1
|
Ran Q, Li A, Tan Y, Zhang Y, Zhang Y, Chen H. Action and therapeutic targets of myosin light chain kinase, an important cardiovascular signaling mechanism. Pharmacol Res 2024; 206:107276. [PMID: 38944220 DOI: 10.1016/j.phrs.2024.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
The global incidence of cardiac diseases is increasing, imposing a substantial socioeconomic burden on healthcare systems. The pathogenesis of cardiovascular disease is complex and not fully understood, and the physiological function of the heart is inextricably linked to well-regulated cardiac muscle movement. Myosin light chain kinase (MLCK) is essential for myocardial contraction and diastole, cardiac electrophysiological homeostasis, vasoconstriction of vascular nerves and blood pressure regulation. In this sense, MLCK appears to be an attractive therapeutic target for cardiac diseases. MLCK participates in myocardial cell movement and migration through diverse pathways, including regulation of calcium homeostasis, activation of myosin light chain phosphorylation, and stimulation of vascular smooth muscle cell contraction or relaxation. Recently, phosphorylation of myosin light chains has been shown to be closely associated with the activation of myocardial exercise signaling, and MLCK mediates systolic and diastolic functions of the heart through the interaction of myosin thick filaments and actin thin filaments. It works by upholding the integrity of the cytoskeleton, modifying the conformation of the myosin head, and modulating innervation. MLCK governs vasoconstriction and diastolic function and is associated with the activation of adrenergic and sympathetic nervous systems, extracellular transport, endothelial permeability, and the regulation of nitric oxide and angiotensin II. Additionally, MLCK plays a crucial role in the process of cardiac aging. Multiple natural products/phytochemicals and chemical compounds, such as quercetin, cyclosporin, and ML-7 hydrochloride, have been shown to regulate cardiomyocyte MLCK. The MLCK-modifying capacity of these compounds should be considered in designing novel therapeutic agents. This review summarizes the mechanism of action of MLCK in the cardiovascular system and the therapeutic potential of reported chemical compounds in cardiac diseases by modifying MLCK processes.
Collapse
Affiliation(s)
- Qingzhi Ran
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China
| | - Aoshuang Li
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100053, China
| | - Yuqing Tan
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China
| | - Yue Zhang
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China.
| | - Yongkang Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Hengwen Chen
- Guang'anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing 100070, China.
| |
Collapse
|
2
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
3
|
Sorensen DW, Injeti ER, Mejia-Aguilar L, Williams JM, Pearce WJ. Postnatal development alters functional compartmentalization of myosin light chain kinase in ovine carotid arteries. Am J Physiol Regul Integr Comp Physiol 2021; 321:R441-R453. [PMID: 34318702 PMCID: PMC8530762 DOI: 10.1152/ajpregu.00293.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rate-limiting enzyme for vascular contraction, myosin light chain kinase (MLCK), phosphorylates regulatory myosin light chain (MLC20) at rates that appear faster despite lower MLCK abundance in fetal compared with adult arteries. This study explores the hypothesis that greater apparent tissue activity of MLCK in fetal arteries is due to age-dependent differences in intracellular distribution of MLCK in relation to MLC20. Under optimal conditions, common carotid artery homogenates from nonpregnant adult female sheep and near-term fetuses exhibited similar values of Vmax and Km for MLCK. A custom-designed, computer-controlled apparatus enabled electrical stimulation and high-speed freezing of arterial segments at exactly 0, 1, 2, and 3 s, calculation of in situ rates of MLC20 phosphorylation, and measurement of time-dependent colocalization between MLCK and MLC20. The in situ rate of MLC20 phosphorylation divided by total MLCK abundance averaged to values 147% greater in fetal (1.06 ± 0.28) than adult (0.43 ± 0.08) arteries, which corresponded, respectively, to 43 ± 10% and 31 ± 3% of the Vmax values measured in homogenates. Confocal colocalization analysis revealed in fetal and adult arteries that 33 ± 6% and 20 ± 5% of total MLCK colocalized with pMLC20, and that MLCK activation was greater in periluminal than periadventitial regions over the time course of electrical stimulation in both age groups. Together, these results demonstrate that the catalytic activity of MLCK is similar in fetal and adult arteries, but that the fraction of total MLCK in the functional compartment involved in contraction is significantly greater in fetal than adult arteries.
