1
|
Jain M, Goel A. Current Insights in Murine Models for Breast Cancer: Present, Past and Future. Curr Pharm Des 2024; 30:2267-2275. [PMID: 38910416 DOI: 10.2174/0113816128306053240604074142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is an intricate disease that is increasing at a fast pace, and numerous heterogeneities within it further make it difficult to investigate. We have always used animal models to understand cancer pathology and create an in vivo microenvironment that closely resembles human cancer. They are considered an indispensable part of any clinical investigation regarding cancer. Animal models have a high potency in identifying the relevant biomarkers and genetic pathways involved in the course of disease prognosis. Researchers have previously explored a variety of organisms, including Drosophila melanogaster, zebrafish, and guinea pigs, to analyse breast cancer, but murine models have proven the most comprehensive due to their homologous nature with human chromosomes, easy availability, simple gene editing, and high adaptability. The available models have their pros and cons, and it depends on the researcher to select the one most relevant to their research question. Chemically induced models are cost-effective and simple to create. Transplantation models such as allografts and xenografts can mimic the human breast cancer environment reliably. Genetically engineered mouse models (GEMMs) help to underpin the genetic alterations involved and test novel immunotherapies. Virus-mediated models and gene knockout models have also provided new findings regarding breast cancer progression and metastasis. These mouse models have also enabled the visualization of breast cancer metastases. It is also imperative to consider the cost-effectiveness of these models. Despite loopholes, mouse models have evolved and are required for disease analysis.
Collapse
Affiliation(s)
- Mansi Jain
- Department of Biotechnology, GLA University, Mathura, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, India
| |
Collapse
|
2
|
Abstract
Tumor metastasis is a multiple cascade process where tumor cells disseminate from the primary site to distant organs and subsequently adapt to the foreign microenvironment. Simulating the physiology of tumor metastatic events in a realistic and three-dimensional (3D) manner is a challenge for in vitro modeling. 3D bioprinting strategies, which can generate well-customized and bionic structures, enable the exploration of dynamic tumor metastasis process in a species-homologous, high-throughput and reproducible way. In this review, we summarize the recent application of 3D bioprinting in constructing in vitro tumor metastatic models and discuss its advantages and current limitations. Further perspectives on how to harness the potential of accessible 3D bioprinting strategies to better model tumor metastasis and guide anti-cancer therapies are also provided.
Collapse
Affiliation(s)
- Manqing Lin
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Mengyi Tang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian 116023, China
| |
Collapse
|
3
|
Analysis of the metabolic proteome of lung adenocarcinomas by reverse-phase protein arrays (RPPA) emphasizes mitochondria as targets for therapy. Oncogenesis 2022; 11:24. [PMID: 35534478 PMCID: PMC9085865 DOI: 10.1038/s41389-022-00400-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022] Open
Abstract
AbstractLung cancer is the leading cause of cancer-related death worldwide despite the success of therapies targeting oncogenic drivers and immune-checkpoint inhibitors. Although metabolic enzymes offer additional targets for therapy, the precise metabolic proteome of lung adenocarcinomas is unknown, hampering its clinical translation. Herein, we used Reverse Phase Protein Arrays to quantify the changes in enzymes of glycolysis, oxidation of pyruvate, fatty acid metabolism, oxidative phosphorylation, antioxidant response and protein oxidative damage in 128 tumors and paired non-tumor adjacent tissue of lung adenocarcinomas to profile the proteome of metabolism. Steady-state levels of mitochondrial proteins of fatty acid oxidation, oxidative phosphorylation and of the antioxidant response are independent predictors of survival and/or of disease recurrence in lung adenocarcinoma patients. Next, we addressed the mechanisms by which the overexpression of ATPase Inhibitory Factor 1, the physiological inhibitor of oxidative phosphorylation, which is an independent predictor of disease recurrence, prevents metastatic disease. We highlight that IF1 overexpression promotes a more vulnerable and less invasive phenotype in lung adenocarcinoma cells. Finally, and as proof of concept, the therapeutic potential of targeting fatty acid assimilation or oxidation in combination with an inhibitor of oxidative phosphorylation was studied in mice bearing lung adenocarcinomas. The results revealed that this therapeutic approach significantly extended the lifespan and provided better welfare to mice than cisplatin treatments, supporting mitochondrial activities as targets of therapy in lung adenocarcinoma patients.
Collapse
|
4
|
Winn CB, Hwang SK, Morin J, Bluette CT, Manickam B, Jiang ZK, Giddabasappa A, Liu CN, Matthews K. Automated monitoring of respiratory rate as a novel humane endpoint: A refinement in mouse metastatic lung cancer models. PLoS One 2021; 16:e0257694. [PMID: 34543354 PMCID: PMC8452061 DOI: 10.1371/journal.pone.0257694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022] Open
Abstract
In oncology research, while xenograft tumor models are easily visualized and humane endpoints can be clearly defined, metastatic tumor models are often based on more subjective clinical observations as endpoints. This study aimed at identifying objective non-invasive criteria for predicting imminent distress and mortality in metastatic lung tumor-bearing mice. BALB/c and C57BL/6 mice were inoculated with CT26 or B16F10 cells, respectively. The mice were housed in Vium smart cages to continuously monitor and stream respiratory rate and locomotion for up to 28 days until scheduled euthanasia or humane endpoint criteria were met. Body weight and body temperature were measured during the study. On days 11, 14, 17 and 28, lungs of subsets of animals were microCT imaged in vivo to assess lung metastasis progression and then euthanized for lung microscopic evaluations. Beginning at day 21, most tumor-bearing animals developed increased respiratory rates followed by decreased locomotion 1-2 days later, compared with the baseline values. Increases in respiratory rate did not correlate to surface tumor nodule counts or lung weight. Body weight measurement did not show significant changes from days 14-28 in either tumor-bearing or control animals. We propose that increases in respiratory rate (1.3-1.5 X) can be used to provide an objective benchmark to signal the need for increased clinical observations or euthanasia. Adoption of this novel humane endpoint criterion would allow investigators time to collect tissue samples prior to spontaneous morbidity or death and significantly reduce the distress of mice in the terminal stages of these metastatic lung tumor models.
Collapse
Affiliation(s)
- Caroline B. Winn
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, Cambridge, Massachusetts, United States of America
| | - Seo-Kyoung Hwang
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, Groton, Connecticut, United States of America
| | - Jeffrey Morin
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, Cambridge, Massachusetts, United States of America
| | - Crystal T. Bluette
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, Cambridge, Massachusetts, United States of America
| | - Balasubramanian Manickam
- Global Pathology and Investigative Toxicology, Pfizer Worldwide Research, Development & Medical, Groton, Connecticut, United States of America
| | - Ziyue K. Jiang
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, San Diego, California, United States of America
| | - Anand Giddabasappa
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, San Diego, California, United States of America
| | - Chang-Ning Liu
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, Groton, Connecticut, United States of America
| | - Kristin Matthews
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, San Diego, California, United States of America
| |
Collapse
|
5
|
Kryvoshlyk I. CIRCULATING TUMOR CELLS: WHERE WE LEFT OFF? BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer metastasis and recurrence are the leading causes of cancer-related death. Tumor cells which leave the primary or secondary tumors and shed into the bloodstream are called circulating tumor cells (CTC). These cells are the key drivers of cancer dissemination to surrounding tissues and to distant organs. The use of CTC in clinical practice necessitates the deep insight into their biology, as well as into their role in cancer evasion of immune surveillance, tumor resistance to chemo- radio- and immunotherapies and metastatic dormancy. Aim. The purpose of the work was to review the current knowledge on the CTC biology, as well as the prospects for their use for the diagnosis and targeted treatment of metastatic disease. Methods. The work proposed the integrative literature review using MEDLINE, Biological Abstracts and EMBASE databases. Results. This review summarizes and discusses historical milestones and current data concerning СTС biology, the main stages of their life cycle, their role in metastatic cascade, clinical prospects for their use as markers for the diagnosis and prognostication of the disease course, as well as targets for cancer treatment. Conclusions. Significant progress in the area of CTC biology and their use in cancer theranostics convincingly proved the attractiveness of these cells as targets for cancer prognosis and therapy. The effective use of liquid biopsy with quantitative and phenotypic characteristics of CTCs is impeded by the imperfection of the methodology for taking biological material and by the lack of reliable markers for assessing the metastatic potential of CTCs of various origins. The variety of mechanisms of tumor cells migration and invasion requires the development of complex therapeutic approaches for anti-metastatic therapy targeting CTCs. Efforts to address these key issues could help developing new and effective cancer treatment strategies.
Collapse
|
6
|
Herrero de la Parte B, González-Arribas M, Diaz-Sanz I, Palomares T, García-Alonso I. Partial hepatectomy enhances the growth of CC531 rat colorectal cancer cells both in vitro and in vivo. Sci Rep 2021; 11:5356. [PMID: 33686132 PMCID: PMC7970880 DOI: 10.1038/s41598-021-85082-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Partial hepatectomy (PHx) is the gold standard for the treatment of colorectal cancer liver metastases. However, after removing a substantial amount of hepatic tissue, growth factors are released to induce liver regeneration, which may promote the proliferation of liver micrometastases or circulating tumour cells still present in the patient. The aim of this study is to assess the effect of PHx on the growth of liver metastases induced by intrasplenic cell inoculation as well as on in vitro proliferation of the same cancer cell line. Liver tumours were induced in 18 WAG/RijHsd male rats, by seeding 250,000 syngeneic colorectal cancer cells (CC531) into the spleen. The left lateral lobe of the liver was mobilized and in half of the animals it was removed to achieve a 40% hepatectomy. Twenty-eight days after tumour induction, the animals were sacrificed and the liver was removed and sliced to assess the relative tumour surface area (RTSA%). CC531 cells were cultured in presence of foetal calf serum, non-hepatectomised (NRS) or hepatectomized rat serum (HRS), and their proliferation rate at 24, 48, and 72 h was measured. RTSA% was significantly higher in animals which had undergone PHx than in the controls (non-hepatectomised) (46.98 ± 8.76% vs. 18.73 ± 5.65%; p < 0.05). Analysing each lobe separately, this difference in favour of hepatectomized animals was relevant and statistically significant in the paramedian and caudate lobes. But in the right lobe the difference was scarce and not significant. In vitro, 2.5% HRS achieved stronger proliferative rates than the control cultures (10% FCS) or their equivalent of NRS. In this experimental model, a parallelism has been shown between the effect of PHx on the growth of colorectal cancer cells in the liver and the effect of the serum on those cells in vitro.
