1
|
Kim J, Byeon SK, Oglesbee D, Schultz MJ, Matern D, Pandey A. A multiplexed targeted method for profiling of serum gangliosides and glycosphingolipids: application to GM2-gangliosidosis. Anal Bioanal Chem 2024; 416:5689-5699. [PMID: 39190143 PMCID: PMC11493836 DOI: 10.1007/s00216-024-05487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The analysis of gangliosides and glycosphingolipids is crucial for understanding cellular membrane structure and function as well as to accurately diagnose certain inborn errors of metabolism. GM2-gangliosidosis represents a rare and fatal group of lysosomal storage disorders characterized by accumulation of GM2 gangliosides in various tissues and organs. These disorders arise due to deficiency or functional impairment of the β-hexosaminidase A or B enzymes, which are responsible for degradation of GM2 ganglioside. Deficient enzyme activity primarily leads to the accumulation of GM2 gangliosides within the lysosomes of cells. Accurate and rapid diagnostic methods that detect increased levels of GM2 gangliosides in patients with GM2-gangliosidosis can play a significant role in early diagnosis and appropriate treatment of this condition. To address this need, we developed a multiplexed liquid chromatography-tandem mass spectrometry method targeting 84 species of gangliosides and other glycosphingolipids involved in ganglioside metabolism. Reproducibility, linearity, extraction efficiency, and sample stability were evaluated and proof-of-concept data obtained from analysis of serum samples from confirmed cases of GM2-gangliosidosis. This method has the potential to simultaneously monitor the biosynthesis of gangliosides and the lysosomal catabolic pathway serving as a valuable tool for screening and diagnosing an important group of lysosomal storage disorders.
Collapse
Affiliation(s)
- Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Schultz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
2
|
Blondel A, Kraoua I, Marcelino C, Khrouf W, Schlemmer D, Ganne B, Caillaud C, Fernández-Eulate G, Turki IBY, Dauriat B, Bonnefont-Rousselot D, Nadjar Y, Lamari F. Plasma G M2 ganglioside potential biomarker for diagnosis, prognosis and disease monitoring of GM2-Gangliosidosis. Mol Genet Metab 2023; 138:106983. [PMID: 36709536 DOI: 10.1016/j.ymgme.2022.106983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
GM2-Gangliosidosis are a group of inherited lysosomal storage pathologies characterized by a large accumulation of GM2 ganglioside in the lysosome. They are caused by mutation in HEXA or HEXB causing reduced or absent activity of a lysosomal β-hexosaminidase A, or mutation in GM2A causing defect in GM2 activator protein (GM2AP), an essential protein for the activity of the enzyme. Biochemical diagnosis relies on the measurement of β-hexosaminidases A and B activities, which is able to detect lysosomal enzyme deficiency but fails to identify defects in GM2AP. We developed a rapid, specific and sensitive liquid chromatography-mass spectrometry-based method to measure simultaneously GM1, GM2, GM3 and GD3 molecular species. Gangliosides were analysed in plasma from 19 patients with GM2-Gangliosidosis: Tay-Sachs (n = 9), Sandhoff (n = 9) and AB variant of GM2-Gangliosidosis (n = 1) and compared to 20 age-matched controls. Among patients, 12 have a late adult-juvenile-onset and 7 have an infantile early-onset of the disease. Plasma GM2 molecular species were increased in all GM2-Gangliosidosis patients (19/19), including the patient with GM2A mutation, compared to control individuals and compared to patients with different other lysosomal storage diseases. GM234:1 and GM234:1/GM334:1 ratio discriminated patients from controls with 100% sensitivity and specificity. GM234:1 and GM234:1/GM334:1 were higher in patients with early-onset compared to those with late-onset of the disease, suggesting a relationship with severity. Longitudinal analysis in one adult with Tay-Sachs disease over 9 years showed a positive correlation of GM234:1 and GM234:1/GM334:1 ratio with age at sampling. We propose that plasma GM2 34:1 and its ratio to GM3 34:1 could be sensitive and specific biochemical diagnostic biomarkers for GM2-Gangliosidosis including AB variant and could be useful as a first line diagnostic test and potential biomarkers for monitoring upcoming therapeutic efficacy.