Collapse
Affiliation(s)
- Dane W Sorensen
- Division of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - Elisha R Injeti
- Department of Pharmaceutical Sciences, Cedarville University School of Pharmacy, Cedarville, Ohio
| | - Luisa Mejia-Aguilar
- Division of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - James M Williams
- Division of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| | - William J Pearce
- Division of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
4
|
Sadraei H, Sajjadi SE, Tarafdar A. Antispasmodic effect of hydroalcoholic and flavonoids extracts of Dracocephalum kotschyi on rabbit bladder. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Introduction: Dracocephalum kotschyi extract has antispasmodic activities on smooth muscle including ileum, uterus and trachea. The objective of this research was to investigate antispasmodic activity of hydroalcoholic and flavonoids extracts of D. kotschyi on rabbit bladder contractions. Methods: Rabbits were euthanized by carbon dioxide asphyxiation and the whole bladder was dissected out and immersed in the Tyrode’s solution. Longitudinal bladder strips were mounted vertically in an organ bath at 37°C and gassed continuously with O2 . Bladder strips were contracted with acetylcholine (ACh), KCl, or electrical field stimulation (EFS). Isotonic tension of the tissue was recorded before and after addition of hydroalcoholic or flavonoids rich extracts of D. kotschyi. Nifedipine and propantheline were used as standard drugs. Results: Standard drug propantheline, prevented bladder phasic contraction induced by ACh (1µM) without affecting KCl response. On the other hand, cumulative addition of nifedipine attenuated the tonic contractions induced by KCl (20mM) on bladder smooth muscle. Hydroalcoholic and flavonoids extracts of D. kotschyiat concentration ranges of 10-320 µg/ mL in a concentration dependent way inhibited bladder tonic contraction induced by KCl (n=6). Both extracts also in a concentration-dependent manner relaxed EFS and ACh-induced contractions (range, 20–1280 µg/mL) of bladder smooth muscle in vitro. Complete inhibition was achieved with the highest used concentrations of the extracts. The inhibitory effect of the extract was reversible following washing the tissues with fresh Tyrode’s solution. Conclusion: This study clearly demonstrated that D. kotschyi extracts were able to prevent contractions induced by ACh, KCl or EFS in isolated rabbit bladder. This means that people consuming this medicinal plant may face urinary retention which could be a problem for patients with prostate hypertrophy. On the other hand, this plant might be useful in patients with urinary incontinence. However, its usefulness must be assessed in the controlled clinical trials.
Collapse
Affiliation(s)
- Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ebrahim Sajjadi
- Department of Pharmacognosy and, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arefe Tarafdar
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Montezano AC, De Lucca Camargo L, Persson P, Rios FJ, Harvey AP, Anagnostopoulou A, Palacios R, Gandara ACP, Alves-Lopes R, Neves KB, Dulak-Lis M, Holterman CE, de Oliveira PL, Graham D, Kennedy C, Touyz RM. NADPH Oxidase 5 Is a Pro-Contractile Nox Isoform and a Point of Cross-Talk for Calcium and Redox Signaling-Implications in Vascular Function. J Am Heart Assoc 2018; 7:e009388. [PMID: 29907654 PMCID: PMC6220544 DOI: 10.1161/jaha.118.009388] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/07/2018] [Indexed: 12/02/2022]
Abstract
BACKGROUND NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. METHODS AND RESULTS Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N-acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). CONCLUSIONS Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | - Patrik Persson
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | | | - Roberto Palacios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Ana Caroline P Gandara
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo De Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Maria Dulak-Lis
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Chet E Holterman
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Pedro Lagerblad de Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo De Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Christopher Kennedy
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
6
|
Phytochemical properties and pharmacological effects of Quercus ilex L. aqueous extract on gastrointestinal physiological parameters in vitro and in vivo. Biomed Pharmacother 2017; 94:787-793. [DOI: 10.1016/j.biopha.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 01/21/2023] Open
|
7
|
Li YR, Yang WX. Myosin superfamily: The multi-functional and irreplaceable factors in spermatogenesis and testicular tumors. Gene 2015; 576:195-207. [PMID: 26478466 DOI: 10.1016/j.gene.2015.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/21/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Spermatogenesis is a fundamental process in sexual development and reproduction, in which the diploid spermatogonia transform into haploid mature spermatozoa. This process is under the regulation of multiple factors and pathway. Myosin has been implicated in various aspects during spermatogenesis. Myosins constitute a diverse superfamily of actin-based molecular motors that translocate along microfilament in an ATP-dependent manner, and six kinds of myosins have been proved that function during spermatogenesis. In mitosis and meiosis, myosins play an important role in spindle assembly and positioning, karyokinesis and cytokinesis. During spermiogenesis, myosins participate in acrosomal formation, nuclear morphogenesis, mitochondrial translocation and spermatid individualization. In this review, we summarize current understanding of the functions of myosin in spermatogenesis and some reproductive system diseases such as testicular tumors and prostate cancer, and discuss the roles of possible upstream molecules which regulate myosin in these processes.
Collapse
Affiliation(s)
- Yan-Ruide Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Shibata K, Sakai H, Huang Q, Kamata H, Chiba Y, Misawa M, Ikebe R, Ikebe M. Rac1 regulates myosin II phosphorylation through regulation of myosin light chain phosphatase. J Cell Physiol 2015; 230:1352-64. [PMID: 25502873 DOI: 10.1002/jcp.24878] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Abstract
Phosphorylation of regulatory light chain (MLC) activates myosin II, which enables it to promote contractile and motile activities of cells. We report here a novel signaling mechanism that activates MLC phosphorylation and smooth muscle contraction. Contractile agonists activated Rac1, and Rac1 inhibition diminished agonist-induced MLC phosphorylation, thus inhibiting smooth muscle contraction. Rac1 inhibits the activity of MLC phosphatase (MLCP) but not that of MLC kinase, through a phosphatase that targets MYPT1 (a regulatory subunit of MLCP) and CPI-17 (a MLCP specific inhibitor) rather than through the RhoA-Rho dependent kinase (ROCK) pathway. Rac1 inhibition decreased the activity of protein kinase C (PKC), which also contributes to the change in CPI-17 phosphorylation. We propose that activation of Rac1 increases the activity of PKC, which increases the phosphorylation of CPI-17 and MYPT1 by inhibiting the phosphatase that targets these proteins, thereby decreasing the activity of MLCP and increasing phosphorylation of MLC. Our results suggest that Rac1 coordinates with RhoA to increase MLC phosphorylation by inactivation of CPI-17/MYPT1 phosphatase, which decreases MLCP activity thus promoting MLC phosphorylation and cell contraction.