Collapse
Affiliation(s)
- Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain. .,Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain.
| | - Mikel González-Arribas
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Iñaki Diaz-Sanz
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Teodoro Palomares
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Vizcaya, Spain.,Biocruces Bizkaia Health Research Institute, Plaza de Cruces s/n, 48903, Barakaldo, Spain
| |
Collapse
|
7
|
Stathaki M, Stamatiou ME, Magioris G, Simantiris S, Syrigos N, Dourakis S, Koutsilieris M, Armakolas A. The role of kisspeptin system in cancer biology. Crit Rev Oncol Hematol 2019; 142:130-140. [PMID: 31401420 DOI: 10.1016/j.critrevonc.2019.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/01/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Kisspeptins are a family of neuropeptides that are known to be critical in puberty initiation and ovulation. Apart from that kisspeptin derived peptides (KPs) are also known for their antimetastatic activities in several malignancies. Herein we report recent evidence of the role of kisspeptins in cancer biology and we examine the prospective of targeting the kisspeptin pathways leading to a better prognosis in patients with malignant diseases.
Collapse
Affiliation(s)
- Martha Stathaki
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Maria Evanthia Stamatiou
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - George Magioris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Simantiris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Nikolaos Syrigos
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Spyridon Dourakis
- 2nd Academic Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens School of Medicine Hippokration General Hospital Athens Greece, Greece
| | - Michael Koutsilieris
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece
| | - Athanasios Armakolas
- Physiology Laboratory, Athens Medical School, National and Kapodestrian University of Athens, Greece.
| |
Collapse
|
8
|
Beadnell TC, Scheid AD, Vivian CJ, Welch DR. Roles of the mitochondrial genetics in cancer metastasis: not to be ignored any longer. Cancer Metastasis Rev 2018; 37:615-632. [PMID: 30542781 PMCID: PMC6358502 DOI: 10.1007/s10555-018-9772-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes for only a fraction of the proteins that are encoded within the nucleus, and therefore has typically been regarded as a lesser player in cancer biology and metastasis. Accumulating evidence, however, supports an increased role for mtDNA impacting tumor progression and metastatic susceptibility. Unfortunately, due to this delay, there is a dearth of data defining the relative contributions of specific mtDNA polymorphisms (SNP), which leads to an inability to effectively use these polymorphisms to guide and enhance therapeutic strategies and diagnosis. In addition, evidence also suggests that differences in mtDNA impact not only the cancer cells but also the cells within the surrounding tumor microenvironment, suggesting a broad encompassing role for mtDNA polymorphisms in regulating the disease progression. mtDNA may have profound implications in the regulation of cancer biology and metastasis. However, there are still great lengths to go to understand fully its contributions. Thus, herein, we discuss the recent advances in our understanding of mtDNA in cancer and metastasis, providing a framework for future functional validation and discovery.
Collapse
Affiliation(s)
- Thomas C Beadnell
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Adam D Scheid
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Carolyn J Vivian
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
9
|
Boiy R, Steenbrugge J, Van Deun J, Hendrix A, Meyer E, De Wever O. Transparent reporting of experimental parameters in assays measuring phenotypic steps in metastasis. Clin Exp Metastasis 2018; 35:715-725. [PMID: 30370460 DOI: 10.1007/s10585-018-9944-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/18/2018] [Indexed: 01/04/2023]
Abstract
Metastasis is key to cancer mortality. Understanding its biology is vital for developing strategies to prevent and treat metastasis. Phenotypic assays to either study metastasis or evaluate anti-metastatic drugs are widely used in preclinical research. This technical note discusses the adherence of reporting essential experimental and methodological parameters in chemotactic invasion assays in vitro and spontaneous metastasis assays in vivo. Following the analysis of 130 recent (< 5 years) research papers, several shortcomings in reporting were identified. Therefore, we strongly argue to increase experimental rigor which should result in a significant improvement with respect to reproducibility of preclinical metastasis research.
Collapse
Affiliation(s)
- Robin Boiy
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
10
|
Kitz J, Lowes LE, Goodale D, Allan AL. Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis. Diagnostics (Basel) 2018; 8:E30. [PMID: 29710776 PMCID: PMC6023422 DOI: 10.3390/diagnostics8020030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/24/2023] Open
Abstract
The majority of cancer deaths occur because of metastasis since current therapies are largely non-curative in the metastatic setting. The use of in vivo preclinical mouse models for assessing metastasis is, therefore, critical for developing effective new cancer biomarkers and therapies. Although a number of quantitative tools have been previously developed to study in vivo metastasis, the detection and quantification of rare metastatic events has remained challenging. This review will discuss the use of circulating tumor cell (CTC) analysis as an effective means of tracking and characterizing metastatic disease progression in preclinical mouse models of breast and prostate cancer and the resulting lessons learned about CTC and metastasis biology. We will also discuss how the use of clinically-relevant CTC technologies such as the CellSearch® and Parsortix™ platforms for preclinical CTC studies can serve to enhance the study of cancer biology, new biomarkers, and novel therapies from the bench to the bedside.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada.
| | - Lori E Lowes
- Flow Cytometry and Special Hematology, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, Departments of Anatomy & Cell Biology and Oncology, Lawson Health Research Institute, Western University, London, ON N6A 5W9, Canada.
| |
Collapse
|
11
|
Lizardo MM, Sorensen PH. Practical Considerations in Studying Metastatic Lung Colonization in Osteosarcoma Using the Pulmonary Metastasis Assay. J Vis Exp 2018. [PMID: 29578500 DOI: 10.3791/56332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pulmonary metastasis assay (PuMA) is an ex vivo lung explant and closed cell culture system that permits researchers to study the biology of lung colonization in osteosarcoma (OS) by fluorescence microscopy. This article provides a detailed description of the protocol, and discusses examples of obtaining image data on metastatic growth using widefield or confocal fluorescence microscopy platforms. The flexibility of the PuMA model permits researchers to study not only the growth of OS cells in the lung microenvironment, but also to assess the effects of anti-metastatic therapeutics over time. Confocal microscopy allows for unprecedented, high-resolution imaging of OS cell interactions with the lung parenchyma. Moreover, when the PuMA model is combined with fluorescent dyes or fluorescent protein genetic reporters, researchers can study the lung microenvironment, cellular and subcellular structures, gene function, and promoter activity in metastatic OS cells. The PuMA model provides a new tool for osteosarcoma researchers to discover new metastasis biology and assess the activity of novel anti-metastatic, targeted therapies.
Collapse
Affiliation(s)
- Michael M Lizardo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; BC Cancer Agency, Provincial Health Services Authority
| | - Poul H Sorensen
- BC Cancer Agency, Provincial Health Services Authority; Department of Pathology and Laboratory Medicine, University of British Columbia;
| |
Collapse
|
12
|
Lewis MJ, Liu J, Libby EF, Lee M, Crawford NPS, Hurst DR. SIN3A and SIN3B differentially regulate breast cancer metastasis. Oncotarget 2018; 7:78713-78725. [PMID: 27780928 PMCID: PMC5340233 DOI: 10.18632/oncotarget.12805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/16/2016] [Indexed: 12/17/2022] Open
Abstract
SIN3 corepressor complexes play important roles in both normal development and breast cancer. Mammalian cells have two paralogs of SIN3 (SIN3A and SIN3B) that are encoded by distinct genes and have unique functions in many developmental processes. However, specific roles for SIN3A and SIN3B in breast cancer progression have not been characterized. We generated stable knockdown cells of SIN3 paralogs individually and in combination using three non-overlapping shRNA. Stable knockdown of SIN3B caused a significant decrease in transwell invasion through Matrigel and decreased the number of invasive colonies when grown in a 3D extracellular matrix. Conversely, stable knockdown of SIN3A significantly increased transwell invasion and increased the number of invasive colonies. These results were corroborated in vivo in which SIN3B knockdown significantly decreased and SIN3A knockdown increased experimental lung metastases. RNA sequencing was used to identify unique targets and biological pathways that were altered upon knockdown of SIN3A compared to SIN3B. Additionally, we analyzed microarray data sets to identify correlations of SIN3A and SIN3B expression with survival in patients with breast cancer. These data sets indicated that high mRNA expression of SIN3A as well as low mRNA expression of SIN3B correlates with longer relapse free survival specifically in patients with triple negative breast cancer which corresponds with our in vitro and in vivo data. These results demonstrate key functional differences between SIN3 paralogs in regulating the process of breast cancer metastasis and suggest metastasis suppressive roles of SIN3A and metastasis promoting roles of SIN3B.