Collapse
Affiliation(s)
- Amélie Blondel
- Metabolic Biochemistry Department, Neurometabolic unit, DMU Biogem, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne University, 75013 Paris, France
| | - Ichraf Kraoua
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Neurology Department, LR18SP04, National Institute Mongi Ben Hamida of Neurology, Tunis, Tunisia
| | - Chloé Marcelino
- Metabolic Biochemistry Department, Neurometabolic unit, DMU Biogem, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne University, 75013 Paris, France
| | - Walid Khrouf
- Metabolic Biochemistry Department, Neurometabolic unit, DMU Biogem, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne University, 75013 Paris, France
| | - Dimitri Schlemmer
- Metabolic Biochemistry Department, Neurometabolic unit, DMU Biogem, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne University, 75013 Paris, France
| | - Benjamin Ganne
- Cytogenetic and Medical Genetic Department, Hôpital de la mère et de l'enfant, 87042 Limoges, France
| | - Catherine Caillaud
- Biochemistry, Metabolomics, and Proteomics Department, Necker Enfants Malades University Hospital, AP-HP, Center-Paris University, 75015 Paris, France
| | - Gorka Fernández-Eulate
- Neurology Department, Reference Center for Lysosomal Diseases, Pitié-Salpêtrière University Hospital, AP-HP Sorbonne University, 75013 Paris, France; Institut Necker-Enfants Malades, INSERM U1151, BioSPC (ED562), Université Paris Cité, Paris, France
| | - Ilhem Ben Youssef Turki
- University of Tunis El Manar, Faculty of Medicine of Tunis, Tunis, Tunisia; Neurology Department, LR18SP04, National Institute Mongi Ben Hamida of Neurology, Tunis, Tunisia
| | - Benjamin Dauriat
- Cytogenetic and Medical Genetic Department, Hôpital de la mère et de l'enfant, 87042 Limoges, France
| | - Dominique Bonnefont-Rousselot
- Metabolic Biochemistry Department, Neurometabolic unit, DMU Biogem, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne University, 75013 Paris, France; Paris University, UTCBS, U 1022 Inserm, UMR 88 CNRS, Paris, France
| | - Yann Nadjar
- Neurology Department, Reference Center for Lysosomal Diseases, Pitié-Salpêtrière University Hospital, AP-HP Sorbonne University, 75013 Paris, France
| | - Foudil Lamari
- Metabolic Biochemistry Department, Neurometabolic unit, DMU Biogem, Pitié-Salpêtrière University Hospital, AP-HP, Sorbonne University, 75013 Paris, France.
| |
Collapse
|
3
|
Monturiol-Gross L, Villalta-Romero F, Flores-Díaz M, Alape-Girón A. Bacterial phospholipases C with dual activity: phosphatidylcholinesterase and sphingomyelinase. FEBS Open Bio 2021; 11:3262-3275. [PMID: 34709730 PMCID: PMC8634861 DOI: 10.1002/2211-5463.13320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial phospholipases and sphingomyelinases are lipolytic esterases that are structurally and evolutionarily heterogeneous. These enzymes play crucial roles as virulence factors in several human and animal infectious diseases. Some bacterial phospholipases C (PLCs) have both phosphatidylcholinesterase and sphingomyelinase C activities. Among them, Listeria
monocytogenes PlcB, Clostridium perfringens PLC, and Pseudomonas aeruginosa PlcH are the most deeply understood. In silico predictions of substrates docking with these three bacterial enzymes provide evidence that they interact with different substrates at the same active site. This review discusses structural aspects, substrate specificity, and the mechanism of action of those bacterial enzymes on target cells and animal infection models to shed light on their roles in pathogenesis.
