shown previously that rootlets of the internae of Peltogasterella gracilis and Peltogaster paguri penetrate the ganglion's envelope of their hermit crab hosts and form specialised structures in the ganglion periphery, the so-called goblet-shaped organs. Here, we examine the gross morphology and ultrastructure of these goblet-shaped organs in the interna of Sacculina pilosella. They consist of three layers of cells; in the intermediate layer of the organs, unusual lamellar bodies and muscle cells were found. Extensive degeneration of the host nervous tissue was observed in the funnel of the goblet-shaped organs. We conclude that the ability to penetrate into the host's nervous tissue could be a common trait in rhizocephalans. The goblet-shaped organs may play a key role in the host-parasite relationships by enabling the parasite to influence the host via hormones and neurotransmitters.
Collapse
Affiliation(s)
- Anastasia D Lianguzova
- Saint Petersburg State University, Department of Invertebrate Zoology, Universitetskaya Emb, 7/9, Saint Petersburg, 199034, Russia.
| | - Stanislav A Ilyutkin
- Saint Petersburg State University, Department of Invertebrate Zoology, Universitetskaya Emb, 7/9, Saint Petersburg, 199034, Russia.
| | - Olga M Korn
- National Scientific Center of Marine Biology, FEB RAS, Palchavskogo str., 17, Vladivostok, 690041, Russia.
| | - Aleksei A Miroliubov
- Zoological Institute RAS, Laboratory of Parasitic Worms and Protists, Universitetskaya emb., 1, Saint-Petersburg, 199034, Russia.
| |
Collapse
|
14
|
Hecht LB, Thompson PC, Rosenthal BM. Assessing the evolutionary persistence of ecological relationships: A review and preview. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 84:104441. [PMID: 32622083 PMCID: PMC7327472 DOI: 10.1016/j.meegid.2020.104441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Species interactions, such as pollination, parasitism and predation, form the basis of functioning ecosystems. The origins and resilience of such interactions therefore merit attention. However, fossils only occasionally document ancient interactions, and phylogenetic methods are blind to recent interactions. Is there some other way to track shared species experiences? "Comparative demography" examines when pairs of species jointly thrived or declined. By forging links between ecology, epidemiology, and evolutionary biology, this method sheds light on biological adaptation, species resilience, and ecosystem health. Here, we describe how this method works, discuss examples, and suggest future directions in hopes of inspiring interest, imitators, and critics.
Collapse
Affiliation(s)
| | - Peter C. Thompson
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, MD 20705 USA
| | - Benjamin M. Rosenthal
- USDA-Agricultural Research Service, Animal Parasitic Diseases Lab, Beltsville, MD 20705 USA,Corresponding author
| |
Collapse
|
15
|
Valdebenito JO, Martínez-de la Puente J, Castro M, Pérez-Hurtado A, Tejera G, Székely T, Halimubieke N, Schroeder J, Figuerola J. Association of insularity and body condition to cloacal bacteria prevalence in a small shorebird. PLoS One 2020; 15:e0237369. [PMID: 32804958 PMCID: PMC7430747 DOI: 10.1371/journal.pone.0237369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022] Open
Abstract
Do islands harbour less diverse disease communities than mainland? The island biogeography theory predicts more diverse communities on mainland than on islands due to more niches, more diverse habitats and availability of greater range of hosts. We compared bacteria prevalences of Campylobacter, Chlamydia and Salmonella in cloacal samples of a small shorebird, the Kentish plover (Charadrius alexandrinus) between two island populations of Macaronesia and two mainland locations in the Iberian Peninsula. Bacteria were found in all populations but, contrary to the expectations, prevalences did not differ between islands and mainland. Females had higher prevalences than males for Salmonella and when three bacteria genera were pooled together. Bacteria infection was unrelated to bird’s body condition but females from mainland were heavier than males and birds from mainland were heavier than those from islands. Abiotic variables consistent throughout breeding sites, like high salinity that is known to inhibit bacteria growth, could explain the lack of differences in the bacteria prevalence between areas. We argue about the possible drivers and implications of sex differences in bacteria prevalence in Kentish plovers.
Collapse
Affiliation(s)
- José O. Valdebenito
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- * E-mail:
| | - Josué Martínez-de la Puente
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - Macarena Castro
- Instituto Universitario de Investigación Marina, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| | - Alejandro Pérez-Hurtado
- Instituto Universitario de Investigación Marina, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Spain
| | - Gustavo Tejera
- Canary Islands’ Ornithology and Natural History Group (GOHNIC), Buenavista del Norte, Tenerife, Canary Islands, Spain
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Departmen of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | | | - Julia Schroeder
- Department of Life Sciences, Imperial College London, Ascot, United Kingdom
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| |
Collapse
|
16
|
Blumenfeld AJ, Vargo EL. Geography, opportunity and bridgeheads facilitate termite invasions to the United States. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02322-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Abstract
Carcinus maenas (the “shore crab” or “European green crab”) is a very proficient invader (considered to be one of the world’s 100 worst invaders by the IUCN) due to its phenotypic plasticity, wide temperature and salinity tolerance, and an extensive omnivorous diet. Native to Atlantic Europe, it has established two well-studied nonindigenous populations in the northwestern Atlantic and northeastern Pacific and less-studied populations in Australia, Argentina and South Africa. Green crabs are eurythermal and euryhaline as adults, but they are limited to temperate coastlines due to more restrictive temperature requirements for breeding and larval development. They cannot tolerate wave-swept open shores so are found in wave-protected sheltered bays, estuaries and harbors. Carcinus maenas has been the subject of numerous papers, with over 1000 published in the past decade. This review provides an up-to-date account of the current published information on the life history and population dynamics of this very important species, including genetic differentiation, habitat preferences, physical parameter tolerances, reproduction and larval development, sizes of crabs, densities of populations, sex ratios, ecosystem dynamics and ecological impacts in the various established global populations of green crabs.