Collapse
Affiliation(s)
- Monica J Lewis
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianzhong Liu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Falk Libby
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Minnkyong Lee
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nigel P S Crawford
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Jiang K, Song X, Yang L, Li L, Wan Z, Sun X, Gong T, Lin Q, Zhang Z. Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J Control Release 2018; 271:21-30. [PMID: 29277681 DOI: 10.1016/j.jconrel.2017.12.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/24/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
The chemotherapy of aggressive breast tumor is usually accompanied by a poor prognosis because of the metastasis of tumor cells. Thus, it is important to simultaneously enhance antitumor and anti-metastasis efficacy. Fibronectin and its complexes are expressed on the walls of tumor vessels and in tumor stroma. Moreover, the expression of fibronectin in metastatic sites is even higher than that in primary tumors. Herein, we designed a fibronectin-targeting CREKA-modified liposomal doxorubicin (CREKA-Lipo-Dox) for the therapy of metastatic breast tumor. CREKA-Lipo was uniformly formed with high entrapment efficiency. It exhibited longer blood circulation time compared with free Dox, and there was no significant change compared with PEG-Lipo-Dox. Immunofluorescence results revealed that the CREKA-Lipo-Dox could specifically bind to fibronectin in the tumor vessels and tumor stroma. The antitumor and anti-metastasis efficacy of CREKA-loaded liposome was more obvious than that of free Dox or unmodified Dox-Lipo. Taken together, binding fibronectin by CREKA could be an attractive therapeutic strategy for metastatic breast cancer in the future.
Collapse
Affiliation(s)
- Kejun Jiang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liuqing Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lin Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qing Lin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
14
|
Khan I, Steeg PS. The relationship of NM23 (NME) metastasis suppressor histidine phosphorylation to its nucleoside diphosphate kinase, histidine protein kinase and motility suppression activities. Oncotarget 2017. [PMID: 29535799 PMCID: PMC5828198 DOI: 10.18632/oncotarget.23796] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The NM23/NME gene was identified as a metastasis suppressor. It's re-expression inhibited cancer cell motility and suppressed metastasis, without effecting primary tumor size in multiple model systems. The mechanisms of NME suppression of motility and metastasis are incompletely known. Of particular interest, has been NME histidine 118 phosphorylation, involved in nucleoside diphosphate kinase (NDPK) and histidine protein kinase (HPK) activities. Using recently developed monoclonal antibodies to phosphohistidine, we have addressed the correlation of NME phosphohistidine with motility suppression, and distinguished the NDPK and HPK contributions. While general levels of NME correlated with its 1-phosphohistidine form in two cell line model systems, two exceptions were noted: Tumor cells actively migrating in scratch assays, even if expressing high levels of NME1, were low in its 1-phosphohistidine form. Site-directed mutagenesis of NME1 histidine 118 and proline 96 was examined by transfection experiments and partial purification of recombinant proteins. NME1P96S overexpressing tumor cells exhibited high motility and migration phenotypes despite high 1-phosphohistidine content and NDPK activity; HPK activity using succinate thiokinase as a substrate was poor. The data suggest the importance of NME 1-phosphohistidine levels in potential mechanistic pathways of metastasis suppression and point toward the HPK activity of NME1 downstream of autophosphorylation.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
15
|
Sadhu SS, Wang S, Dachineni R, Averineni RK, Seefeldt T, Xie J, Tummala H, Bhat GJ, Guan X. In Vitro and In Vivo Antimetastatic Effect of Glutathione Disulfide Liposomes. CANCER GROWTH AND METASTASIS 2017; 10:1179064417695255. [PMID: 28469471 PMCID: PMC5345945 DOI: 10.1177/1179064417695255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023]
Abstract
Cancer metastasis is the major cause of cancer mortality. Despite extensive research efforts, effective treatment for cancer metastasis is still lacking. Cancer metastasis involves 4 essential steps: cell detachment, migration, invasion, and adhesion. Detachment is the first and required step for metastasis. Glutathione disulfide (GSSG) is derived from the oxidation of glutathione (GSH), which is present in biological systems in millimolar concentration. Although GSSG is commercially available, the impact of GSSG on cell functions/dysfunctions has not been fully explored due to the fact that GSSG is not cell membrane permeable and a lack of method to specifically increase GSSG in cells. We have developed GSSG liposomes that effectively deliver GSSG to cells. Unexpectedly, cells treated with GSSG liposomes were resistant to detachment by trypsinization. This observation led to the investigation of the antimetastatic effect of GSSG liposomes. Our data demonstrate that GSSG liposomes at 1 mg/mL completely blocked cell detachment and migration, and significantly inhibited cancer cell invasion. Aqueous GSSG showed no such effect, confirming that the effects on cell detachment, migration, and invasion were caused by the intracellular delivery of GSSG. An in vivo experiment with a murine melanoma experimental metastasis model showed that GSSG liposomes prevented melanoma lung metastasis. The unique antimetastatic mechanism through the effects on detachment and migration, and effective in vitro and in vivo metastasis inhibition, warrants further investigation of the GSSG liposomes as a potential treatment for cancer metastasis.
Collapse
Affiliation(s)
- Satya S Sadhu
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Shenggang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Rakesh Dachineni
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | | | - Teresa Seefeldt
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, USA
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - G Jayarama Bhat
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| | - Xiangming Guan
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
16
|
The Promoting Effect of the Extracellular Matrix Peptide TNIIIA2 Derived from Tenascin-C in Colon Cancer Cell Infiltration. Int J Mol Sci 2017; 18:ijms18010181. [PMID: 28106752 PMCID: PMC5297813 DOI: 10.3390/ijms18010181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/26/2016] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
The extracellular matrix (ECM) molecule tenascin C (TNC) is known to be highly expressed under various pathological conditions such as inflammation and cancer. It has been reported that the expression of TNC is correlated with the malignant potential of cancer. In our laboratory, it was found that the peptide derived from the alternative splicing domain A2 in TNC, termed TNIIIA2, has been shown to influence a variety of cellular processes, such as survival, proliferation, migration, and differentiation. In this study, we investigated the effect of TNC/TNIIIA2 on the invasion and metastasis of colon cancer cells, Colon26-M3.1, or PMF-Ko14, using an in vitro and in vivo experimental system. The degree of cell invasion was increased by the addition of TNC and TNIIIA2 in a dose-dependent manner. The invasion by TNC and TNIIIA2 were suppressed by an MMP inhibitor or TNIIIA2-blocking antibody. In an in vivo experiment, pulmonary metastasis was promoted conspicuously by the addition of TNIIIA2. In this study, we found that colon cancer cell invasion and metastasis was accelerated by TNC/TNIIIA2 via MMP induction. This result suggests the possibility of a new strategy targeting TNC/TNIIIA2 for colon cancer.
Collapse
|
17
|
Gregório AC, Fonseca NA, Moura V, Lacerda M, Figueiredo P, Simões S, Dias S, Moreira JN. Inoculated Cell Density as a Determinant Factor of the Growth Dynamics and Metastatic Efficiency of a Breast Cancer Murine Model. PLoS One 2016; 11:e0165817. [PMID: 27820870 PMCID: PMC5098815 DOI: 10.1371/journal.pone.0165817] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/18/2016] [Indexed: 01/16/2023] Open
Abstract
4T1 metastatic breast cancer model have been widely used to study stage IV human breast cancer. However, the frequent inoculation of a large number of cells, gives rise to fast growing tumors, as well as to a surprisingly low metastatic take rate. The present work aimed at establishing the conditions enabling high metastatic take rate of the triple-negative murine 4T1 syngeneic breast cancer model. An 87% 4T1 tumor incidence was observed when as few as 500 cancer cells were implanted. 4T1 cancer cells colonized primarily the lungs with 100% efficiency, and distant lesions were also commonly identified in the mesentery and pancreas. The drastic reduction of the number of inoculated cells resulted in increased tumor doubling times and decreased specific growth rates, following a Gompertzian tumor expansion. The established conditions for the 4T1 mouse model were further validated in a therapeutic study with peguilated liposomal doxorubicin, in clinical used in the setting of metastatic breast cancer. Inoculated cell density was proven to be a key methodological aspect towards the reproducible development of macrometastases in the 4T1 mouse model and a more reliable pre-clinical assessment of antimetastatic therapies.
Collapse
Affiliation(s)
- Ana C. Gregório
- CNC—Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- IIIUC–Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Nuno A. Fonseca
- CNC—Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC—Faculty of Pharmacy, Pólo das Ciências da Saúde, University of Coimbra, Coimbra, Portugal
| | - Vera Moura
- CNC—Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- TREAT U, SA, Coimbra, Portugal
| | - Manuela Lacerda
- IPATIMUP–Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Paulo Figueiredo
- IPOFG-EPE–Portuguese Institute of Oncology Francisco Gentil, Coimbra, Portugal
| | - Sérgio Simões
- CNC—Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC—Faculty of Pharmacy, Pólo das Ciências da Saúde, University of Coimbra, Coimbra, Portugal
| | - Sérgio Dias
- IMM–Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - João Nuno Moreira
- CNC—Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
- FFUC—Faculty of Pharmacy, Pólo das Ciências da Saúde, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
18
|
Venturutti L, Romero LV, Urtreger AJ, Chervo MF, Cordo Russo RI, Mercogliano MF, Inurrigarro G, Pereyra MG, Proietti CJ, Izzo F, Díaz Flaqué MC, Sundblad V, Roa JC, Guzmán P, Bal de Kier Joffé ED, Charreau EH, Schillaci R, Elizalde PV. Stat3 regulates ErbB-2 expression and co-opts ErbB-2 nuclear function to induce miR-21 expression, PDCD4 downregulation and breast cancer metastasis. Oncogene 2016; 35:2208-22. [PMID: 26212010 DOI: 10.1038/onc.2015.281] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
Membrane overexpression of the receptor tyrosine kinase ErbB-2 (MErbB-2) accounts for a clinically aggressive breast cancer (BC) subtype (ErbB-2-positive) with increased incidence of metastases. We and others demonstrated that nuclear ErbB-2 (NErbB-2) also plays a key role in BC and is a poor prognostic factor in ErbB-2-positive tumors. The signal transducer and activator of transcription 3 (Stat3), another player in BC, has been recognized as a downstream mediator of MErbB-2 action in BC metastasis. Here, we revealed an unanticipated novel direction of the ErbB-2 and Stat3 interaction underlying BC metastasis. We found that Stat3 binds to its response elements (GAS) at the ErbB-2 promoter to upregulate ErbB-2 transcription in metastatic, ErbB-2-positive BC. We validated these results in several BC subtypes displaying metastatic and non-metastatic ability, highlighting Stat3 general role as upstream regulator of ErbB-2 expression in BC. Moreover, we showed that Stat3 co-opts NErbB-2 function by recruiting ErbB-2 as its coactivator at the GAS sites in the promoter of microRNA-21 (miR-21), a metastasis-promoting microRNA (miRNA). Using an ErbB-2 nuclear localization domain mutant and a constitutively activated ErbB-2 variant, we found that NErbB-2 role as a Stat3 coactivator and also its direct role as transcription factor upregulate miR-21 in BC. This reveals a novel function of NErbB-2 as a regulator of miRNAs expression. Increased levels of miR-21, in turn, downregulate the expression of the metastasis-suppressor protein programmed cell death 4 (PDCD4), a validated miR-21 target. Using an in vivo model of metastatic ErbB-2-postive BC, in which we silenced Stat3 and reconstituted ErbB-2 or miR-21 expression, we showed that both are downstream mediators of Stat3-driven metastasis. Supporting the clinical relevance of our results, we found an inverse correlation between ErbB-2/Stat3 nuclear co-expression and PDCD4 expression in ErbB-2-positive primary invasive BCs. Our findings identify Stat3 and NErbB-2 as novel therapeutic targets to inhibit ErbB-2-positive BC metastasis.