Collapse
Affiliation(s)
- Keita Shibata
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Molecular and cellular basis of the regulation of lymphatic contractility and lymphatic absorption. Int J Biochem Cell Biol 2014; 53:134-40. [PMID: 24836907 DOI: 10.1016/j.biocel.2014.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 04/22/2014] [Accepted: 05/05/2014] [Indexed: 11/23/2022]
Abstract
Lymphatic absorption is a highly regulated process driven by both an extrinsic mechanism (external force) and an intrinsic mechanism (lymphatic vessel contractility). The lymphatic muscle is a specialized smooth muscle with unique mechanical properties. To understand the molecular mechanism and relative contribution of smooth muscle contraction in lymphatic absorption, we analyzed mice with a smooth muscle-specific deletion of Mylk, a critical gene for smooth muscle contraction. Interestingly, the knockout mice were significantly resistant to anesthesia reagents. Upon injection in the feet with FITC-dextran, the mutant mice displayed a 2-fold delay of the absorption peak in the peripheral circulation. Examining the ear lymphatic vessels of the mutant mice revealed a reduction in the amount of fluid in the lumens of the lymphangions, suggesting an impairment of lymph formation. The Mylk-deficient lymphatic muscle exhibited a significant reduction of peristalsis and of myosin light chain phosphorylation in response to depolarization. We thus concluded that MLCK and myosin light chain phosphorylation are required for lymphatic vessel contraction. Lymphatic contractility is not an exclusive requirement for lymphatic absorption, and external force appears to be necessary for absorption.
Collapse
|
10
|
Pattabiraman PP, Epstein DL, Rao PV. Regulation of Adherens Junctions in Trabecular Meshwork Cells by Rac GTPase and their influence on Intraocular Pressure. ACTA ACUST UNITED AC 2013; 1. [PMID: 24932460 DOI: 10.13188/2334-2838.1000002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intercellular adherens junctions and cell-extracellular matrix interactions are presumed to influence aqueous humor (AH) drainage via the conventional route, however, their direct role in modulation of intraocular pressure (IOP) is not well understood. Here, we investigated the role of Rac GTPase signaling in basal and growth factor-induced formation of adherens junctions in human trabecular meshwork (HTM) cells as compared to human umbilical vascular endothelial cells, and evaluated the effects of inhibition of Rac GTPase activity on IOP in rabbits. Expression of a constitutively active Rac1 GTPase or treatment with platelet derived growth factor (PDGF), a known activator of Rac GTPase, induced formation of β-catenin-based adherens junctions, actin cytoskeletal reorganization and membrane ruffle in HTM cells. In contrast, treatment of HTM cells with inhibitors of Rac GTPase caused cell-cell separation, a decrease in adherens junctions, and reorganization of actin stress fibers to the cell cortical regions and focal adhesion to the cell leading edges. Both, constitutively active Rac1 and PDGF stimulated generation of Reactive Oxygen Species (ROS) in HTM cells, and ROS were found to increase adherens junction formation and transendothelial electrical resistance (TEER) in HTM cells. Topical application of Rac GTPase inhibitors (EHT1864 and NSC23766), however, only marginally influenced IOP in rabbit eyes. Taken together, these data reveal that while Rac GTPase signaling plays a significant role in regulation of adherens junctions, ROS production and TEER in cells of the AH outflow pathway, Rac inhibitors showed only a marginal influence on IOP in live rabbits.
Collapse
Affiliation(s)
| | - David L Epstein
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA 27710
| | | |
Collapse
|
11
|
Firth AL, Choi IW, Park WS. Animal models of pulmonary hypertension: Rho kinase inhibition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 109:67-75. [PMID: 22713173 DOI: 10.1016/j.pbiomolbio.2012.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/17/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
Pulmonary Hypertension is a terminology encompassing a range of etiologically different pulmonary vascular diseases. The most common is that termed pulmonary arterial hypertension or PAH; a rare but often fatal disease characterized by a mean pulmonary arterial pressure of >25 mmHg. PAH is associated with a complex etiology highlighted by core characteristics of increased pulmonary vascular resistance and elevation of mean pulmonary artery pressure. When sustained, pulmonary vascular remodeling occurs and eventually patients pass away due to right heart failure. Hypoxic pulmonary vasoconstriction is an early event occurring in pulmonary hypertension due to chronic exposure to hypoxia. While the underlying mechanisms of hypoxic pulmonary vasoconstriction may be controversial, a role for RhoA/Rho kinase mediated regulation of intracellular Ca(2+) has been recently identified. Further study suggests that RhoA may have an integral role in other pathophysiological processes such as cell proliferation and migration occurring in all forms of PH. Indeed Rho proteins are known to play essential roles in actin cytoskeleton organization in all eukaryotic cells and thus Rho and Rho-GTPases are implicated in fundamental cellular processes such as cellular proliferation, migration, adhesion, apoptosis and gene expression. This review focuses on providing an overview of the role of RhoA/Rho kinase in currently available animal models of pulmonary hypertension.