Collapse
|
18
|
Johnson DS, Crowley C, Longmire K, Nelson J, Williams B, Wittyngham S. The fiddler crab, Minuca pugnax, follows Bergmann's rule. Ecol Evol 2019; 9:14489-14497. [PMID: 31938535 PMCID: PMC6953695 DOI: 10.1002/ece3.5883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
Bergmann's rule predicts that organisms at higher latitudes are larger than ones at lower latitudes. Here, we examine the body size pattern of the Atlantic marsh fiddler crab, Minuca pugnax (formerly Uca pugnax), from salt marshes on the east coast of the United States across 12 degrees of latitude. We found that M. pugnax followed Bergmann's rule and that, on average, crab carapace width increased by 0.5 mm per degree of latitude. Minuca pugnax body size also followed the temperature-size rule with body size inversely related to mean water temperature. Because an organism's size influences its impact on an ecosystem, and M. pugnax is an ecosystem engineer that affects marsh functioning, the larger crabs at higher latitudes may have greater per-capita impacts on salt marshes than the smaller crabs at lower latitudes.
Collapse
Affiliation(s)
| | | | | | | | | | - Serina Wittyngham
- Virginia Institute of Marine ScienceWilliam & MaryGloucester PointVAUSA
| |
Collapse
|
19
|
Allen PE, Laforest L, Diyaljee SI, Smith HM, Tran DX, Winsor AM, Dale AG. Long-term changes in mole cricket body size associated with enemy-free space and a novel range. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Bojko J, Stentiford GD, Stebbing PD, Hassall C, Deacon A, Cargill B, Pile B, Dunn AM. Pathogens of Dikerogammarus haemobaphes regulate host activity and survival, but also threaten native amphipod populations in the UK. DISEASES OF AQUATIC ORGANISMS 2019; 136:63-78. [PMID: 31575835 DOI: 10.3354/dao03195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dikerogammarus haemobaphes is a non-native amphipod in UK freshwaters. Studies have identified this species as a low-impact invader in the UK, relative to its cousin Dikerogammarus villosus. It has been suggested that regulation by symbionts (such as Microsporidia) could explain this difference in impact. The effect of parasitism on D. haemobaphes is largely unknown. This was explored herein using 2 behavioural assays measuring activity and aggregation. First, D. haemobaphes were screened histologically post-assay, identifying 2 novel viruses (D. haemobaphes bi-facies-like virus [DhbflV], D. haemobaphes bacilliform virus [DhBV]), Cucumispora ornata (Microsporidia), Apicomplexa, and Digenea, which could alter host behaviour. DhBV infection burden increased host activity, and C. ornata infection reduced host activity. Second, native invertebrates were collected from the invasion site at Carlton Brook, UK, and tested for the presence of C. ornata. PCR screening identified that Gammarus pulex and other native invertebrates were positive for C. ornata. The host range of this parasite, and its impact on host survival, was additionally explored using D. haemobaphes, D. villosus, and G. pulex in a laboratory trial. D. haemobaphes and G. pulex became infected by C. ornata, which also lowered survival rate. D. villosus did not become infected. A PCR protocol for DhbflV was also applied to D. haemobaphes after the survival trial, associating this virus with decreased host survival. In conclusion, D. haemobaphes has a complex relationship with parasites in the UK environment. C. ornata likely regulates populations by decreasing host survival and activity, but despite this benefit, the parasite threatens susceptible native wildlife.
Collapse
Affiliation(s)
- Jamie Bojko
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gastrointestinal helminths from the common warthog, Phacochoerus africanus (Gmelin) (Suidae), in KwaZulu-Natal Province, South Africa, with comments on helminths of Suidae and Tayassuidae worldwide. Parasitology 2019; 146:1541-1549. [PMID: 31106726 DOI: 10.1017/s0031182019000684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Thirty warthogs, Phacochoerus africanus, were collected in the Pongola Game Reserve, South Africa and examined for helminths. Gastrointestinal helminth assemblages comprised Gastrodiscus aegyptiacus, the cestode genus Moniezia and seven species of nematodes. A single warthog harboured a metacestode of Taenia hydatigena in the mesenteries. No helminths were found in the heart, lungs or liver of the warthogs. Probstmayria vivipara and Murshidia spp. were the most prevalent as well as abundant helminth species, followed by Physocephalus sexalatus. The incidence of Moniezia did not differ between hosts of different sex or age. Numbers of Murshidia spp. were not affected by host sex, but were higher in adults than in juveniles. Conversely, burdens of Trichostrongylus thomasi were not affected by host age, but were higher in males than in females. While not highly significant, helminth assemblages in male warthogs were more species rich than in females. Helminth communities in the three genera of wild sub-Saharan suids are largely unique, but Ph. africanus and Hylochoerus meinertzhageni share more worm species with each other than with Potamochoerus larvatus, possibly because the former two are more closely related. Overlap between helminth communities of African wild suids and those of other suids and Tayassuidae worldwide is limited.