Collapse
Affiliation(s)
- L Venturutti
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - L V Romero
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - A J Urtreger
- Research Area, Institute of Oncology 'Angel H. Roffo', University of Buenos Aires, Buenos Aires, Argentina
| | - M F Chervo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - R I Cordo Russo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - M F Mercogliano
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - G Inurrigarro
- Servicio de Patología, Sanatorio Mater Dei, Buenos Aires, Argentina
| | - M G Pereyra
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - C J Proietti
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - F Izzo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - M C Díaz Flaqué
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - V Sundblad
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - J C Roa
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco, Chile
- Departamento de Anatomía Patológica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - P Guzmán
- Departamento de Anatomía Patológica (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - E D Bal de Kier Joffé
- Research Area, Institute of Oncology 'Angel H. Roffo', University of Buenos Aires, Buenos Aires, Argentina
| | - E H Charreau
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - R Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| | - P V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
| |
Collapse
|
19
|
Feeley KP, Bray AW, Westbrook DG, Johnson LW, Kesterson RA, Ballinger SW, Welch DR. Mitochondrial Genetics Regulate Breast Cancer Tumorigenicity and Metastatic Potential. Cancer Res 2016; 75:4429-36. [PMID: 26471915 DOI: 10.1158/0008-5472.can-15-0074] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Current paradigms of carcinogenic risk suggest that genetic, hormonal, and environmental factors influence an individual's predilection for developing metastatic breast cancer. Investigations of tumor latency and metastasis in mice have illustrated differences between inbred strains, but the possibility that mitochondrial genetic inheritance may contribute to such differences in vivo has not been directly tested. In this study, we tested this hypothesis in mitochondrial-nuclear exchange mice we generated, where cohorts shared identical nuclear backgrounds but different mtDNA genomes on the background of the PyMT transgenic mouse model of spontaneous mammary carcinoma. In this setting, we found that primary tumor latency and metastasis segregated with mtDNA, suggesting that mtDNA influences disease progression to a far greater extent than previously appreciated. Our findings prompt further investigation into metabolic differences controlled by mitochondrial process as a basis for understanding tumor development and metastasis in individual subjects. Importantly, differences in mitochondrial DNA are sufficient to fundamentally alter disease course in the PyMT mouse mammary tumor model, suggesting that functional metabolic differences direct early tumor growth and metastatic efficiency.
Collapse
Affiliation(s)
- Kyle P Feeley
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Alexander W Bray
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David G Westbrook
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Larry W Johnson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Danny R Welch
- Department of Cancer Biology and The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
20
|
Willetts L, Bond D, Stoletov K, Lewis JD. Quantitative Analysis of Human Cancer Cell Extravasation Using Intravital Imaging. Methods Mol Biol 2016; 1458:27-37. [PMID: 27581012 DOI: 10.1007/978-1-4939-3801-8_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastasis, or the spread of cancer cells from a primary tumor to distant sites, is the leading cause of cancer-associated death. Metastasis is a complex multi-step process comprised of invasion, intravasation, survival in circulation, extravasation, and formation of metastatic colonies. Currently, in vitro assays are limited in their ability to investigate these intricate processes and do not faithfully reflect metastasis as it occurs in vivo. Traditional in vivo models of metastasis are limited by their ability to visualize the seemingly sporadic behavior of where and when cancer cells spread (Reymond et al., Nat Rev Cancer 13:858-870, 2013). The avian embryo model of metastasis is a powerful platform to study many of the critical steps in the metastatic cascade including the migration, extravasation, and invasion of human cancer cells in vivo (Sung et al., Nat Commun 6:7164, 2015; Leong et al., Cell Rep 8, 1558-1570, 2014; Kain et al., Dev Dyn 243:216-28, 2014; Leong et al., Nat Protoc 5:1406-17, 2010; Zijlstra et al., Cancer Cell 13:221-234, 2008; Palmer et al., J Vis Exp 51:2815, 2011). The chicken chorioallantoic membrane (CAM) is a readily accessible and well-vascularized tissue that surrounds the developing embryo. When the chicken embryo is grown in a shell-less, ex ovo environment, the nearly transparent CAM provides an ideal environment for high-resolution fluorescent microcopy approaches. In this model, the embryonic chicken vasculature and labeled cancer cells can be visualized simultaneously to investigate specific steps in the metastatic cascade including extravasation. When combined with the proper image analysis tools, the ex ovo chicken embryo model offers a cost-effective and high-throughput platform for the quantitative analysis of tumor cell metastasis in a physiologically relevant in vivo setting. Here we discuss detailed procedures to quantify cancer cell extravasation in the shell-less chicken embryo model with advanced fluorescence microscopy techniques.
Collapse
Affiliation(s)
- Lian Willetts
- Department of Oncology, University of Alberta, 5-142C Katz Group Building, 114th St and 87th Ave, Edmonton, AB, Canada, T6G 2E1
| | - David Bond
- Department of Oncology, University of Alberta, 5-142C Katz Group Building, 114th St and 87th Ave, Edmonton, AB, Canada, T6G 2E1
| | - Konstantin Stoletov
- Department of Oncology, University of Alberta, 5-142C Katz Group Building, 114th St and 87th Ave, Edmonton, AB, Canada, T6G 2E1
| | - John D Lewis
- Department of Oncology, University of Alberta, 5-142C Katz Group Building, 114th St and 87th Ave, Edmonton, AB, Canada, T6G 2E1.
| |
Collapse
|
21
|
Abu R, Jiang Z, Ueno M, Isaka S, Nakazono S, Okimura T, Cho K, Yamaguchi K, Kim D, Oda T. Anti-metastatic effects of the sulfated polysaccharide ascophyllan isolated from Ascophyllum nodosum on B16 melanoma. Biochem Biophys Res Commun 2015; 458:727-32. [PMID: 25623538 DOI: 10.1016/j.bbrc.2015.01.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 01/29/2023]
Abstract
We previously found that ascophyllan, a sulfated polysaccharide isolated from brown seaweed Ascophyllum nodosum, exhibited antitumor activity in sarcoma-180 tumor-bearing mice. In this study, we found that ascophyllan inhibited the migration and adhesion of B16 melanoma cells by reducing the expression of N-cadherin and enhancing the expression of E-cadherin in a concentration-dependent manner. Transwell invasion assay revealed that ascophyllan suppressed the invasion ability of B16 cells. It also inhibited the expression of matrix metalloprotease-9 (MMP-9) mRNA and the secretion of MMP-9 protein in B16 cells, a process that may involve the extracellular signal-regulated kinase (ERK) signaling pathway. Furthermore, ascophyllan administered intraperitoneally at 25 mg/kg showed anti-metastatic activity in a mouse model of metastasis induced by intravenous injection of B16 cells, and the number of lung surface metastatic nodules in ascophyllan-treated mice was significantly reduced compared to that in the untreated control mice. Since splenic natural killer cell activity enhanced in the mice injected with ascophyllan intraperitoneally, we suggest that ascophyllan may exhibit in vivo anti-metastatic activity on B16 melanoma cells through activation of the host immune system in addition to a direct action on cancer cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Animals
- Anticarcinogenic Agents/chemistry
- Anticarcinogenic Agents/therapeutic use
- Ascophyllum/chemistry
- Cell Line, Tumor
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- MAP Kinase Signaling System/drug effects
- Male
- Matrix Metalloproteinase 9/metabolism
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Neoplasm Invasiveness/immunology
- Neoplasm Invasiveness/pathology
- Neoplasm Invasiveness/prevention & control
- Polysaccharides/chemistry
- Polysaccharides/therapeutic use
- Spleen/cytology
Collapse
Affiliation(s)
- Ryogo Abu
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian Province 361021, China
| | - Mikinori Ueno
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Shogo Isaka
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Satoru Nakazono
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Takasi Okimura
- Research and Development Division, Hayashikane Sangyo Co., Ltd., Shimonoseki, Yamaguchi 750-8608, Japan
| | - Kichul Cho
- Jeju Center, Korea Basic Science Institute (KBSI), Jeju 690-756, Republic of Korea; Korea University of Science & Technology, Daejeon 305-350, Republic of Korea
| | - Kenichi Yamaguchi
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | - Daekyung Kim
- Jeju Center, Korea Basic Science Institute (KBSI), Jeju 690-756, Republic of Korea; Korea University of Science & Technology, Daejeon 305-350, Republic of Korea.