Collapse
Affiliation(s)
- Amy L Firth
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | |
Collapse
|
12
|
Abstract
Calcium plays important role in biological systems where it is involved in diverse mechanisms such as signaling, muscle contraction and neuromodulation. Action potentials are generated by dynamic interaction of ionic channels located on the plasma-membrane and these drive the rhythmic activity of biological systems such as the smooth muscle and the heart. However, ionic channels are not the only pacemakers; an intimate interaction between intracellular Ca(2+) stores and ionic channels underlie rhythmic activity. In this review we will focus on the role of Ca(2+) stores in regulation of rhythmical behavior.
Collapse
Affiliation(s)
- Mohammad S Imtiaz
- Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Health Sciences Centre, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
13
|
Werder AV, Mayr M, Schneider G, Oesterle D, Fritsch RM, Seidler B, Schlossmann J, Hofmann F, Schemann M, Allescher HD, Schmid RM, Saur D. Truncated IRAG variants modulate cGMP-mediated inhibition of human colonic smooth muscle cell contraction. Am J Physiol Cell Physiol 2011; 301:C1445-57. [PMID: 21865585 DOI: 10.1152/ajpcell.00304.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) induces relaxation of colonic smooth muscle cells predominantly by cGMP/cGMP-dependent protein kinase I (cGKI)-induced phosphorylation of the inositol 1,4,5-trisphosphate receptor (IP(3)R)-associated cGMP kinase substrate (IRAG), to block store-dependent calcium signaling. In the present study we analyzed the structure and function of the human IRAG/MRVI1 gene. We describe four unique first exon variants transcribed from individual promoters in diverse human tissues. Tissue-specific alternative splicing with exon skipping and alternative splice donor and acceptor site usage further increases diversity of IRAG mRNA variants that encode for NH(2)- and COOH-terminally truncated proteins. At the functional level, COOH-terminally truncated IRAG variants lacking both the cGKI phosphorylation and the IP(3)RI interaction site counteract cGMP-mediated inhibition of calcium transients and relaxation of human colonic smooth muscle cells. Since COOH-terminally truncated IRAG mRNA isoforms are widely expressed in human tissues, our results point to an important role of IRAG variants as negative modulators of nitric oxide/cGKI-dependent signaling. The complexity of alternative splicing of the IRAG gene impressively demonstrates how posttranscriptional processing generates functionally distinct proteins from a single gene.
Collapse
Affiliation(s)
- Alexander von Werder
- II. Medizinische Klinik, Technische Universität München, Ismaninger Strasse 22, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cartwright EJ, Oceandy D, Austin C, Neyses L. Ca2+ signalling in cardiovascular disease: the role of the plasma membrane calcium pumps. SCIENCE CHINA-LIFE SCIENCES 2011; 54:691-8. [DOI: 10.1007/s11427-011-4199-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/10/2011] [Indexed: 12/25/2022]
|
15
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
|
17
|
Uchida M, Ishii I, Hirata K, Yamamoto F, Tashiro K, Suzuki T, Nakayama Y, Ariyoshi N, Kitada M. Degradation of filamin induces contraction of vascular smooth muscle cells in type-I collagen matrix honeycombs. Cell Physiol Biochem 2011; 27:669-80. [PMID: 21691085 DOI: 10.1159/000330076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Dedifferentiated rabbit vascular smooth muscle cells (SMCs) exhibit similar features to differentiated SMCs when cultured in three-dimensional matrices of type-I collagen called "honeycombs," but the mechanism is unknown. The role of filamin, an actin-binding protein that links actin filaments in SMCs, was investigated. METHODS Filamin and other related proteins were detected by western blot analysis and immunofluorescence staining. Honeycomb size was measured to confirm the contraction of SMCs. RESULTS Full-length filamin was expressed in subconfluent SMCs cultured on plates; however, degradation of filamin, which might be regulated by calpain, was observed in confluent SMCs cultured on plates and in honeycombs. While filamin was co-localized with β-actin in subconfluent SMCs grown on plates, filamin was detected in the cytoplasm in SMCs cultured in honeycombs, and degraded filamin was mainly detected in the cytoplasmic fraction of these cells. In addition, β-actin expression was low in the cytoskeletal fraction of SMCs cultured in honeycombs compared with cells cultured on plates, and the size of the honeycombs used for culturing SMCs was significantly reduced. CONCLUSION These data suggest that degradation of filamin in SMCs cultured in honeycombs induces structural weakness of β-non-muscle actin filaments, thereby permitting SMCs in honeycombs to achieve contractility.