Collapse
|
22
|
Repeated reduction in parasite diversity in invasive populations of Xenopus laevis: a global experiment in enemy release. Biol Invasions 2019. [DOI: 10.1007/s10530-018-1902-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Mouritsen KN, Geyti SNS, Lützen J, Høeg JT, Glenner H. Population dynamics and development of the rhizocephalan Sacculina carcini, parasitic on the shore crab Carcinus maenas. DISEASES OF AQUATIC ORGANISMS 2018; 131:199-211. [PMID: 30459292 DOI: 10.3354/dao03290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ecologically important shore crab Carcinus maenas is commonly infected in its native range by the rhizocephalan Sacculina carcini. However, several aspects of this host-parasite interaction are poorly understood. Here, we analyse data from approximately 60000 Danish crabs to unravel factors governing infection patterns in time and space, and according to host sex and size. Female crabs were more frequently infected (12.6%) than males (7.9%). Sites with high salinity supported the highest infection prevalence. Infection prevalence peaked in summer (10 to 15%) and winter (20 to 35%) due in part to emergence of virginal externae in summer (main outbreak) and autumn (minor outbreak) preceded by peaks in crabs with lost externa (scars). Younger externae and scars dominated among males, whereas adult externae were most frequent among females. Infection prevalence increased with size in females but decreased in males, and modified (feminized) males showed lower scar frequency than unmodified ones. Modified males occurred frequently among the smaller size classes, whereas unmodified males dominated the larger size classes. Externa size was positively related to host size in both genders (same linear relationship). Molecular analyses suggested that hosts below 16 mm in carapace width do not become infected. Dissections of infected hosts revealed marked reduction of ovaries, whereas testes were unaffected by sacculinization. Our study demonstrates great spatio-temporal variation in infection prevalence mainly related to the parasite's life history. S. carcini appears capable of infecting all host sizes except the smallest. Owing to incomplete feminization of males, infections are rapidly lost from the larger and highly profitable male hosts.
Collapse
Affiliation(s)
- Kim N Mouritsen
- Department of Bioscience, Aquatic Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
24
|
Byers JE, Holmes ZC, Blakeslee AMH. Consistency of trematode infection prevalence in host populations across large spatial and temporal scales. Ecology 2018; 97:1643-1649. [PMID: 27859172 DOI: 10.1002/ecy.1440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/01/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022]
Abstract
Parasites can impart heavy fitness costs on their hosts. Thus, understanding the spatial and temporal consistency in parasite pressure can elucidate the likeliness of parasites' role as agents of directional selection, as well as revealing variable environmental factors associated with infection risk. We examined spatiotemporal variation in digenetic trematode infection in 18 populations of an intertidal host snail (Littorina littorea) over a 300 km range at an 11-yr interval, more than double the generation time of the snail. Despite a complete turnover in the snail host population, the average change in infection prevalence among populations was <1% over the 11-yr span, and all but three populations remained within 5 percentage points. This consistency of prevalence in each population over time suggests remarkable spatiotemporal constancy in parasite delivery vectors in this system, notably gulls that serve as definitive hosts for the parasites. Thus, despite gulls' high mobility, their habitat usage patterns are ostensibly relatively fixed in space. Importantly, this spatiotemporal consistency also implies that sites where parasites are recruitment limited remain so over time, and likewise, that parasite hotspots stay hot.
Collapse
Affiliation(s)
- James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia, 30602, USA
| | - Zachary C Holmes
- Odum School of Ecology, University of Georgia, Athens, Georgia, 30602, USA
| | - April M H Blakeslee
- Biology Department, East Carolina University, Greenville, North Carolina, 27858, USA
| |
Collapse
|
25
|
Bookelaar BE, O'Reilly AJ, Lynch SA, Culloty SC. Role of the intertidal predatory shore crab Carcinus maenas in transmission dynamics of ostreid herpesvirus-1 microvariant. DISEASES OF AQUATIC ORGANISMS 2018; 130:221-233. [PMID: 30259874 DOI: 10.3354/dao03264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ostreid herpesvirus-1 microVar (OsHV-1 µVar) has been responsible for significant mortalities globally in the Pacific oyster Crassostrea gigas. While the impact of this virus on the Pacific oyster has been significant, this pathogen may have wider ecosystem consequences. It has not been definitively determined how the virus is sustaining itself in the marine environment and whether other species are susceptible. The shore crab Carcinus maenas is a mobile predator and scavenger of C. gigas, commonly found at Pacific oyster culture sites. The aim of this study was to investigate the role of the crab in viral maintenance and transmission to the Pacific oyster. A field trial took place over 1 summer at different shore heights at 2 Irish Pacific oyster culture sites that are endemic for OsHV-1 µVar. Infection of OsHV-1 µVar in tissues of C. maenas at both shore heights of both sites was detected by polymerase chain reaction (PCR), quantitative PCR (qPCR), in situ hybridization and direct Sanger sequencing. In addition, a laboratory trial demonstrated that transmission of the virus could occur to naïve C. gigas within 4 d, from C. maenas previously exposed to the virus in the wild. These findings provide some insight into the possibility that the virus can be transmitted through marine food webs. The results also suggest viral plasticity in the hosts required by the virus and potential impacts on a range of crustacean species with wider ecosystem impacts if transmission to other species occurs.