Collapse
Affiliation(s)
- Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabian Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
4
|
Newcastle Disease Virus Entry into Chicken Macrophages via a pH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. J Virol 2021; 95:e0228820. [PMID: 33762417 DOI: 10.1128/jvi.02288-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cellular entry pathways and the mechanisms of Newcastle disease virus (NDV) entry into cells are poorly characterized. In this study, we demonstrated that chicken interferon-induced transmembrane protein 1 (chIFITM1), which is located in the early endosomes, could limit the replication of NDV in chicken macrophage cell line HD11, suggesting the endocytic entry of NDV into chicken macrophages. Then, we presented a systematic study about the entry mechanism of NDV into chicken macrophages. First, we demonstrated that a low-pH condition and dynamin were required during NDV entry. However, NDV entry into chicken macrophages was independent of clathrin-mediated endocytosis. We also found that NDV entry was dependent on membrane cholesterol. The NDV entry and replication were significantly reduced by nystatin and phorbol 12-myristate 13-acetate treatment, overexpression of dominant-negative (DN) caveolin-1, or knockdown of caveolin-1, suggesting that NDV entry depends on caveola-mediated endocytosis. However, macropinocytosis did not play a role in NDV entry into chicken macrophages. In addition, we found that Rab5, rather than Rab7, was involved in the entry and traffic of NDV. The colocalization of NDV with Rab5 and early endosome suggested that NDV virion was transported to early endosomes in a Rab5-dependent manner after internalization. Of particular note, the caveola-mediated endocytosis was also utilized by NDV to enter primary chicken macrophages. Moreover, NDV entered different cell types using different pathways. Collectively, our findings demonstrate for the first time that NDV virion enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway and that Rab5 is involved in the traffic and location of NDV. IMPORTANCE Although the pathogenesis of Newcastle disease virus (NDV) has been extensively studied, the detailed mechanism of NDV entry into host cells is largely unknown. Macrophages are the first-line defenders of host defense against infection of pathogens. Chicken macrophages are considered one of the main types of target cells during NDV infection. Here, we comprehensively investigated the entry mechanism of NDV in chicken macrophages. This is the first report to demonstrate that NDV enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway that requires Rab5. The result is important for our understanding of the entry of NDV in chicken macrophages, which will further advance the knowledge of NDV pathogenesis and provide useful clues for the development of novel preventive or therapeutic strategies against NDV infection. In addition, this information will contribute to our further understanding of pathogenesis with regard to other members of the Avulavirus genus in the Paramyxoviridae family.
Collapse
|
5
|
Dodge JC. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases. Front Mol Neurosci 2017; 10:356. [PMID: 29163032 PMCID: PMC5675881 DOI: 10.3389/fnmol.2017.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.
Collapse
Affiliation(s)
- James C Dodge
- Neuroscience Therapeutic Area, Sanofi, Framingham, MA, United States
| |
Collapse
|
6
|
Soluble klotho binds monosialoganglioside to regulate membrane microdomains and growth factor signaling. Proc Natl Acad Sci U S A 2017; 114:752-757. [PMID: 28069944 DOI: 10.1073/pnas.1620301114] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Soluble klotho, the shed ectodomain of the antiaging membrane protein α-klotho, is a pleiotropic endocrine/paracrine factor with no known receptors and poorly understood mechanism of action. Soluble klotho down-regulates growth factor-driven PI3K signaling, contributing to extension of lifespan, cardioprotection, and tumor inhibition. Here we show that soluble klotho binds membrane lipid rafts. Klotho binding to rafts alters lipid organization, decreases membrane's propensity to form large ordered domains for endocytosis, and down-regulates raft-dependent PI3K/Akt signaling. We identify α2-3-sialyllactose present in the glycan of monosialogangliosides as targets of soluble klotho. α2-3-Sialyllactose is a common motif of glycans. To explain why klotho preferentially targets lipid rafts we show that clustering of gangliosides in lipid rafts is important. In vivo, raft-dependent PI3K signaling is up-regulated in klotho-deficient mouse hearts vs. wild-type hearts. Our results identify ganglioside-enriched lipid rafts to be receptors that mediate soluble klotho regulation of PI3K signaling. Targeting sialic acids may be a general mechanism for pleiotropic actions of soluble klotho.