Collapse
Affiliation(s)
- Masashi Uchida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
BACKGROUND Previous studies suggest that Dupuytren's disease is caused by fibroblast and myofibroblast contractility. Cell contractility in smooth muscle cells is caused by calcium-dependent and calcium-independent signaling mechanisms. In the calcium-dependent pathway, calcium/calmodulin activates myosin light chain kinase (MLCK). In this study, the effects of calcium/calmodulin inhibition with the FDA-approved drug fluphenazine on Dupuytren's fibroblast contractility and MLCK expression were tested. METHODS Fibroblast lines from the palmar fascia of patients with Dupuytren's disease were explanted and used for in vitro study. The effect of fluphenazine on Dupuytren's fibroblast migration was determined using a scratch migration assay, and contractility was determined using fibroblast-populated collagen lattice (FPCL) assays. Immunohistochemical staining of MLCK in different samples of Dupuytren's tissue and normal fascia were compared. RESULTS Fluphenazine demonstrated a dose-dependent inhibition of Dupuytren's fibroblast migration, with the maximum inhibition of migration observed at 20 μM (69.8 ± 1.9%). Fluphenazine also inhibited FPCL contraction in a dose-dependent manner. Maximal inhibition was observed at a fluphenazine concentration of 20 μM (52.5 ± 6.1%). Immunohistological staining illustrated that MLCK was predominantly expressed throughout the cytoplasm of select fibroblasts within Dupuytren's nodules, yet was absent in the fibroblasts of Dupuytren's cords and normal palmar fascia. CONCLUSIONS Fluphenazine inhibits Dupuytren's fibroblast contractility and migration through inhibition of MLCK in vitro. However, the inconsistent expression of MLCK throughout Dupuytren's tissue suggests that calcium-dependent signaling may not be a primary mode of contracture formation. Fluphenazine inhibition of MLCK is not likely to be a target for the treatment of Dupuytren's disease.
Collapse
|
19
|
He WQ, Qiao YN, Zhang CH, Peng YJ, Chen C, Wang P, Gao YQ, Chen C, Chen X, Tao T, Su XH, Li CJ, Kamm KE, Stull JT, Zhu MS. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension. Am J Physiol Heart Circ Physiol 2011; 301:H584-91. [PMID: 21572007 DOI: 10.1152/ajpheart.01212.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular tone, an important determinant of systemic vascular resistance and thus blood pressure, is affected by vascular smooth muscle (VSM) contraction. Key signaling pathways for VSM contraction converge on phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin. This phosphorylation is mediated by Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) but Ca(2+)-independent kinases may also contribute, particularly in sustained contractions. Signaling through MLCK has been indirectly implicated in maintenance of basal blood pressure, whereas signaling through RhoA has been implicated in salt-induced hypertension. In this report, we analyzed mice with smooth muscle-specific knockout of MLCK. Mesenteric artery segments isolated from smooth muscle-specific MLCK knockout mice (MLCK(SMKO)) had a significantly reduced contractile response to KCl and vasoconstrictors. The kinase knockout also markedly reduced RLC phosphorylation and developed force. We suggest that MLCK and its phosphorylation of RLC are required for tonic VSM contraction. MLCK(SMKO) mice exhibit significantly lower basal blood pressure and weaker responses to vasopressors. The elevated blood pressure in salt-induced hypertension is reduced below normotensive levels after MLCK attenuation. These results suggest that MLCK is necessary for both physiological and pathological blood pressure. MLCK(SMKO) mice may be a useful model of vascular failure and hypotension.
Collapse
Affiliation(s)
- Wei-Qi He
- Model Animal Research Center and MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sobieszek A, Sarg B, Lindner H, Matusovsky OS, Zukowska M. Myosin Kinase of Molluscan Smooth Muscle. Regulation by Binding of Calcium to the Substrate and Inhibition of Myorod and Twitchin Phosphorylation by Myosin. Biochemistry 2010; 49:4191-9. [PMID: 20402494 DOI: 10.1021/bi100143q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Apolinary Sobieszek
- Institute for Biomedical Aging Research, Life Science Center, Austrian Academy of Sciences, Innsbruck, Austria
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Medical University, Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University, Innsbruck, Austria
| | - Oleg S. Matusovsky
- Institute for Biomedical Aging Research, Life Science Center, Austrian Academy of Sciences, Innsbruck, Austria
| | - Magdalena Zukowska
- Institute for Biomedical Aging Research, Life Science Center, Austrian Academy of Sciences, Innsbruck, Austria
| |
Collapse
|
21
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
22
|
Frei E, Huster M, Smital P, Schlossmann J, Hofmann F, Wegener JW. Calcium-dependent and calcium-independent inhibition of contraction by cGMP/cGKI in intestinal smooth muscle. Am J Physiol Gastrointest Liver Physiol 2009; 297:G834-9. [PMID: 19628652 DOI: 10.1152/ajpgi.00095.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
cGMP-dependent protein kinase I (cGKI) induces relaxation of smooth muscle via several pathways that include inhibition of intracellular Ca(2+) signaling and/or involve activation of myosin phosphatase. In the present study, we investigated these mechanisms comparatively in colon and jejunum longitudinal smooth muscle from mice. In simultaneous recordings from colon muscle, 8-bromo-cGMP (8-Br-cGMP) reduced both carbachol-induced tension and carbachol-induced increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). These effects of 8-Br-cGMP were absent in colon from mice carrying a mutated inositol-1,4,5 trisphosphate receptor I-associated G kinase substrate (IRAG) gene or lacking cGKI. However, in jejunum, 8-Br-cGMP reduced carbachol-induced tension but did not change corresponding [Ca(2+)](i) signals. This setting was also observed in jejunum from mice carrying a mutated IRAG gene, whereas no response to 8-Br-cGMP was observed in jejunum from mice lacking cGKI. After inhibition of phosphatase activity by calyculin A, 8-Br-cGMP did not relax jejunum but still relaxed colon muscle. In Western blot analysis, 8-Br-cGMP reduced the signal for phosphorylated MYPT-1 in carbachol-stimulated jejunum but not in colon. These results suggest that cGMP/cGKI signaling differentially inhibits contraction in the muscles investigated: in jejunum, inhibition is performed without changing [Ca(2+)](i) and is dependent on phosphatase activity, whereas in colon, inhibition is mediated by inhibition of [Ca(2+)](i) signals.