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan.
| |
Collapse
|
22
|
Chakrabarti R, Kang Y. Transplantable mouse tumor models of breast cancer metastasis. Methods Mol Biol 2015; 1267:367-80. [PMID: 25636479 DOI: 10.1007/978-1-4939-2297-0_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Metastatic spread of cancer cells is the main cause of death of breast cancer patients. A better understanding of the molecular mechanism of cancer metastasis is essential for the development of novel and effective therapies. The biological complexity of the metastasis process requires the combination of multiple experimental systems to model distinct steps of cancer metastasis. Several animal models have been generated to mimic the process of breast cancer metastasis, with unique advantages and drawbacks of each model. In this chapter, we describe transplantable xenograft and allograft methods to introduce human or mouse breast tumor cells into mice in order to generate spontaneous and experimental metastasis.
Collapse
Affiliation(s)
- Rumela Chakrabarti
- Department of Molecular Biology, Princeton University, Washington Road, LTL 255, Princeton, NJ, 08544, USA
| | | |
Collapse
|
23
|
Huang Q, Chen B, He R, He Z, Cai B, Xu J, Qian W, Chan HL, Liu W, Guo S, Zhao XZ, Yuan J. Capture and release of cancer cells based on sacrificeable transparent MnO2 nanospheres thin film. Adv Healthc Mater 2014; 3:1420-5. [PMID: 24652776 DOI: 10.1002/adhm.201300670] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/06/2014] [Indexed: 01/16/2023]
Abstract
A CTCs detection assay using transparent MnO2 nanospheres thin films to capture and release of CTCs is reported. The enhanced local topography interaction between extracellular matrix scaffolds and the antibody-coated substrate leads to improved capture efficiency. CTCs captured from artificial blood sample can be cultured and released, represent a new functional material capable of CTCs isolation and culture for subsequent studies.
Collapse
Affiliation(s)
- Qinqin Huang
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education; School of Physics and Technology; Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Bolei Chen
- Department of Applied Physics; The Hong Kong Polytechnic University; Hong Kong
| | - Rongxiang He
- Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 China
| | - Zhaobo He
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education; School of Physics and Technology; Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Bo Cai
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education; School of Physics and Technology; Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Junhua Xu
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education; School of Physics and Technology; Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Weiyi Qian
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education; School of Physics and Technology; Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Helen Laiwa Chan
- Department of Applied Physics; The Hong Kong Polytechnic University; Hong Kong
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education; School of Physics and Technology; Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education; School of Physics and Technology; Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education; School of Physics and Technology; Wuhan University; Wuhan 430072 Hubei P. R. China
| | - Jikang Yuan
- Department of Applied Physics; The Hong Kong Polytechnic University; Hong Kong
| |
Collapse
|
24
|
Lowes LE, Hedley BD, Keeney M, Allan AL. Adaptation of semiautomated circulating tumor cell (CTC) assays for clinical and preclinical research applications. J Vis Exp 2014:e51248. [PMID: 24637923 DOI: 10.3791/51248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Collapse
Affiliation(s)
- Lori E Lowes
- London Regional Cancer Program, London Health Sciences Centre; Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University
| | | | - Michael Keeney
- Special Hematology/Flow Cytometry, London Health Sciences Centre; Lawson Health Research Institute
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre; Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University; Lawson Health Research Institute; Department of Oncology, Western University;
| |
Collapse
|
25
|
MacDonald IC, Chambers AF. Breast cancer metastasis progression as revealed by intravital videomicroscopy. Expert Rev Anticancer Ther 2014; 6:1271-9. [PMID: 17020460 DOI: 10.1586/14737140.6.9.1271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metastasis is the spread of cells from a primary tumor to a distant site, where they arrest and grow to form a secondary tumor. Conventional metastasis models have focused primarily on analysis of end point tumor formation following inoculation with tumor cells. This approach can be used to measure the metastatic potential of cell lines, the morphology of metastases and their vasculature and the overall effectiveness of treatment strategies. However, it cannot, reveal the dynamics of metastatic progression, tumor cell interactions with host tissues or the characteristics of blood flow within the tumor microvasculature. Intravital videomicroscopy has been developed to visualize and quantify the movement of tumor cells and their interactions with host tissues as they travel through metastatic pathways within the body and arrest at secondary sites. Intravital videomicroscopy can also be used to quantify the morphology and functional capacity of tumor microvasculature, as well as the timing and dynamic effects of drugs targeted to disrupt tumor vasculaturization. With the development of new fluorescent probes and reporter genes, intravital videomicroscopy has the potential to provide evidence of the timing and location of metabolic processes within the metastatic cascade that may serve as specific targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Ian C MacDonald
- Department of Medical Biophysics, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5C1, Canada.
| | | |
Collapse
|
26
|
Kang Y. Functional genomic analysis of cancer metastasis: biologic insights and clinical implications. Expert Rev Mol Diagn 2014; 5:385-95. [PMID: 15934815 DOI: 10.1586/14737159.5.3.385] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metastasis, the spread of cancer from primary tumors to distant vital organs, has devastating consequences. Lack of effective tools to study this complex problem has hindered the development of accurate prognostic methods and effective treatments for metastatic cancer. In the postgenomic era, the application of genomic profiling methods to the analysis of clinical metastasis samples and animal metastasis models has revolutionized the field of metastasis research. This article reviews recent breakthroughs in the functional genomic analysis of metastasis. In addition, its impacts on our understanding of the molecular basis of metastasis and on clinical practice are discussed.
Collapse
Affiliation(s)
- Yibin Kang
- Princeton University Department of Molecular Biology, Princeton, NJ 08544, USA.
| |
Collapse
|
27
|
Abstract
Immunodeficient mice are widely used for cancer research as they can provide an in vivo system in which to study the tumorigenicity and metastatic potential of human cancer cells. The athymic or "nude" mouse has been employed for a variety of experimental analyses of tumor growth, invasion, and metastasis. This chapter describes two types of experimental design for studying metastasis in vivo. The spontaneous metastasis models assess the ability of cells to disseminate from a local tumor, and are commonly initiated by the injection of the cells into an organ reflecting the tissue of origin of the cancer (orthotopic injection). Models of experimental metastasis evaluate the ability of tumor cells to arrest, extravasate, and grow in various organs following intravascular injection. The appropriate design of animal models using nude mice, and established human tumor cell lines, assists in the generation of novel information about the metastatic phenotype, and provides a valuable, preclinical system for testing anti-metastatic therapies.
Collapse
Affiliation(s)
- Janet E Price
- Department of Cancer Biology, M.D., Anderson Cancer Centre, Houston, TX, USA
| |
Collapse
|
28
|
Abstract
The murine B16 melanoma is one of the most used tumor models, its application having been used to determine the mechanisms associated with the metastatic process and the development of anticancer therapies. The B16 melanoma was originally established by Fidler and collaborators as a tumor line metastasizing to the lung. Since that time a variety of cell lines have been derived, in vitro or in vivo, having different metastatic behaviors.The methods used to obtain artificial metastases to the lung through the intravenous injection of B16 melanoma cells and spontaneous metastasis formation following cancer cell growth in the footpad are described in this chapter.
Collapse
|
29
|
Holzapfel BM, Thibaudeau L, Hesami P, Taubenberger A, Holzapfel NP, Mayer-Wagner S, Power C, Clements J, Russell P, Hutmacher DW. Humanised xenograft models of bone metastasis revisited: novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer Metastasis Rev 2013; 32:129-45. [PMID: 23657538 DOI: 10.1007/s10555-013-9437-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The determinants and key mechanisms of cancer cell osteotropism have not been identified, mainly due to the lack of reproducible animal models representing the biological, genetic and clinical features seen in humans. An ideal model should be capable of recapitulating as many steps of the metastatic cascade as possible, thus facilitating the development of prognostic markers and novel therapeutic strategies. Most animal models of bone metastasis still have to be derived experimentally as most syngeneic and transgeneic approaches do not provide a robust skeletal phenotype and do not recapitulate the biological processes seen in humans. The xenotransplantation of human cancer cells or tumour tissue into immunocompromised murine hosts provides the possibility to simulate early and late stages of the human disease. Human bone or tissue-engineered human bone constructs can be implanted into the animal to recapitulate more subtle, species-specific aspects of the mutual interaction between human cancer cells and the human bone microenvironment. Moreover, the replication of the entire "organ" bone makes it possible to analyse the interaction between cancer cells and the haematopoietic niche and to confer at least a partial human immunity to the murine host. This process of humanisation is facilitated by novel immunocompromised mouse strains that allow a high engraftment rate of human cells or tissue. These humanised xenograft models provide an important research tool to study human biological processes of bone metastasis.