Collapse
|
7
|
Weiss SC, Egetenmeyer N, Schulz W. Coupling of In Vitro Bioassays with Planar Chromatography in Effect-Directed Analysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 157:187-224. [PMID: 27757476 DOI: 10.1007/10_2016_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Modern analytical test methods increasingly detect anthropogenic organic substances and their transformation products in water samples and in the environment. The presence of these compounds might pose a risk to the aquatic environment. To determine a possible (eco)toxicological risk, aquatic samples are tested using various bioassays, including sub-organismic assays such as the luminescent bacteria inhibition test, the acetylcholinesterase inhibition test, and the umu-test. The effect-directed analysis (EDA) combines physicochemical separation methods with biological (in vitro) tests. High-performance thin-layer chromatography (HPTLC) has proved to be particularly well suited for the separation of organic compounds and the subsequent analysis of effects by the application of the biotests directly on the surface of the HPTLC plate. The advantage of using HPTLC in comparison to high-performance liquid chromatography (HPLC) for EDA is that the solvent which is used as a mobile phase during chromatography is completely evaporated after the separation and therefore can no longer influence the applied bioassays.A prioritization during the complex identification process can be achieved when observed effects are associated with the separated zones in HPTLC. This increases the probability of identifying the substance responsible for an adverse effect from the multitude of organic trace substances in environmental samples. Furthermore, by comparing the pattern of biological effects of a separated sample, it is possible to track and assess changes in biological activity over time, over space, or in the course of a process, even without identifying the substance. HPTLC has already been coupled with various bioassays.Because HPTLC is a very flexible system, various detection techniques can be used and combined. In addition to the UV/Vis absorption and fluorescence measurements, TLC can also be coupled with a mass spectrometer (MS) for compound identification. In addition, detection of functional groups by means of derivatization reagents can support this identification. It is also possible to combine derivatization and HPLC-MS.Two case studies are used to illustrate the significance of HPTLC-EDA in investigating water quality: Study on a wastewater treatment plant Possible influence of an artificial turf surface on ground water.
Collapse
Affiliation(s)
- Stefan C Weiss
- Betriebs und Forschungslaboratorium, Zweckverband Landeswasserversorgung (LW), Am Spitzigen Berg 1, 89129, Langenau, Germany.
| | - Nicole Egetenmeyer
- Betriebs und Forschungslaboratorium, Zweckverband Landeswasserversorgung (LW), Am Spitzigen Berg 1, 89129, Langenau, Germany
| | - Wolfgang Schulz
- Betriebs und Forschungslaboratorium, Zweckverband Landeswasserversorgung (LW), Am Spitzigen Berg 1, 89129, Langenau, Germany
| |
Collapse
|
8
|
Neurological and cardiac responses after treatment with miglustat and a ketogenic diet in a patient with Sandhoff disease. Eur J Med Genet 2014; 58:180-3. [PMID: 25497207 DOI: 10.1016/j.ejmg.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 12/04/2014] [Indexed: 11/20/2022]
Abstract
Sandhoff disease is a progressive neurodegenerative disorder characterized by accumulation of GM2 gangliosides. We describe a 6-year-old male with coarse facial features, developmental delay, refractory seizures, hypertrophic cardiomyopathy, who was later found to have Sandhoff disease. Previous studies have revealed that caloric restriction in combination with miglustat increased survival and motor behavior in mouse model of Sandhoff disease. These findings suggest that combination therapy may result in improved outcomes for patients with Sandhoff. Initiation of treatment with miglustat and a ketogenic diet was followed by improvement of the patient's seizure control and cardiac function. Further clinical investigation is required to better determine the benefit of management in late-onset forms of Sandhoff disease.