Collapse
Affiliation(s)
- B E Bookelaar
- Aquaculture and Fisheries Development Centre, School of Biological, Earth and Environmental Sciences & Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
26
|
Boussellaa W, Neifar L, Goedknegt MA, Thieltges DW. Lessepsian migration and parasitism: richness, prevalence and intensity of parasites in the invasive fish Sphyraena chrysotaenia compared to its native congener Sphyraena sphyraena in Tunisian coastal waters. PeerJ 2018; 6:e5558. [PMID: 30233995 PMCID: PMC6140674 DOI: 10.7717/peerj.5558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Background Parasites can play various roles in the invasion of non-native species, but these are still understudied in marine ecosystems. This also applies to invasions from the Red Sea to the Mediterranean Sea via the Suez Canal, the so-called Lessepsian migration. In this study, we investigated the role of parasites in the invasion of the Lessepsian migrant Sphyraena chrysotaenia in the Tunisian Mediterranean Sea. Methods We compared metazoan parasite richness, prevalence and intensity of S. chrysotaenia (Perciformes: Sphyraenidae) with infections in its native congener Sphyraena sphyraena by sampling these fish species at seven locations along the Tunisian coast. Additionally, we reviewed the literature to identify native and invasive parasite species recorded in these two hosts. Results Our results suggest the loss of at least two parasite species of the invasive fish. At the same time, the Lessepsian migrant has co-introduced three parasite species during the initial migration to the Mediterranean Sea, that are assumed to originate from the Red Sea of which only one parasite species has been reported during the spread to Tunisian waters. In addition, we found that the invasive fish has acquired six parasite species that are native in the Mediterranean Sea. However, parasite richness, prevalence and intensity were overall much lower in the invasive compared to the native fish host in the Mediterranean Sea. Discussion These results suggest that the Lessepsian migrant may affect native fish hosts by potentially altering the dynamics of native and invasive parasite-host interactions via parasite release, parasite co-introduction and parasite acquisition. They further suggest that the lower infection levels in the invasive fish may result in a competitive advantage over native fish hosts (enemy release hypothesis). This study demonstrates that cross-species comparisons of parasite infection levels are a valuable tool to identify the different roles of parasites in the course of Lessepsian migrations.
Collapse
Affiliation(s)
- Wiem Boussellaa
- Department of Life Sciences, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia.,Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg Texel, Netherlands
| | - Lassad Neifar
- Department of Life Sciences, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
| | - M Anouk Goedknegt
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg Texel, Netherlands
| | - David W Thieltges
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg Texel, Netherlands
| |
Collapse
|
27
|
Invasive parasites are detectable by their abundance-occupancy relationships: the case of helminths from Liza haematocheilus (Teleostei: Mugilidae). Int J Parasitol 2018; 48:793-803. [DOI: 10.1016/j.ijpara.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022]
|
28
|
Biogeographic differences between native and non-native populations of crayfish alter species coexistence and trophic interactions in mesocosms. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1788-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Forsström T, Vesakoski O, Riipinen K, Fowler AE. Post-invasion demography and persistence of a novel functional species in an estuarine system. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1777-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Can we predict the success of a parasite to colonise an invasive host? Parasitol Res 2018; 117:2305-2314. [PMID: 29797081 DOI: 10.1007/s00436-018-5921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
Abstract
To understand whether a parasite can exploit a novel invasive host species, we measured reproductive performance (number of eggs per female per day, egg size, development rate and size of new imagoes) of fleas from the Negev desert in Israel (two host generalists, Synosternus cleopatrae and Xenopsylla ramesis, and a host specialist, Parapulex chephrenis) when they exploited either a local murid host (Gerbillus andersoni, Meriones crassus and Acomys cahirinus) or two alien hosts (North American heteromyids, Chaetodipus penicillatus and Dipodomys merriami). We asked whether (1) reproductive performance of a flea differs between an alien and a characteristic hosts and (2) this difference is greater in a host specialist than in host generalists. The three fleas performed poorly on alien hosts as compared to local hosts, but the pattern of performance differed both among fleas and within fleas between alien hosts. The response to alien hosts did not depend on the degree of host specificity of a flea. We conclude that successful parasite colonisation of an invasive host is determined by some physiological, immunological and/or behavioural compatibility between a host and a parasite. This compatibility is unique for each host-parasite association, so that the success of a parasite to colonise an invasive host is unpredictable.