Collapse
Affiliation(s)
- Eva Frei
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Léveillé N, Fournier A, Labrie C. Androgens down-regulate myosin light chain kinase in human prostate cancer cells. J Steroid Biochem Mol Biol 2009; 114:174-9. [PMID: 19429448 DOI: 10.1016/j.jsbmb.2009.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 11/11/2008] [Accepted: 02/04/2009] [Indexed: 01/15/2023]
Abstract
Androgens play a major role in the growth and survival of primary prostate tumors. The molecular mechanisms involved in prostate cancer progression are not fully understood but genes that are regulated by androgens clearly influence this process. We searched for new androgen-regulated genes using the Affymetrix GeneChip Human Genome U95 Set in the androgen-sensitive LNCaP prostate cancer cell line. Analysis of gene expression profiles revealed that myosin light chain kinase (MLCK) mRNA levels were markedly down-regulated by the synthetic androgen R1881. The microarray data were confirmed by ribonuclease protection assays. RNA and protein analyses revealed that LNCaP cells express both long (non-muscle) and short (smooth muscle) isoforms, and that both isoforms are down-regulated by androgens. Taken together, these data identify MLCK as a novel downstream target of the androgen signalling pathway in prostate cells.
Collapse
Affiliation(s)
- Nicolas Léveillé
- Molecular Endocrinology and Oncology Research Center, Centre Hospitalier Universitaire de Québec and Université Laval, 2705 Laurier Boulevard, Québec, Canada
| | | | | |
Collapse
|
24
|
Reynaert H, Urbain D, Geerts A. Regulation of sinusoidal perfusion in portal hypertension. Anat Rec (Hoboken) 2008; 291:693-8. [PMID: 18484616 DOI: 10.1002/ar.20669] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Portal hypertension, a major complication of cirrhosis, is caused by both increased portal blood flow and augmented intrahepatic vascular resistance. Even though the latter is primarily caused by anatomical changes, it has become clear that dynamic factors contribute to the increased hepatic vascular resistance. The hepatic sinusoid is the narrowest vascular structure within the liver and is the principal site of blood flow regulation. The anatomical location of hepatic stellate cells, which embrace the sinusoids, provides a favorable arrangement for sinusoidal constriction, and for control of sinusoidal vascular tone and blood flow. Hepatic stellate cells possess the essential contractile apparatus for cell contraction and relaxation. Moreover, the mechanisms of stellate cell contraction are better understood, and many substances which influence contractility have been identified, providing a rationale and opportunity for targeting these cells in the treatment of portal hypertension in cirrhosis.
Collapse
Affiliation(s)
- Hendrik Reynaert
- Department of Cell Biology, Vrije Universiteit Brussel, Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
25
|
Martinka P, Lai EY, Fähling M, Jankowski V, Jankowski J, Schubert R, Gaestel M, Persson AEG, Persson PB, Patzak A. Adenosine increases calcium sensitivity via receptor-independent activation of the p38/MK2 pathway in mesenteric arteries. Acta Physiol (Oxf) 2008; 193:37-46. [PMID: 18005245 DOI: 10.1111/j.1748-1716.2007.01800.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM Adenosine (Ado) restores desensitized angiotensin II-induced contractions in the renal arterioles via an intracellular, receptor-independent mechanisms including the p38 mitogen-activated protein kinase (MAPK). In the present study we test the hypothesis that MAPK-activated protein kinase 2 (MK2) mediates the Ado effect downstream from p38 MAPK resulting in an increased phosphorylation of the regulatory unit of the myosin light chain (MLC(20)). METHODS AND RESULTS Contraction experiments were performed in rings of mesenteric arteries under isometric conditions in C57BL6 and MK2 knock out mice (MK2-/-). Ado pretreatment (10(-5) mol L(-1)) strongly increased Ang II sensitivity, calcium sensitivity and the phosphorylation of MLC(20). Treatment with Ado (3 x 10(-6) or 10(-5) mol L(-1) in between successive Ang II applications) enhanced the desensitized Ang II responses (second to fifth application). Ca(2+) transients were not effected by Ado. Further, blockade of type 1 and type 2 Ado receptors during treatment did not influence the effect. Type 3 receptor activation by inosine instead of Ado had no effect. Conversely, inhibition of nitrobenzylthioinosine-sensitive Ado transporters prevented the effects of Ado. Inhibition of p38 MAPK as well as use of MK2-/- mice prevented contractile Ado effects on the mesenteric arteries and the phosphorylation of MLC(20). CONCLUSION The study shows that Ado activates the p38 MAPK/MK2 pathway in vascular smooth muscle via an intracellular action, which results in an increased MLC(20) phosphorylation in concert with increased calcium sensitivity of the contractile apparatus. This mechanism can significantly contribute to the regulation of vascular tone, e.g. under post-ischaemic conditions.