Collapse
Affiliation(s)
- Boris Michael Holzapfel
- Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Krishnan V, Vogler EA, Sosnoski DM, Mastro AM. In Vitro Mimics of Bone Remodeling and the Vicious Cycle of Cancer in Bone. J Cell Physiol 2013; 229:453-62. [DOI: 10.1002/jcp.24464] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 08/27/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Venkatesh Krishnan
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park Pennsylvania
- The Huck Institutes of Life Sciences; The Pennsylvania State University; University Park Pennsylvania
| | - Erwin A. Vogler
- Department of Materials Science and Engineering; The Pennsylvania State University; University Park Pennsylvania
- Department of Bioengineering; The Pennsylvania State University; University Park Pennsylvania
- Materials Research Institute; The Pennsylvania State University; University Park Pennsylvania
| | - Donna M. Sosnoski
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park Pennsylvania
| | - Andrea M. Mastro
- Department of Biochemistry and Molecular Biology; The Pennsylvania State University; University Park Pennsylvania
| |
Collapse
|
31
|
Li K, Ding D, Prashant C, Qin W, Yang CT, Tang BZ, Liu B. Gadolinium-functionalized aggregation-induced emission dots as dual-modality probes for cancer metastasis study. Adv Healthc Mater 2013; 2:1600-5. [PMID: 23836611 DOI: 10.1002/adhm.201300135] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Indexed: 01/15/2023]
Abstract
Understanding the localization and engraftment of tumor cells at postintravasation stage of metastasis is of high importance in cancer diagnosis and treatment. Advanced fluorescent probes and facile methodologies for cell tracing play a key role in metastasis studies. In this work, we design and synthesize a dual-modality imaging dots with both optical and magnetic contrast through integration of a magnetic resonance imaging reagent, gadolinium(III), into a novel long-term cell tracing probe with aggregation-induced emission (AIE) in far-red/near-infrared region. The obtained fluorescent-magnetic AIE dots have both high fluorescence quantum yield (25%) and T1 relaxivity (7.91 mM(-1) s(-1) ) in aqueous suspension. After further conjugation with a cell membrane penetrating peptide, the dual-modality dots can be efficiently internalized into living cells. The gadolinium(III) allows accurate quantification of biodistribution of cancer cells via intraveneous injection, while the high fluorescence provides engraftment information of cells at single cellular level. The dual-modality AIE dots show obvious synergistic advantages over either single imaging modality and hold great promises in advanced biomedical studies.
Collapse
Affiliation(s)
- Kai Li
- Institute of Materials Research and Engineering, 3 Research Link, 117602, Singapore
| | | | | | | | | | | | | |
Collapse
|
32
|
Encapsulated human hepatocellular carcinoma cells by alginate gel beads as an in vitro metastasis model. Exp Cell Res 2013; 319:2135-44. [DOI: 10.1016/j.yexcr.2013.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/12/2022]
|
33
|
Zhang Y, Chin-Quee K, Riddle RC, Li Z, Zhou Z, Donahue HJ. BRMS1 Sensitizes Breast Cancer Cells to ATP-Induced Growth Suppression. Biores Open Access 2013; 2:77-83. [PMID: 23593560 PMCID: PMC3620472 DOI: 10.1089/biores.2012.0260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling may represent an effective target in cancer therapy because the expression of purinergic receptors is altered in many forms of cancer and extracellular nucleotides modulate cancer cell growth. We examined the effect of extracellular ATP on the growth of the metastatic breast carcinoma cell line MDA-MB-435 relative to an immortalized breast epithelial cell line, hTERT-HME1. We also investigated whether the metastasis suppressor gene BRMS1 alters the sensitivity of breast cancer cells to ATP. Exposure to ATP for 24 h decreased proliferation and induced apoptosis in hTERT-HME1. However, exposure to ATP did not decrease proliferation or induce apoptosis in MDA-MD-435 cells until 48 h of exposure and only at higher doses than were effective with hTERT-HME1, suggesting MDA-MB-435 cells were resistant to the antiproliferative and apoptosis-inducing effects of ATP. Exposure to ATP for 24 h induced a decrease in proliferation of MDA-MB-435 cells expressing BRMS1, similar to hTERT-HME1, but did not induce an increase in apoptosis. MDA-MB-435 cells expressed low levels of the purinergic receptor P2Y2, as well as decreased ATP-induced cytosolic calcium mobilization, relative to hTERT-HME1. However, expressing BRMS1 in MDA-MB-435 cells restored P2Y2 levels and ATP-induced cytosolic calcium mobilization such that they were similar to hTERT-HME1. These data suggest that BRMS1 increases the sensitivity of breast cancer cells to the antiproliferative, but not apoptosis-inducing effects of ATP and that this is at least partly mediated by increased expression of the P2Y2 receptor.
Collapse
Affiliation(s)
- Yue Zhang
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Penn State College of Medicine , Hershey, Pennsylvania
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
BACKGROUND The operative and conservative results of therapy in pancreatic ductal adenocarcinoma remain appallingly poor. This underlines the demand for further research for effective anticancer drugs. The various animal models remain the essential method for the determination of efficacy of substances during preclinical phase. OBJECTIVE Unfortunately, most of these tested substances showed a good efficacy in pancreatic carcinoma in the animal model but were not confirmed during the clinical phase. METHODS The available literature in PubMed, Medline, Ovid and secondary literature was searched regarding the available animal models for drug testing against pancreatic cancer. The models were analyzed regarding their pros and cons in anticancer drug testing. CONCLUSION The different modifications of the orthotopic model (especially in mice) seem at present to be the best model for anticancer testing in pancreatic carcinoma. The value of genetically engineered animal model (GEM) and syngeneic models is on debate. A good selection of the model concerning the questions supposed to be clarified may improve the comparability of the results of animal experiments compared to clinical trials.
Collapse
Affiliation(s)
- Matthias Kapischke
- Vivantes Hospital Spandau, Department of Surgery, Neue Bergstrasse 06, D-13585 Berlin, Germany +49 (0)30 130 132155 ; +49 (0)30130 132154 ;
| | | |
Collapse
|
35
|
The C-terminal putative nuclear localization sequence of breast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression. PLoS One 2013; 8:e55966. [PMID: 23390556 PMCID: PMC3563580 DOI: 10.1371/journal.pone.0055966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/04/2013] [Indexed: 12/19/2022] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is a predominantly nuclear protein that suppresses metastasis in multiple human and murine carcinoma cell lines. BRMS1 interacts with several nuclear proteins including SIN3:HDAC chromatin remodeling complexes that are involved in repressing transcription. However, recent reports suggest BRMS1 may function in the cytoplasm. BRMS1 has two predicted nuclear localization sequences (NLS) that are located near the C-terminus (amino acids 198–205 and 238–244, NLS1 and NLS2 respectively). We hypothesized that nuclear localization sequences of BRMS1 were essential for BRMS1 mediated metastasis suppression. Replacement of NLS2 with NLS1 (BRMS1NLS1,1), truncation at 238 (BRMS1ΔNLS2), or switching the location of NLS1 and NLS2 (BRMS1NLS2,1) did not affect nuclear localization; but, replacement of NLS1 with NLS2 (BRMS1NLS2,2) or truncation at 197 (BRMS1ΔNLS which removes both NLS) promoted cytoplasmic localization. MDA-MB-231 human metastatic breast cancer cells transduced with BRMS1NLS1,1, BRMS1NLS2,2 or BRMS1NLS2,1 were evaluated for metastasis suppression in an experimental xenograft mouse model. Interestingly, while NLS2 was not necessary for nuclear localization, it was found to be important for metastasis suppression since BRMS1NLS2,2 suppressed metastasis by 85%. In contrast, BRMS1NLS2,1 and BRMS1NLS1,1 did not significantly suppress metastasis. Both BRMS1 and BRMS1NLS2,2 co-immunoprecipitated with SIN3A in the nucleus and cytoplasm; however, BRMS1NLS1,1 and BRMS1NLS2,1 were associated with SIN3A in the nucleus only. Moreover, BRMS1 and BRMS1NLS2,2, but not BRMS1NLS1,1 and BRMS1NLS2,1, down-regulated the pro-metastatic microRNA, miR-10b. Together, these data demonstrate an important role for NLS2 in the cytoplasm that is critical for metastasis suppression and is distinct from nuclear localization.
Collapse
|
36
|
Hakim M, Broza YY, Barash O, Peled N, Phillips M, Amann A, Haick H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev 2012; 112:5949-66. [PMID: 22991938 DOI: 10.1021/cr300174a] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Meggie Hakim
- The Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
37
|
Bodenstine TM, Beck BH, Cao X, Cook LM, Ismail A, Powers SJK, Powers JK, Mastro AM, Welch DR. Pre-osteoblastic MC3T3-E1 cells promote breast cancer growth in bone in a murine xenograft model. CHINESE JOURNAL OF CANCER 2012; 30:189-96. [PMID: 21352696 PMCID: PMC3661213 DOI: 10.5732/cjc.010.10582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The bones are the most common sites of breast cancer metastasis. Upon arrival within the bone microenvironment, breast cancer cells coordinate the activities of stromal cells, resulting in an increase in osteoclast activity and bone matrix degradation. In late stages of bone metastasis, breast cancer cells induce apoptosis in osteoblasts, which further exacerbates bone loss. However, in early stages, breast cancer cells induce osteoblasts to secrete inflammatory cytokines purported to drive tumor progression. To more thoroughly evaluate the role of osteoblasts in early stages of breast cancer metastasis to the bones, we used green fluorescent protein-labeled human breast cancer cell lines MDA-MB-231 and MDA-MB-435, which both induce osteolysis after intra-femoral injection in athymic mice, and the murine pre-osteoblastic cell line MC3T3-E1 to modulate osteoblast populations at the sites of breast cancer metastasis. Breast cancer cells were injected directly into the femur with or without equal numbers of MC3T3-E1 cells. Tumors grew significantly larger when co-injected with breast cancer cells and MC3T3-E1 cells than injected with breast cancer cells alone. Osteolysis was induced in both groups, indicating that MC3T3-E1 cells did not block the ability of breast cancer cells to cause bone destruction. MC3T3-E1 cells promoted tumor growth out of the bone into the extraosseous stroma. These data suggest that breast cancer cells and osteoblasts communicate during early stages of bone metastasis and promote tumor growth.