Collapse
|
9
|
Morlock GE. Chromatography Combined with Bioassays and Other Hyphenations – The Direct Link to the Compound Indicating the Effect. ACS SYMPOSIUM SERIES 2014. [DOI: 10.1021/bk-2014-1185.ch005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gertrud E. Morlock
- Justus Liebig University Giessen, Interdisciplinary Research Center (IFZ), Institute of Nutritional Science, Chair of Food Science, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
10
|
Fanzani A, Zanola A, Faggi F, Papini N, Venerando B, Tettamanti G, Sampaolesi M, Monti E. Implications for the mammalian sialidases in the physiopathology of skeletal muscle. Skelet Muscle 2012; 2:23. [PMID: 23114189 PMCID: PMC3534598 DOI: 10.1186/2044-5040-2-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/02/2012] [Indexed: 12/11/2022] Open
Abstract
The family of mammalian sialidases is composed of four distinct versatile enzymes that remove negatively charged terminal sialic acid residues from gangliosides and glycoproteins in different subcellular areas and organelles, including lysosomes, cytosol, plasma membrane and mitochondria. In this review we summarize the growing body of data describing the important role of sialidases in skeletal muscle, a complex apparatus involved in numerous key functions and whose functional integrity can be affected by various conditions, such as aging, chronic diseases, cancer and neuromuscular disorders. In addition to supporting the proper catabolism of glycoconjugates, sialidases can affect different signaling pathways by desialylation of many receptors and modulation of ganglioside content in cell membranes, thus actively participating in myoblast proliferation, differentiation and hypertrophy, insulin responsiveness and skeletal muscle architecture.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Suzuki O, Kanai T, Nishikawa T, Yamamoto Y, Noguchi A, Takimoto K, Koura M, Noguchi Y, Uchio-Yamada K, Tsuji S, Matsuda J. Adult onset cardiac dilatation in a transgenic mouse line with Galβ1,3GalNAc α2,3-sialyltransferase II (ST3Gal-II) transgenes: a new model for dilated cardiomyopathy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:550-562. [PMID: 21986317 PMCID: PMC3313694 DOI: 10.2183/pjab.87.550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/13/2011] [Indexed: 05/31/2023]
Abstract
Sugar chain abnormalities in glycolipids and glycoproteins are associated with various diseases. Here, we report an adult onset cardiac dilatation in a transgenic mouse line with Galβ1,3GalNAc α2,3-sialyltransferase II (ST3Gal-II) transgenes. The transgenic hearts at the end-stage, at around 7 months old, were enlarged, with enlarged cavities and thin, low-tensile walls, typical of dilated cardiomyopathy. Although no apparent change was found in heart gangliosides, glycosylation of heart proteins was altered. Interestingly, sugar moieties not directly related to the ST3Gal-II catalytic reaction were also changed. Significant increases in calreticulin and calnexin were observed in hearts of the transgenic mice. These results suggest that expression of ST3Gal-II transgenes induces abnormal protein glycosylation, which disorganizes the endoplasmic/sarcoplasmic reticulum quality control system and elevates the calreticulin/calnexin level, resulting in suppression of cardiac function. The transgenic mice showed 100% incidence of adult onset cardiac dilatation, suggesting great potential as a new model for dilated cardiomyopathy.