Collapse
|
31
|
Heat challenges can enhance population tolerance to thermal stress in mussels: a potential mechanism by which ship transport can increase species invasiveness. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1762-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
32
|
Bojko J, Stebbing PD, Dunn AM, Bateman KS, Clark F, Kerr RC, Stewart-Clark S, Johannesen Á, Stentiford GD. Green crab Carcinus maenas symbiont profiles along a North Atlantic invasion route. DISEASES OF AQUATIC ORGANISMS 2018; 128:147-168. [PMID: 29733028 DOI: 10.3354/dao03216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The green crab Carcinus maenas is an invader on the Atlantic coast of Canada and the USA. In these locations, crab populations have facilitated the development of a legal fishery in which C. maenas is caught and sold, mainly for use as bait to capture economically important crustaceans such as American lobster Homarus americanus. The paucity of knowledge on the symbionts of invasive C. maenas in Canada and their potential for transfer to lobsters poses a potential risk of unintended transmission. We carried out a histological survey for symbionts of C. maenas from their native range in Northern Europe (in the UK and Faroe Islands), and invasive range in Atlantic Canada. In total, 19 separate symbiotic associations were identified from C. maenas collected from 27 sites. These included metazoan parasites (nematodes, Profilicollis botulus, Sacculina carcini, Microphallidae, ectoparasitic crustaceans), microbial eukaryotes (ciliates, Hematodinium sp., Haplosporidium littoralis, Ameson pulvis, Parahepatospora carcini, gregarines, amoebae), bacteria (Rickettsia-like organism, milky disease), and viral pathogens (parvo-like virus, herpes-like virus, iridovirus, Carcinus maenas bacilliform virus and a haemocyte-infecting rod-shaped virus). Hematodinium sp. were not observed in the Canadian population; however, parasites such as Trematoda and Acanthocephala were present in all countries despite their complex, multi-species lifecycles. Some pathogens may pose a risk of transmission to other decapods and native fauna via the use of this host in the bait industry, such as the discovery of a virus resembling the previously described white spot syndrome virus (WSSV), B-virus and 'rod-shaped virus' (RV-CM) and amoebae, which have previously been found to cause disease in aquaculture (e.g. Salmo salar) and fisheries species (e.g. H. americanus).
Collapse
Affiliation(s)
- Jamie Bojko
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A meta-analysis of the evolution of increased competitive ability hypothesis: genetic-based trait variation and herbivory resistance trade-offs. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1724-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Mancini E, Furfaro G, Cervelli M, Di Giulio A, Oliverio M, Salvi D, Mariottini P. Molecular detection of parasites (Trematoda, Digenea: Bucephalidae and Monorchiidae) in the European flat oyster Ostrea edulis (Mollusca: Bivalvia). EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2017.1420829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- E. Mancini
- Department of Sciences, Roma Tre University, Rome, Italy
| | - G. Furfaro
- Department of Sciences, Roma Tre University, Rome, Italy
| | - M. Cervelli
- Department of Sciences, Roma Tre University, Rome, Italy
| | - A. Di Giulio
- Department of Sciences, Roma Tre University, Rome, Italy
| | - M. Oliverio
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - D. Salvi
- Department of Health, Life and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - P. Mariottini
- Department of Sciences, Roma Tre University, Rome, Italy
| |
Collapse
|
35
|
Lagrue C. Impacts of crustacean invasions on parasite dynamics in aquatic ecosystems: A plea for parasite-focused studies. Int J Parasitol Parasites Wildl 2017; 6:364-374. [PMID: 30951574 PMCID: PMC5715223 DOI: 10.1016/j.ijppaw.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
Abstract
While there is considerable interest in, and good evidence for, the role that parasites play in biological invasions, the potential parallel effects of species introduction on parasite dynamics have clearly received less attention. Indeed, much effort has been focused on how parasites can facilitate or limit invasions, and positively or negatively impact native host species and recipient communities. Contrastingly, the potential consequences of biological invasions for the diversity and dynamics of both native and introduced parasites have been and are still mainly overlooked, although successful invasion by non-native host species may have large, contrasting and unpredictable effects on parasites. This review looks at the links between biological invasions and pathogens, and particularly at crustacean invasions in aquatic ecosystems and their potential effects on native and invasive parasites, and discusses what often remains unknown even from well-documented systems. Aquatic crustaceans are hosts to many parasites and are often invasive. Published studies show that crustacean invasion can have highly contrasting effects on parasite dynamics, even when invasive host and parasite species are phylogenetically close to their native counterparts. These effects seem to be dependent on multiple factors such as host suitability, parasite life-cycle or host-specific resistance to parasitic manipulation. Furthermore, introduced hosts can have drastically contrasting effects on parasite standing crop and transmission, two parameters that should be independently assessed before drawing any conclusion on the potential effects of novel hosts on parasites and the key processes influencing disease dynamics following biological invasions. I conclude by calling for greater recognition of biological invasions' effects on parasite dynamics, more parasite-focused studies and suggest some potential ways to assess these effects.
Collapse
|
36
|
Selechnik D, West AJ, Brown GP, Fanson KV, Addison B, Rollins LA, Shine R. Effects of invasion history on physiological responses to immune system activation in invasive Australian cane toads. PeerJ 2017; 5:e3856. [PMID: 29018604 PMCID: PMC5633027 DOI: 10.7717/peerj.3856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The cane toad (Rhinella marina) has undergone rapid evolution during its invasion of tropical Australia. Toads from invasion front populations (in Western Australia) have been reported to exhibit a stronger baseline phagocytic immune response than do conspecifics from range core populations (in Queensland). To explore this difference, we injected wild-caught toads from both areas with the experimental antigen lipopolysaccharide (LPS, to mimic bacterial infection) and measured whole-blood phagocytosis. Because the hypothalamic-pituitary-adrenal axis is stimulated by infection (and may influence immune responses), we measured glucocorticoid response through urinary corticosterone levels. Relative to injection of a control (phosphate-buffered saline), LPS injection increased both phagocytosis and the proportion of neutrophils in the blood. However, responses were similar in toads from both populations. This null result may reflect the ubiquity of bacterial risks across the toad’s invaded range; utilization of this immune pathway may not have altered during the process of invasion. LPS injection also induced a reduction in urinary corticosterone levels, perhaps as a result of chronic stress.