Collapse
MESH Headings
- Adenosine/pharmacology
- Angiotensin II/pharmacology
- Animals
- Calcium/metabolism
- Calcium/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- MAP Kinase Signaling System/drug effects
- Male
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Contraction/drug effects
- Muscle Contraction/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myosin Light Chains/metabolism
- Phosphorylation/drug effects
- Receptors, Purinergic P1/physiology
- Tissue Culture Techniques
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- P Martinka
- Institut für Vegetative Physiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Raizman JE, Komljenovic J, Chang R, Deng C, Bedosky KM, Rattan SG, Cunnington RH, Freed DH, Dixon IMC. The participation of the Na+-Ca2+ exchanger in primary cardiac myofibroblast migration, contraction, and proliferation. J Cell Physiol 2008; 213:540-51. [PMID: 17541957 DOI: 10.1002/jcp.21134] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cardiac ventricular myofibroblast motility, proliferation, and contraction contribute to post-myocardial infarct wound healing, infarct scar formation, and remodeling of the ventricle remote to the site of infarction. The Na+-Ca2+ exchanger (NCX1) is involved in altered calcium handling in cardiac myocytes during cardiac remodeling associated with heart failure, however, its role in cardiac myofibroblast cell function is unexplored. In this study we investigated the involvement of NCX1 as well as the role of non-selective-cation channels (NSCC) in cardiac myofibroblast cell function in vitro. Immunofluorescence and Western blots revealed that P1 cells upregulate alpha-smooth muscle actin (alphaSMA) and embryonic smooth muscle myosin heavy chain (SMemb) expression. NCX1 mRNA and proteins as well as Ca(v)1.2a protein are also expressed in P1 myofibroblasts. Myofibroblast motility in the presence of 50 ng/ml PDGF-BB was blocked with AG1296. Myofibroblast motility, contraction, and proliferation were sensitive to KB-R7943, a specific NCX1 reverse-mode inhibitor. In contrast, only proliferation and contraction, but not motility were sensitive to nifedipine, while gadolinium (NSCC blocker) was only associated with decreased motility. ML-7 treatment was associated with inhibition of the chemotactic response and contraction. Thus cardiac myofibroblast chemotaxis, contraction, and proliferation were sensitive to different pharmacologic treatments suggesting that regulation of transplasmalemmal calcium movements may be important in growth factor receptor-mediated processes. NCX1 may represent an important moiety in suppression of myofibroblast functions.
Collapse
Affiliation(s)
- Joshua E Raizman
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre and Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Clarke CJ, Ohanian V, Ohanian J. Norepinephrine and endothelin activate diacylglycerol kinases in caveolae/rafts of rat mesenteric arteries: agonist-specific role of PI3-kinase. Am J Physiol Heart Circ Physiol 2007; 292:H2248-56. [PMID: 17208990 DOI: 10.1152/ajpheart.01170.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphatidylinositol (PI) signaling pathway mediates norepinephrine (NE)- and endothelin-1 (ET-1)-stimulated vascular smooth muscle contraction through an inositol-trisphosphate-induced rise in intracellular calcium and diacylglycerol (DG) activation of protein kinase C (PKC). Subsequent activation of DG kinases (DGKs) metabolizes DG to phosphatidic acid (PA), potentially regulating PKC activity. Because precise regulation and spatial restriction of the PI pathway is necessary for specificity, we have investigated whether this occurs within caveolae/rafts, specialized plasma membrane microdomains implicated in vascular smooth muscle contraction. We show that components of the PI signaling cascade-phosphatidylinositol 4,5-bisphosphate (PIP(2)), PA, and DGK-theta are present in caveolae/rafts prepared from rat mesenteric small arteries. Stimulation with NE or ET-1 induced [(33)P]PIP(2) hydrolysis solely within caveolae/rafts. NE stimulated an increase in DGK activity in caveolae/rafts alone, whereas ET-1 activated DGK in caveolae/rafts and noncaveolae/rafts; however, [(33)P]PA increased in all fractions with both agonists. Previously, we reported that NE activated DGK-theta in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner; here, we describe PI3-kinase-dependent DGK activation and [(33)P]PA production in caveolae/rafts in response to NE but not ET-1. Additionally, PKB, a potential activator of DGK-theta, translocated to caveolae/rafts in response to NE but not ET-1, and PI3-kinase inhibition prevented this. Furthermore, PI3-kinase inhibition reduced the sensitivity of contraction to NE but not ET-1. Our study shows that caveolae/rafts are major sites of vasoconstrictor hormone activation of the PI pathway in intact small arteries and suggest a link between lipid signaling events within caveolae/rafts and contraction.