Collapse
|
38
|
Amal H, Ding L, Liu BB, Tisch U, Xu ZQ, Shi DY, Zhao Y, Chen J, Sun RX, Liu H, Ye SL, Tang ZY, Haick H. The scent fingerprint of hepatocarcinoma: in-vitro metastasis prediction with volatile organic compounds (VOCs). Int J Nanomedicine 2012; 7:4135-46. [PMID: 22888249 PMCID: PMC3415321 DOI: 10.2147/ijn.s32680] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common and aggressive form of cancer. Due to a high rate of postoperative recurrence, the prognosis for HCC is poor. Subclinical metastasis is the major cause of tumor recurrence and patient mortality. Currently, there is no reliable prognostic method of invasion. AIM To investigate the feasibility of fingerprints of volatile organic compounds (VOCs) for the in-vitro prediction of metastasis. METHODS Headspace gases were collected from 36 cell cultures (HCC with high and low metastatic potential and normal cells) and analyzed using nanomaterial-based sensors. Predictive models were built by employing discriminant factor analysis pattern recognition, and the classification success was determined using leave-one-out cross-validation. The chemical composition of each headspace sample was studied using gas chromatography coupled with mass spectrometry (GC-MS). RESULTS Excellent discrimination was achieved using the nanomaterial-based sensors between (i) all HCC and normal controls; (ii) low metastatic HCC and normal controls; (iii) high metastatic HCC and normal controls; and (iv) high and low HCC. Several HCC-related VOCs that could be associated with biochemical cellular processes were identified through GC-MS analysis. CONCLUSION The presented results constitute a proof-of-concept for the in-vitro prediction of the metastatic potential of HCC from VOC fingerprints using nanotechnology. Further studies on a larger number of more diverse cell cultures are needed to evaluate the robustness of the VOC patterns. These findings could benefit the development of a fast and potentially inexpensive laboratory test for subclinical HCC metastasis.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Case-Control Studies
- Cell Line, Tumor
- Discriminant Analysis
- Gas Chromatography-Mass Spectrometry/methods
- Hep G2 Cells
- Humans
- Liver Neoplasms/chemistry
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lung Neoplasms/secondary
- Mice
- Mice, Nude
- Models, Theoretical
- Nanotechnology/instrumentation
- Neoplasm Metastasis
- Pattern Recognition, Automated
- Reproducibility of Results
- Statistics, Nonparametric
- Volatile Organic Compounds/analysis
- Volatile Organic Compounds/metabolism
Collapse
Affiliation(s)
- Haitham Amal
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa, Israel
| | - Lu Ding
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin-bin Liu
- Liver Cancer Institute and Zhong-shan Hospital, Fudan University, Shanghai, China
| | - Ulrike Tisch
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa, Israel
| | - Zhen-qin Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da-you Shi
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Zhao
- Liver Cancer Institute and Zhong-shan Hospital, Fudan University, Shanghai, China
| | - Jie Chen
- Liver Cancer Institute and Zhong-shan Hospital, Fudan University, Shanghai, China
| | - Rui-xia Sun
- Liver Cancer Institute and Zhong-shan Hospital, Fudan University, Shanghai, China
| | - Hu Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sheng-Long Ye
- Liver Cancer Institute and Zhong-shan Hospital, Fudan University, Shanghai, China
| | - Zhao-you Tang
- Liver Cancer Institute and Zhong-shan Hospital, Fudan University, Shanghai, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
39
|
Knopfová L, Beneš P, Pekarčíková L, Hermanová M, Masařík M, Pernicová Z, Souček K, Smarda J. c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis. Mol Cancer 2012; 11:15. [PMID: 22439866 PMCID: PMC3325857 DOI: 10.1186/1476-4598-11-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/23/2012] [Indexed: 12/11/2022] Open
Abstract
Background The c-Myb transcription factor is essential for the maintenance of stem-progenitor cells in bone marrow, colon epithelia, and neurogenic niches. c-Myb malfunction contributes to several types of malignancies including breast cancer. However, the function of c-Myb in the metastatic spread of breast tumors remains unexplored. In this study, we report a novel role of c-Myb in the control of specific proteases that regulate the matrix-dependent invasion of breast cancer cells. Results Ectopically expressed c-Myb enhanced migration and ability of human MDA-MB-231 and mouse 4T1 mammary cancer cells to invade Matrigel but not the collagen I matrix in vitro. c-Myb strongly increased the expression/activity of cathepsin D and matrix metalloproteinase (MMP) 9 and significantly downregulated MMP1. The gene coding for cathepsin D was suggested as the c-Myb-responsive gene and downstream effector of the migration-promoting function of c-Myb. Finally, we demonstrated that c-Myb delayed the growth of mammary tumors in BALB/c mice and affected the metastatic potential of breast cancer cells in an organ-specific manner. Conclusions This study identified c-Myb as a matrix-dependent regulator of invasive behavior of breast cancer cells.
Collapse
Affiliation(s)
- Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, and International Clinical Research Center, CBCE, St. Anne's University Hospital, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Duyverman AMMJ, Steller EJA, Fukumura D, Jain RK, Duda DG. Studying primary tumor-associated fibroblast involvement in cancer metastasis in mice. Nat Protoc 2012; 7:756-62. [PMID: 22441294 DOI: 10.1038/nprot.2012.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stromal cells have been studied extensively in the primary tumor microenvironment. In addition, mesenchymal stromal cells may participate in several steps of the metastatic cascade. Studying this interaction requires methods to distinguish and target stromal cells originating from the primary tumor versus their counterparts in the metastatic site. Here we illustrate a model of human tumor stromal cell-mouse cancer cell coimplantation. This model can be used to selectively deplete human stromal cells (using diphtheria toxin, DT) without affecting mouse cancer cells or host-derived stromal cells. Establishment of novel genetic models (e.g., transgenic expression of the DT receptor in specific cells) may eventually allow analogous models using syngeneic cells. Studying the role of stromal cells in metastasis using the model outlined above may take 8 weeks.
Collapse
Affiliation(s)
- Annique M M J Duyverman
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital (MGH) and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
41
|
Ubiquitous Brms1 expression is critical for mammary carcinoma metastasis suppression via promotion of apoptosis. Clin Exp Metastasis 2012; 29:315-25. [PMID: 22241150 DOI: 10.1007/s10585-012-9452-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/02/2012] [Indexed: 12/30/2022]
Abstract
Morbidity and mortality of breast cancer patients are drastically increased when primary tumor cells are able to spread to distant sites and proliferate to become secondary lesions. Effective treatment of metastatic disease has been limited; therefore, an increased molecular understanding to identify biomarkers and therapeutic targets is needed. Breast cancer metastasis suppressor 1 (BRMS1) suppresses development of pulmonary metastases when expressed in a variety of cancer types, including metastatic mammary carcinoma. Little is known of Brms1 function throughout the initiation and progression of mammary carcinoma. The goal of this study was to investigate mechanisms of Brms1-mediated metastasis suppression in transgenic mice that express Brms1 using polyoma middle T oncogene-induced models. Brms1 expression did not significantly alter growth of the primary tumors. When expressed ubiquitously using a β-actin promoter, Brms1 suppressed pulmonary metastasis and promoted apoptosis of tumor cells located in the lungs but not in the mammary glands. Surprisingly, selective expression of Brms1 in the mammary gland using the MMTV promoter did not significantly block metastasis nor did it promote apoptosis in the mammary glands or lung, despite MMTV-induced expression within the lungs. These results strongly suggest that cell type-specific over-expression of Brms1 is important for Brms1-mediated metastasis suppression.
Collapse
|
42
|
Effect of host immunity on metastatic potential in renal cell carcinoma: the assessment of optimal in vivo models to study metastatic behavior of renal cancer cells. Tumour Biol 2012; 33:551-9. [PMID: 22219032 DOI: 10.1007/s13277-011-0300-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022] Open
Abstract
There has been little information about metastatic behavior of renal cell carcinoma (RCC) cells because human cancers metastasize only rarely in immunodeficient mice. Moreover, it is difficult to know the effect of host immunity on RCC metastasis due to lack of such RCC cells as transplantable in not only xenograft models but also counterparts with intact immunity. Therefore, we scrutinized in vivo metastasis of RCC cells to seek for the optimal preclinical model to study metastatic behavior. The luciferase-expressing three representative human RCC cell lines (Caki-1, A498, and 786-O) and rat ACI-RCC cell which were established in our laboratory were transplanted into nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice or immunocompetent ACI rats by intracardiac injection as well as orthotopic inoculation. Metastasis was monitored using a bioluminescent imaging technique. Metastasis was rare in the three human RCC cells even when they were directly disseminated into systemic circulation under the condition least susceptible to host immune attack in NOD/SCID mice. In contrast, ACI-RCC cells spontaneously metastasized to pulmonary tissue from orthotopic tumor sites and systemically spread via intracardiac route. Metastases were more extensive when the cells were inoculated into an immunodeficient host, implying suppressive effect of host immunity on colonization of RCC cells. These results suggest that the representative human RCC cells are not adequate resource to study metastasis but that the luciferase-labeled ACI-RCC cell characterized by its luminescent stability, enhanced tumorigenicity, and widespread metastatic potential provides a useful in vivo model for preclinical assessment of cancer progression and potential therapies against RCC.
Collapse
|
43
|
Assessing cancer cell migration and metastatic growth in vivo in the chick embryo using fluorescence intravital imaging. Methods Mol Biol 2012; 872:1-14. [PMID: 22700400 DOI: 10.1007/978-1-61779-797-2_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell migration and metastasis are key features of aggressive tumors. These processes can be difficult to study, as they often occur deep within the body of a cancer patient or an experimental animal. In vitro assays are able to model some aspects of these processes, and a number of assays have been developed to assess cancer cell motility, migration, and invasion. However, in vitro assays have inherent limitations that may miss important aspects of these processes as they occur in vivo. The chick embryo provides a powerful model for studying these processes in vivo, facilitated by the external and accessible nature of the chorioallantoic membrane (CAM), a well-vascularized tissue that surrounds the embryo. When coupled with multiple fluorescent approaches to labeling both cancer cells and the embryonic vasculature, along with image analysis tools, the chick CAM model offers cost-effective, rapid assays for studying cancer cell migration and metastasis in a physiologically-relevant, in vivo setting. Here, we present recent developments of detailed procedures for using shell-less chick embryos, coupled with fluorescent labeling of cancer cells and/or chick vasculature, to study cancer cell migration and metastasis in vivo.