Collapse
Affiliation(s)
- Daniel Selechnik
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Andrea J West
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Gregory P Brown
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| | - Kerry V Fanson
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - BriAnne Addison
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Lee A Rollins
- Centre for Integrative Ecology, School of Life & Environmental Sciences (LES), Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- School of Life and Environmental Sciences (SOLES), University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Lobato E, Doutrelant C, Melo M, Reis S, Covas R. Insularity effects on bird immune parameters: A comparison between island and mainland populations in West Africa. Ecol Evol 2017; 7:3645-3656. [PMID: 28616162 PMCID: PMC5468148 DOI: 10.1002/ece3.2788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/30/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023] Open
Abstract
Oceanic islands share several environmental characteristics that have been shown to drive convergent evolutionary changes in island organisms. One change that is often assumed but has seldom been examined is the evolution of weaker immune systems in island species. The reduction in species richness on islands is expected to lead to a reduced parasite pressure and, given that immune function is costly, island animals should show a reduced immune response. However, alternative hypotheses exist; for example, the slower pace of life on islands could favor the reorganization of the immune system components (innate vs. acquired immunity) on islands. Thus far, few island species have been studied and no general patterns have emerged. Here, we compared two immune parameters of birds from São Tomé and Príncipe islands to those of their close relatives at similar latitudes on the mainland (Gabon, West Africa). On islands, the acquired humoral component (total immunoglobulins) was lower for most species, whereas no clear pattern was detected for the innate component (haptoglobin levels). These different responses did not seem to arise from a reorganization of the two immune components, as both total immunoglobulins and haptoglobin levels were positively associated. This work adds to the few empirical studies conducted so far which suggest that changes in immune parameters in response to insularity are not as straightforward as initially thought.
Collapse
Affiliation(s)
- Elisa Lobato
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,CEFE Centre d'Ecologie Fonctionnelle et Evolutive CNRS UMR 5175 Montpellier Cedex 5 France
| | - Claire Doutrelant
- CEFE Centre d'Ecologie Fonctionnelle et Evolutive CNRS UMR 5175 Montpellier Cedex 5 France
| | - Martim Melo
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,Percy FitzPatrick Institute of African Ornithology DST-NRF Center of Excellence University of Cape Town Rondebosch South Africa
| | - Sandra Reis
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
| | - Rita Covas
- CIBIO/InBio Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal.,Percy FitzPatrick Institute of African Ornithology DST-NRF Center of Excellence University of Cape Town Rondebosch South Africa.,Departamento de Biologia Faculdade de Ciências Universidade do Porto Porto Portugal
| |
Collapse
|
38
|
Mancinelli G, Chainho P, Cilenti L, Falco S, Kapiris K, Katselis G, Ribeiro F. The Atlantic blue crab Callinectes sapidus in southern European coastal waters: Distribution, impact and prospective invasion management strategies. MARINE POLLUTION BULLETIN 2017; 119:5-11. [PMID: 28242280 DOI: 10.1016/j.fishres.2017.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 05/26/2023]
Abstract
The native distribution of the blue crab Callinectes sapidus in the western Atlantic extends from Nova Scotia to Argentina. Introduced to Europe at the beginning of the 20th century, it is currently recorded almost ubiquitously in the Mediterranean and in the Black Sea. An overview of the occurrence, abundance, and ecological impact of the species in southern European waters is provided; additionally, we present a pragmatic assessment of its management scenarios, explicitly considering the dual nature of C. sapidus as both an invasive species and a fishery resource. We emphasise that the ongoing expansion of C. sapidus in the region may represent a stimulating challenge for the identification and implementation of future strategies in the management of invasive crustaceans. The impact of the invader could be converted into an enhancement of the services delivered by southern European coastal ecosystems, while mitigation costs could be transformed into profits for local populations.
Collapse
Affiliation(s)
- Giorgio Mancinelli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| | - Paula Chainho
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal
| | - Lucrezia Cilenti
- Institute of Marine Science (ISMAR), National Research Council (CNR), Lesina, FG, Italy
| | - Silvia Falco
- Institut d'Investigació per a la Gestió Integrada de zones Costaneres (IGIC), Universitat Politècnica de València, Grau de Gandia, Spain
| | - Kostas Kapiris
- Institute of Marine Biological Resources and Inland Waters, HCMR, Anavissos, Athens, Greece
| | - George Katselis
- Technological Educational Institute of Western Greece, Department of Fisheries and Aquaculture Technology, Messolonghi, Greece
| | - Filipe Ribeiro
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
39
|
Evolutionary responses to climate change in a range expanding plant. Oecologia 2017; 184:543-554. [PMID: 28409227 PMCID: PMC5487849 DOI: 10.1007/s00442-017-3864-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022]
Abstract
To understand the biological effects of climate change, it is essential to take into account species’ evolutionary responses to their changing environments. Ongoing climate change is resulting in species shifting their geographical distribution ranges poleward. We tested whether a successful range expanding plant has rapidly adapted to the regional conditions in its novel range, and whether adaptation could be driven by herbivores. Furthermore, we investigated if enemy release occurred in the newly colonized areas and whether plant origins differed in herbivore resistance. Plants were cloned and reciprocally transplanted between three experimental sites across the range. Effects of herbivores on plant performance were tested by individually caging plants with either open or closed cages. There was no indication of (regional) adaptation to abiotic conditions. Plants originating from the novel range were always larger than plants from the core distribution at all experimental sites, with or without herbivory. Herbivore damage was highest and not lowest at the experimental sites in the novel range, suggesting no release from enemy impact. Genotypes from the core were more damaged compared to genotypes from newly colonized areas at the most northern site in the novel range, which was dominated by generalist slug herbivory. We also detected subtle shifts in chemical defenses between the plant origins. Genotypes from the novel range had more inducible defenses. Our results suggest that plants that are expanding their range with climate change may evolve increased vigor and altered herbivore resistance in their new range, analogous to invasive plants.