Collapse
Affiliation(s)
- Osamu Suzuki
- Laboratory of Animal Models for Human Diseases, National Institute of Biomedical Innovation, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Morlock G, Schwack W. Hyphenations in planar chromatography. J Chromatogr A 2010; 1217:6600-9. [DOI: 10.1016/j.chroma.2010.04.058] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/15/2010] [Accepted: 04/20/2010] [Indexed: 11/30/2022]
|
13
|
Ganglioside GM3 levels are altered in a mouse model of HIBM: GM3 as a cellular marker of the disease. PLoS One 2010; 5:e10055. [PMID: 20383336 PMCID: PMC2850932 DOI: 10.1371/journal.pone.0010055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/04/2010] [Indexed: 12/18/2022] Open
Abstract
Objective HIBM (Hereditary Inclusion Body Myopathy) is a recessive hereditary disease characterized by adult-onset, slowly progressive muscle weakness sparing the quadriceps. It is caused by a single missense mutation of each allele of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, a bifunctional enzyme catalyzing the first two steps of sialic acid synthesis in mammals. However, the mechanisms and cellular pathways affected by the GNE mutation and causing the muscle weakness could not be identified so far. Based on recent evidence in literature, we investigated a new hypothesis, i.e. the involvement in the disease of the GM3 ganglioside, a specific glycolipid implicated in muscle cell proliferation and differentiation. Methods qRT-PCR analysis of St3gal5 (GM3 synthase) gene expression and HPLC quantification of GM3 ganglioside were conducted on muscle tissue from a mouse model of HIBM harboring the M712T mutation of GNE (GneM712T/M712T mouse) vs control mice (Gne+/+ mouse). Results St3gal5 mRNA levels were significantly lower in GneM712T/M712T mouse muscles vs Gne+/+ mouse muscles (64.41%±10% of Gne+/+ levels). GM3 ganglioside levels showed also a significant decrease in GneM712T/M712T mouse muscle compared to Gne+/+ mouse muscle (18.09%±5.33% of Gne+/+ levels). Although these GneM712T/M712T mice were described to suffer severe glomerular proteinuria, no GM3 alterations were noted in kidneys, highlighting a tissue specific alteration of gangliosides. Conclusion The M712T mutation of GNE hampers the muscle ability to synthesize normal levels of GM3. This is the first time that a mutation of GNE can be related to the molecular pathological mechanism of HIBM.
Collapse
|
14
|
Prokazova NV, Samovilova NN, Gracheva EV, Golovanova NK. Ganglioside GM3 and its biological functions. BIOCHEMISTRY (MOSCOW) 2009; 74:235-49. [PMID: 19364317 DOI: 10.1134/s0006297909030018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolism, topology, and possible mechanisms for regulation of the ganglioside GM3 content in the cell are reviewed. Under consideration are biological functions of GM3, such as involvement in cell differentiation, proliferation, oncogenesis, and apoptosis.
Collapse
Affiliation(s)
- N V Prokazova
- Institute of Experimental Cardiology, Russian Cardiology Research Center, Russian Ministry of Health, 121552 Moscow, Russia.
| | | | | | | |
Collapse
|
15
|
Glycosphingolipids in vascular endothelial cells: relationship of heterogeneity in Gb3Cer/CD77 receptor expression with differential Shiga toxin 1 cytotoxicity. Glycoconj J 2008; 25:291-304. [DOI: 10.1007/s10719-007-9091-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/18/2007] [Accepted: 11/15/2007] [Indexed: 11/27/2022]
|
16
|
Sherma J, Fried B. Thin Layer Chromatographic Analysis of Biological Samples. A Review. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070500187491] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Joseph Sherma
- a Department of Chemistry , Lafayette College , Easton, Pennsylvania, USA
| | - Bernard Fried
- b Department of Biology , Lafayette College , Easton, Pennsylvania, USA
| |
Collapse
|
17
|
Ravindranath MH, Muthugounder S, Presser N, Ye X, Brosman S, Morton DL. Endogenous immune response to gangliosides in patients with confined prostate cancer. Int J Cancer 2005; 116:368-77. [PMID: 15818621 DOI: 10.1002/ijc.21023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our study investigated whether endogenous IgM antibodies to gangliosides occur in patients with early stages of prostate cancer (CaP) patients, after defining ganglioside profiles of CaP cell lines. Immune and resorcinol staining detected the presence of gangliosides GM3, GM2, GD3, GD2 and GD1a but not GM1a, GD1b or GT1b in the extracts of normal prostatic epithelial cells (PrEC) and neoplastic androgen-insensitive (PC-3, DU145) and -sensitive (LNCaP-FGC and