Collapse
|
44
|
Ko CY, Wu L, Nair AM, Tsai YT, Lin VK, Tang L. The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis. Biomaterials 2011; 33:876-85. [PMID: 22019117 DOI: 10.1016/j.biomaterials.2011.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/01/2011] [Indexed: 02/07/2023]
Abstract
Inflammatory responses and associated products have been implicated in cancer metastasis. However, the relationship between these two processes is uncertain due to the lack of a suitable model. Taking advantage of localized and controllable inflammatory responses induced by biomaterial implantation and the capability of tissue scaffolds to release a wide variety of chemokines, we report a novel system for studying the molecular mechanisms of inflammation-mediated cancer metastasis. The animal model is comprised of an initial subcutaneous implantation of biomaterial microspheres which prompt localized inflammatory responses, followed by the transplantation of metastatic cancer cells into the peritoneal cavity or blood circulation. Histological results demonstrated that substantial numbers of B16F10 cells were recruited to the site nearby biomaterial implants. There was a strong correlation between the degree of biomaterial-mediated inflammatory responses and number of recruited cancer cells. Inflammation-mediated cancer cell migration was inhibited by small molecule inhibitors of CXCR4 but not by neutralizing antibody against CCL21. Using chemokine-releasing scaffolds, further studies were carried out to explore the possibility of enhancing cancer cell recruitment. Interestingly, erythropoietin (EPO) releasing scaffolds, but not stromal cell-derived factor-1α-releasing scaffolds, were found to accumulate substantially more melanoma cells than controls. Rather unexpectedly, perhaps by indirectly reducing circulating cancer cells, mice implanted with EPO-releasing scaffolds had ~30% longer life span than other groups. These results suggest that chemokine-releasing scaffolds may potentially function as implantable cancer traps and serve as powerful tools for studying cancer distraction and even selective annihilation of circulating metastatic cancer cells.
Collapse
Affiliation(s)
- Cheng-Yu Ko
- Bioengineering Department, University of Texas at Arlington, Arlington, TX 76019-0138, USA
| | | | | | | | | | | |
Collapse
|
45
|
Yoo JS, Kim HB, Won N, Bang J, Kim S, Ahn S, Lee BC, Soh KS. Evidence for an additional metastatic route: in vivo imaging of cancer cells in the primo-vascular system around tumors and organs. Mol Imaging Biol 2011; 13:471-480. [PMID: 20567924 DOI: 10.1007/s11307-010-0366-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Researchers have been studying the mechanisms by which metastasis can be prevented via blocking the hematogenous and the lymphatic routes for a long time now. However, metastasis is still the single most challenging obstacle for successful cancer management. In a new twist that may require some retooling of this established approach, we investigated the hypothesis that tumor metastases can occur via an independent fluid-conducting system called the primo-vascular system. PROCEDURES The dissemination and growth of near-infrared quantum dot (NIR QD)-electroporated cancer cells in metastatic sites were investigated using in vivo multispectral imaging techniques. RESULTS Our results show that the NIR QD-labeled cancer cells were able to migrate through not only the blood vascular and lymphatic systems but also the primo-vascular system extending from around the tumor to inside the abdominal cavity. Furthermore, the NIR QD-labeled cancer cells, which had been seeded intraperitoneally, specifically infiltrated the primo-vascular system in the omentum and in the gonadal fat. CONCLUSIONS These findings strongly suggest that the primo-vascular system may be an additional metastasis route, complementing the lymphatic and hematogenous routes, which facilitate the dissemination and colonization of cancer cells at secondary sites.
Collapse
Affiliation(s)
- Jung Sun Yoo
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Hong Bae Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Nayoun Won
- Department of Chemistry, Pohang University of Science and Technology, Kyungbuk, South Korea
| | - Jiwon Bang
- Department of Chemistry, Pohang University of Science and Technology, Kyungbuk, South Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Kyungbuk, South Korea
| | - Saeyoung Ahn
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Byung-Cheon Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea
| | - Kwang-Sup Soh
- Department of Physics and Astronomy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
46
|
Hedley BD, Chu JE, Ormond DG, Beausoleil MS, Boasie A, Allan AL, Xenocostas A. Recombinant Human Erythropoietin in Combination with Chemotherapy Increases Breast Cancer Metastasis in Preclinical Mouse Models. Clin Cancer Res 2011; 17:6151-62. [DOI: 10.1158/1078-0432.ccr-10-3298] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Tekle C, Nygren MK, Chen YW, Dybsjord I, Nesland JM, Maelandsmo GM, Fodstad O. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes. Int J Cancer 2011; 130:2282-90. [PMID: 21671471 DOI: 10.1002/ijc.26238] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/01/2011] [Indexed: 11/06/2022]
Abstract
B7-H3, an immunoregulatory protein, is known to play a role in tumor progression. In many cancer types, observed correlations between high B7-H3 expression and poor prognosis have been attributed to involvement in antitumor immunity. However, here we demonstrate a nonimmunological alternative function of B7-H3 in cancer metastasis. Since advanced malignant melanoma is a disease with a poor survival rate and a broad pattern of metastasis, we used this disease as a model in our studies. We found that shRNA silencing of B7-H3 reduced the in vitro migratory potential and matrigel invasiveness of MDA-MB-435 and FEMX-I melanoma cells. In an experimental metastasis model in vivo, B7-H3 silencing of MDA-MB-435 cells resulted in reduced metastatic capacity and significantly increased the median symptom-free survival of nude mice (147 vs. 65 days, p < 0.001) and rats (53 vs. 42 days, p = 0.025) injected with MDA-MB-435 cells. Furthermore, a smaller fraction of mice had microscopically detectable metastases compared to control animals, and the pattern of metastases was slightly different between the two groups but with the brain as the predominant organ. Immunohistochemistry on samples from two melanoma patients showed strong B7-H3 staining in both a primary tumor and metastases. Notably, the metastasis-associated proteins, matrix metalloproteinase (MMP)-2, signal transducer and activator of transcription 3 (Stat3), and the level of secreted interleukin-8 (IL-8) were reduced in the B7-H3 knock-down cell variants, whereas tissue inhibitor of metalloproteinase (TIMP)-1 and-2 levels were increased. Taken together, our findings indicate a novel role for B7-H3 in the regulation of the metastatic capacity of melanoma cells and it might be a potential therapeutic target for anti-metastasis therapy.
Collapse
Affiliation(s)
- Christina Tekle
- Department of Tumor Biology, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
48
|
Mian OY, Wang SZ, Zhu SZ, Gnanapragasam MN, Graham L, Bear HD, Ginder GD. Methyl-binding domain protein 2-dependent proliferation and survival of breast cancer cells. Mol Cancer Res 2011; 9:1152-62. [PMID: 21693597 DOI: 10.1158/1541-7786.mcr-11-0252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Methyl cytosine binding domain protein 2 (MBD2) has been shown to bind to and mediate repression of methylated tumor suppressor genes in cancer cells, where repatterning of CpG methylation and associated gene silencing is common. We have investigated the role of MBD2 in breast cancer cell growth and tumor suppressor gene expression. We show that stable short hairpin RNA (shRNA)-mediated knockdown of MBD2 leads to growth suppression of cultured human mammary epithelial cancer lines, SK-BR-3, MDA-MB-231, and MDA-MB-435. The peak antiproliferative occurs only after sustained, stable MBD2 knockdown. Once established, the growth inhibition persists over time and leads to a markedly decreased propensity for aggressive breast cancer cell lines to form in vivo xenograft tumors in Bagg Albino (BALB)/C nu/nu mice. The growth effects of MBD2 knockdown are accompanied by derepression of tumor suppressor genes, including DAPK1 and KLK10. Chromatin immunoprecipitation assays and bisulfite sequencing show MBD2 binding directly to the hyper methylated and CpG-rich promoters of both DAPK1 and KLK10. Remarkably, the promoter CpG island-associated methylation of these genes remained stable despite robust transcriptional activation in MBD2 knockdown cells. Expression of a shRNA-resistant MBD2 protein resulted in restoration of growth and resilencing of the MBD2-dependent tumor suppressor genes. Our data suggest that uncoupling CpG methylation from repressive chromatin remodeling and histone modifications by removing MBD2 is sufficient to initiate and maintain tumor suppressor gene transcription and suppress neoplastic cell growth. These results show a role for MBD2 in cancer progression and provide support for the prospect of targeting MBD2 therapeutically in aggressive breast cancers.
Collapse
Affiliation(s)
- Omar Y Mian
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
50
|
Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 2011; 11:135-41. [PMID: 21258397 PMCID: PMC4540342 DOI: 10.1038/nrc3001] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An enduring problem in cancer research is the failure to reproduce highly encouraging preclinical therapeutic findings using transplanted or spontaneous primary tumours in mice in clinical trials of patients with advanced metastatic disease. There are several reasons for this, including the failure to model established, visceral metastatic disease. We therefore developed various models of aggressive multi-organ spontaneous metastasis after surgical resection of orthotopically transplanted human tumour xenografts. In this Opinion article we provide a personal perspective summarizing the prospect of their increased clinical relevance. This includes the reduced efficacy of certain targeted anticancer drugs, the late emergence of spontaneous brain metastases and the clinical trial results evaluating a highly effective therapeutic strategy previously tested using such models.
Collapse
Affiliation(s)
- Giulio Francia
- The Molecular & Cellular Biology Research, Sunnybrook Health Science Centre, Toronto, Ontario M4N 3M5, Canada.
| | | | | | | | | |
Collapse
|