Collapse
|
40
|
Kirschman LJ, Quade AH, Zera AJ, Warne RW. Immune function trade-offs in response to parasite threats. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:199-204. [PMID: 28109904 DOI: 10.1016/j.jinsphys.2017.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Immune function is often involved in physiological trade-offs because of the energetic costs of maintaining constitutive immunity and mounting responses to infection. However, immune function is a collection of discrete immunity factors and animals should allocate towards factors that combat the parasite threat with the highest fitness cost. For example, animals on dispersal fronts of expanding population may be released from density-dependent diseases. The costs of immunity, however, and life history trade-offs in general, are often context dependent. Trade-offs are often most apparent under conditions of unusually limited resources or when animals are particularly stressed, because the stress response can shift priorities. In this study we tested how humoral and cellular immune factors vary between phenotypes of a wing dimorphic cricket and how physiological stress influences these immune factors. We measured constitutive lysozyme activity, a humoral immune factor, and encapsulation response, a cellular immune factor. We also stressed the crickets with a sham predator in a full factorial design. We found that immune strategy could be explained by the selective pressures encountered by each morph and that stress decreased encapsulation, but not lysozyme activity. These results suggest a possible trade-off between humoral and cellular immunity. Given limited resources and the expense of immune factors, parasite pressures could play a key factor in maintaining insect polyphenism via disruptive selection.
Collapse
Affiliation(s)
- Lucas J Kirschman
- Department of Zoology, Southern Illinois University, Carbondale, IL, USA.
| | - Adam H Quade
- Department of Zoology, Southern Illinois University, Carbondale, IL, USA
| | - Anthony J Zera
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Robin W Warne
- Department of Zoology, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
41
|
Mazzamuto MV, Morandini M, Panzeri M, Wauters LA, Preatoni DG, Martinoli A. Space invaders: effects of invasive alien Pallas’s squirrel on home range and body mass of native red squirrel. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1396-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Barnacles vs bullies: modelling biocontrol of the invasive European green crab using a castrating barnacle parasite. THEOR ECOL-NETH 2017. [DOI: 10.1007/s12080-017-0332-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Médoc V, Firmat C, Sheath D, Pegg J, Andreou D, Britton J. Parasites and Biological Invasions. ADV ECOL RES 2017. [DOI: 10.1016/bs.aecr.2016.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Kvach Y, Kutsokon Y, Stepien CA, Markovych M. Role of the invasive Chinese sleeper Perccottus glenii (Actinopterygii: Odontobutidae) in the distribution of fish parasites in Europe: New data and a review. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Tuttle LJ, Sikkel PC, Cure K, Hixon MA. Parasite-mediated enemy release and low biotic resistance may facilitate invasion of Atlantic coral reefs by Pacific red lionfish (Pterois volitans). Biol Invasions 2016. [DOI: 10.1007/s10530-016-1342-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Gettová L, Gilles A, Šimková A. Metazoan parasite communities: support for the biological invasion of Barbus barbus and its hybridization with the endemic Barbus meridionalis. Parasit Vectors 2016; 9:588. [PMID: 27855708 PMCID: PMC5114731 DOI: 10.1186/s13071-016-1867-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022] Open
Abstract
Background Recently, human intervention enabled the introduction of Barbus barbus from the Rhône River basin into the Barbus meridionalis habitats of the Argens River. After an introduction event, parasite loss and lower infection can be expected in non-native hosts in contrast to native species. Still, native species might be endangered by hybridization with the incomer and the introduction of novel parasite species. In our study, we aimed to examine metazoan parasite communities in Barbus spp. populations in France, with a special emphasis on the potential threat posed by the introduction of novel parasite species by invasive B. barbus to local B. meridionalis. Methods Metazoan parasite communities were examined in B. barbus, B. meridionalis and their hybrids in three river basins in France. Microsatellites were used for the species identification of individual fish. Parasite abundance, prevalence, and species richness were compared. Effects of different factors on parasite infection levels and species richness were tested using GLM. Results Metazoan parasites followed the expansion range of B. barbus and confirmed its introduction into the Argens River. Here, the significantly lower parasite number and lower levels of infection found in B. barbus in contrast to B. barbus from the Rhône River supports the enemy release hypothesis. Barbus barbus × B. meridionalis hybridization in the Argens River basin was confirmed using both microsatellites and metazoan parasites, as hybrids were infected by parasites of both parental taxa. Trend towards higher parasite diversity in hybrids when compared to parental taxa, and similarity between parasite communities from the Barbus hybrid zone suggest that hybrids might represent “bridges” for parasite infection between B. barbus and B. meridionalis. Risk of parasite transmission from less parasitized B. barbus to more parasitized B. meridionalis indicated from our study in the Argens River might be enhanced in time as higher infection levels in B. barbus from the Rhône River were revealed. Hybrid susceptibility to metazoan parasites varied among the populations and is probably driven by host-parasite interactions and environmental forces. Conclusions Scientific attention should be paid to the threatened status of the endemic B. meridionalis, which is endangered by hybridization with the invasive B. barbus, i.e. by genetic introgression and parasite transmission. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1867-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Gettová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| | - A Gilles