LNCaP-FGC-10) CaP cells. Using a sensitive ELISA, developed and validated in our laboratory, the titers of IgM against 8 gangliosides from sera of patients with benign prostatic hyperplasia (BPH) (n = 11), organ-confined (T1/T2, n = 36) and unconfined (T3/T4, n = 27) CaP and age-matched healthy men (n = 11) were determined double-blinded. Using ANOVA and Fisher's least significant difference (LSD) methods, the log-titers among different groups were compared. CaP patients differed from healthy and BPH patients in increased titers against GD1a and decreased titers against GD3. Titers of antibodies to other gangliosides exhibited no difference between CaP patients and others. The specific augmentation of anti-GD1a IgM in patients with organ-confined CaP (stage T1/T2) but not in patients with unconfined CaP (stage T3/T4) or BPH or in healthy controls is striking. This finding together with identification of GD1a as a major ganglioside in CaP cell lines and with the accruing studies on the immunosuppressive nature of GD1a indicates that augmentation of anti-GD1a IgM in confined CaP may signify an early endogenous immune response to eliminate a "danger signal" from tumor microenvironment and circulation.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Laboratory of Glycoimmunotherapy, John Wayne Cancer Institute, Santa Monica, CA 90404, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Flores-Díaz M, Alape-Girón A, Clark G, Catimel B, Hirabayashi Y, Nice E, Gutiérrez JM, Titball R, Thelestam M. A cellular deficiency of gangliosides causes hypersensitivity to Clostridium perfringens phospholipase C. J Biol Chem 2005; 280:26680-9. [PMID: 15919667 DOI: 10.1074/jbc.m500278200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens phospholipase C (Cp-PLC), also called alpha-toxin, is the major virulence factor in the pathogenesis of gas gangrene. Previously, a cellular UDP-Glc deficiency was related with a hypersensitivity to the cytotoxic effect of Cp-PLC. Because UDP-Glc is required in the synthesis of proteoglycans, N-linked glycoproteins, and glycosphingolipids, the role of these gly-coconjugates in the cellular sensitivity to Cp-PLC was studied. The cellular sensitivity to Cp-PLC was significantly enhanced by glycosphingolipid synthesis inhibitors, and a mutant cell line deficient in gangliosides was found to be hypersensitive to Cp-PLC. Gangliosides protected hypersensitive cells from the cytotoxic effect of Cp-PLC and prevented its membrane-disrupting effect on artificial membranes. Removal of sialic acids by C. perfringens sialidase increases the sensitivity of cultured cells to Cp-PLC and intramuscular co-injection of C. perfringens sialidase, and Cp-PLC in mice potentiates the myotoxic effect of the latter. This work demonstrated that a reduction in gangliosides renders cells more susceptible to the membrane damage caused by Cp-PLC and revealed a previously unrecognized synergism between Cp-PLC and C. perfringens sialidase, providing new insights toward understanding the pathogenesis of clostridial myonecrosis.
Collapse
Affiliation(s)
- Marietta Flores-Díaz
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm S-17177, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ogura K, Niino YS, Tai T. Galactosylceramide expression factor-1 induces myogenesis in MDCK and C3H10T1/2 cells. Arch Biochem Biophys 2004; 426:279-85. [PMID: 15158678 DOI: 10.1016/j.abb.2004.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/20/2004] [Indexed: 11/21/2022]
Abstract
We previously reported that galactosylceramide expression factor-1 (GEF-1), a rat homolog of hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs/Hgs), induces galactosylceramide and/or sulfatide expression and morphological changes in epithelial cells. Here, we show that GEF-1 induces myogenesis in MDCK and C3H10T1/2 cells. GEF-1 overexpression in MDCK cells (MDCK/GEF-1) appeared to promote trans-differentiation to myoblasts that expressed MyoD and myosin heavy chain (MHC). MDCK/GEF-1 cells also expressed several DNA-binding proteins (MyoD and MEF-2) that are essential for myogenesis. These results suggest that GEF-1 induces MDCK cells to enter an early stage of myogenesis. Subsequently, we tested whether GEF-1 could induce myogenesis in C3H10T1/2 mouse fibroblasts, which have the potential to differentiate into myoblast-like cells. Indeed, GEF-1 induced morphological changes that were consistent with myoblast-like cells, and both MyoD and MHC were expressed. Our results suggest that GEF-1 may induce MDCK and C3H10T1/2 cells to trans-differentiate into myoblast-like cells.