- Aix-Marseille Université, IMBE, UMR CNRS 7263, Evolution Génome Environnement, Case 36, 3 Place Victor Hugo, 13331, Marseille Cedex 3, France
| | - A Šimková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| |
Collapse
|
47
|
Hobbs NVS, Cobb JS, Thornber CS. Conspecific tolerance and heterospecific competition as mechanisms for overcoming resistance to invasion by an intertidal crab. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1290-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Williams JD, Boyko CB. Introduction to the Symposium: Parasites and Pests in Motion: Biology, Biodiversity and Climate Change. Integr Comp Biol 2016; 56:556-60. [DOI: 10.1093/icb/icw085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Marculis NG, Lui R. Modelling the biological invasion of Carcinus maenas (the European green crab). JOURNAL OF BIOLOGICAL DYNAMICS 2016; 10:140-163. [PMID: 26673728 DOI: 10.1080/17513758.2015.1115563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper proposes a system of integro-difference equations to model the spread of Carcinus maenas, commonly called the European green crab, that causes severe damage to coastal ecosystems. A model with juvenile and adult classes is first studied. Here, standard theory of monotone operators for integro-difference equations can be applied and yields explicit formulas for the asymptotic spreading speeds of the juvenile and adult crabs. A second model including an infected class is considered by introducing a castrating parasite Sacculina carcini as a biological control agent. The dynamics are complicated and simulations reveal the occurrence of periodic solutions and stacked fronts. In this case, only conjectures can be made for the asymptotic spreading speeds because of the lack of mathematical theory for non-monotone operators. This paper also emphasizes the need for mathematical studies of non-monotone operators in heterogeneous environments and the existence of stacked front solutions in biological invasion models.
Collapse
Affiliation(s)
- Nathan G Marculis
- a Department of Mathematical and Statistical Sciences , University of Alberta , Edmonton, Alberta , Canada
| | - Roger Lui
- b Department of Mathematical Sciences , Worcester Polytechnic Institute , Worcester , MA , USA
| |
Collapse
|
50
|
Ortega N, Price W, Campbell T, Rohr J. Acquired and introduced macroparasites of the invasive Cuban treefrog, Osteopilus septentrionalis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 4:379-84. [PMID: 26759792 PMCID: PMC4683551 DOI: 10.1016/j.ijppaw.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 11/28/2022]
Abstract
Because shifts in host–parasite relationships can alter host populations, attention should be given to the parasites that introduced species take with them or acquire in their introduced range. The Cuban treefrog, Osteopilus septentrionalis, is a successful invasive species in Florida with its parasites in the native range being well-documented, but there is a void in the literature regarding what parasites were lost or introduced in its expansion. We necropsied 330 O. septentrionalis from Tampa, FL and compared their macroparasites to those of O. septentrionalis in their native range and to the parasites of anurans native to the Tampa, FL area to determine the species O. septentrionalis likely introduced or acquired in Florida. At least nine parasite species (Aplectana sp., Oswaldocruzia lenteixeirai, Cylindrotaenia americana, Physaloptera sp., Rhabdias sp., Centrorhynchus sp., unidentified trematode metacercariae, unidentified larval acuariids, and unidentified pentastomids) were isolated. We found no differences in parasite communities of adult male and female frogs, which averaged 19.36 parasite individuals and 1.39 parasite species per adult frog, and had an overall prevalence of 77.52%. Acuariid larvae were likely acquired by O. septentrionalis in FL because they are not found in their native range. O. lenteixeirai was likely introduced because it is commonly reported in O. septentrionalis' native range but has never been reported in FL-native anurans. Aplectana sp. is also likely introduced because it has been reported in several anurans in Cuba but only reported once in Florida. O. septentrionalis tended to harbor fewer of its native parasites in the introduced range, which is consistent with the enemy release hypothesis and potentially creates an immunological advantage for this invasive host. Because native populations can be threatened by introduced parasites, there is a need to further explore the frequency and rate at which non-native hosts introduce parasites. We found at least six new host records of parasites in the Cuban treefrog. Host type significantly affected parasite mean abundance and mean intensity. Hosts were infected with fewer species of parasites than in their native range. Introduced parasite prevalence is eight-fifteen times higher in its native range.
Collapse
Affiliation(s)
- Nicole Ortega
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave - SCA 110, Tampa, FL 33620-5150, United States
| | - Wayne Price
- Department of Biology, 401 W. Kennedy Blvd., University of Tampa, Tampa, FL 33606, United States
| | - Todd Campbell
- Department of Biology, 401 W. Kennedy Blvd., University of Tampa, Tampa, FL 33606, United States
| | - Jason Rohr
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave - SCA 110, Tampa, FL 33620-5150, United States
| |
Collapse
|