Collapse
Affiliation(s)
- Kiyoshi Ogura
- Department of Tumor Immunology, Tokyo Metropolitan Institute of Medical Science, The Tokyo Metropolitan Organization for Medical Research, 3-18-22, Honkomagome, Bunkyo-Ku, Tokyo 113-8613, Japan
| | | | | |
Collapse
|
20
|
Bladek J, Neffe S. Application of Thin‐Layer Chromatography in Clinical Chemistry. SEPARATION AND PURIFICATION REVIEWS 2003. [DOI: 10.1081/spm-120025026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Müthing J, Maurer U, Neumann U, Kniep B, Weber-Schürholz S. Glycosphingolipids of skeletal muscle: I. Subcellular distribution of neutral glycosphingolipids and gangliosides in rabbit skeletal muscle. Carbohydr Res 1998; 307:135-45. [PMID: 9658569 DOI: 10.1016/s0008-6215(98)00027-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Membrane vesicles were prepared from rabbit skeletal muscle, separated by sucrose density gradient centrifugation and characterized by their specific marker enzymes, ligand binding, and ion flux activities. The fractions obtained (in the order of increasing density) were sarcolemma (SL), T-tubules (TT), sarcoplasmic reticulum (SR1 and SR2) and triads/mitochondria (Tr/M). Their glycosphingolipid compositions were analyzed by biochemical and immunochemical methods with specific antibodies (TLC immunostaining) and characteristic patterns were obtained from respective membrane fractions, expressed on a protein basis. Glucosylceramide, the main neutral glycosphingolipid of rabbit muscle, was found in SL and TT fractions, whereas SR and Tr/M vesicles lack this compound. Lactosylceramide was selectively recovered in the SR1 fraction. GM3(Neu5Ac), the main ganglioside in rabbit muscle, was found to account for 64% in the SL, 13% in the TT, 7% in the SR1, 3% in the SR2 and 13% in the Tr/M fractions. IV3Neu5Ac-nLcOse4Cer was mostly abundant in SL and decreased in the order SL > TT, Tr/M > SR1, SR2. IV6Neu5Ac-nLcOse4Cer was only detected in the SL and Tr/M fractions in noteworthy quantities. Ganglioseries gangliosides GM1, GD1a, GD1b and GT1b displayed homogeneous distribution patterns in each membrane preparation. They were expressed only in small amounts but mainly in SL, TT and Tr/M vesicles and to less extent in SR1 and SR2 fractions. The presence of GM3(Neu5Ac) in the SL as well as on subcellular level was confirmed in transverse muscle cryosections by means of indirect immunofluorescence microscopy. The SL was brightly stained, but considerable intracellular fluorescence was observed as expected from the biochemical analyses. Thus, the neutral GSL and ganglioside expression of the SL and the intracellular membraneous network is different in skeletal muscle both in terms of quantitative and qualitative GSL composition as demonstrated in details by means of biochemical and immunochemical techniques. The modulatory functions of GM3 and gangliosides of the neolacto- and ganglio-series towards the voltage dependent Ca(2+)-channel, largely preponderant in the triads-containing Tr/M fraction, is the subject of the accompanying paper (J. Müthing, U. Maurer, and S. Weber-Schürholz, Carbohydr. Res., 307 (1998) 147-157).
Collapse
Affiliation(s)
- J Müthing
- Universität Bielefeld, Technische Fakultät, Arbeitsgruppe Zellkulturtechnik, Germany.
| | | | | | | | | |
Collapse
|