Collapse
Affiliation(s)
- Christopher J Clarke
- Cardiovascular Research Group, Division of Cardiovascular and Endocrine Sciences, Core Technology Facility, University of Manchester, 46 Grafton St., Manchester, UK
| | | | | |
Collapse
|
28
|
Stanton MC, Austin JC, Delaney DP, Gosfield A, Marx JO, Zderic SA, Chacko S, Moreland RS. Partial bladder outlet obstruction selectively abolishes protein kinase C induced contraction of rabbit detrusor smooth muscle. J Urol 2006; 176:2716-21. [PMID: 17085202 DOI: 10.1016/j.juro.2006.07.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Indexed: 01/10/2023]
Abstract
PURPOSE Despite the acute onset, partial bladder outlet obstruction in the rabbit induces detrusor remodeling similar to that in men with benign prostatic hyperplasia in terms of its impact on structural and functional alterations in smooth muscle. We determined if partial bladder outlet obstruction induced remodeling alters the protein kinase C signaling pathway that leads to contraction. MATERIALS AND METHODS Smooth muscle from control animals and those subjected to 2 weeks of partial bladder outlet obstruction were mounted for isometric force recording, measurement of myosin light chain phosphorylation and levels of adducin phosphorylation. Bladder muscle strips were stimulated by phorbol dibutyrate or carbachol in the presence and absence of bisindolylmaleimide-1. RESULTS Smooth muscle strips from animals subjected to partial bladder outlet obstruction showed little to no increase in stress in response to phorbol dibutyrate and no increase in myosin light chain phosphorylation levels. Muscle strips from control animals produced a robust contraction with concomitant increases in myosin light chain phosphorylation. Inhibition of protein kinase C by bisindolylmaleimide-1 significantly depressed carbachol induced contractions of muscle strips from control animals but it had no effect on carbachol induced contractions of muscle strips from outlet obstructed animals. Phorbol dibutyrate increased phospho-adducin levels in muscle strips from the 2 animal sources, suggesting that protein kinase C could be activated. CONCLUSIONS We propose that partial bladder outlet obstruction does not alter protein kinase C activation, but rather abolishes or uncouples the pathway(s) downstream of protein kinase C, leading to contraction. Loss of this pathway may contribute to the loss of normal voiding behavior and the resultant decompensated state.
Collapse
Affiliation(s)
- Michaela C Stanton
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lai EY, Martinka P, Fähling M, Mrowka R, Steege A, Gericke A, Sendeski M, Persson PB, Persson AEG, Patzak A. Adenosine restores angiotensin II-induced contractions by receptor-independent enhancement of calcium sensitivity in renal arterioles. Circ Res 2006; 99:1117-24. [PMID: 17038642 DOI: 10.1161/01.res.0000249530.85542.d4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine is coupled to energy metabolism and regulates tissue blood flow by modulating vascular resistance. In this study, we investigated isolated, perfused afferent arterioles of mice, which were subjected to desensitization during repeated applications of angiotensin II. Exogenously applied adenosine restores angiotensin II-induced contractions by increasing calcium sensitivity of the arterioles, along with augmented phosphorylation of the regulatory unit of the myosin light chain. Adenosine restores angiotensin II-induced contractions via intracellular action, because inhibition of adenosine receptors do not prevent restoration, but inhibition of NBTI sensitive adenosine transporters does. Restoration was prevented by inhibition of Rho-kinase, protein kinase C, and the p38 mitogen-activated protein kinase, which modulate myosin light chain phosphorylation and thus calcium sensitivity in the smooth muscle. Furthermore, adenosine application increased the intracellular ATP concentration in LuciHEK cells. The results of the study suggest that restoration of the angiotensin II-induced contraction by adenosine is attributable to the increase of the calcium sensitivity by phosphorylation of the myosin light chain. This can be an important component of vascular control during ischemic and hypoxic conditions. Additionally, this mechanism may contribute to the mediation of the tubuloglomerular feedback by adenosine in the juxtaglomerular apparatus of the kidney.
Collapse
Affiliation(s)
- En Yin Lai
- Department of Medical Cell Biology, Division of Physiology, University of Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wörner R, Lukowski R, Hofmann F, Wegener JW. cGMP signals mainly through cAMP kinase in permeabilized murine aorta. Am J Physiol Heart Circ Physiol 2006; 292:H237-44. [PMID: 16920816 DOI: 10.1152/ajpheart.00079.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GMP affects vascular tone by multiple mechanisms, including inhibition of the Rho/Rho kinase-mediated Ca(2+) sensitization, a process identified as Ca(2+) desensitization. Ca(2+) desensitization is mediated probably by both cGMP- and cAMP-dependent protein kinases (cGKI and PKA). We investigate to which extent Ca(2+) desensitization is initiated by cGKI and PKA. cGMP/cAMP-induced relaxation was studied at constant [Ca(2+)] in permeabilized aortas from wild-type and cGKI-deficient mice. [Ca(2+)] increased aortic tone in the absence and presence of 50 microM GTPgammaS with EC(50) values of 160 and 30 nM, respectively. In the absence of GTPgammaS, the EC(50) for [Ca(2+)] was shifted rightward from 0.16 microM to 0.43 and 0.82 microM by 1 and 300 microM 8-bromo-cGMP (8-Br-cGMP), and to 8 microM by 10 microM Y-27632. Contractions induced by 300 nM [Ca(2+)] were relaxed by 8-Br-cGMP with an EC(50) of 2.6 microM. Surprisingly, [Ca(2+)]-induced contractions were also relaxed by 8-Br-cGMP in aortas from cGKI(-/-) mice (EC(50) of 19 microM). Western blot analysis of the vasodilator-stimulated phosphoprotein indicated "cross"-activation of PKA by 1 mM 8-Br-cGMP in aortic smooth muscle cells from cGKI(-/-) mice. Indeed, the PKA inhibitor peptide (PKI 5-24) completely abolished the relaxant effect of 8-Br-cGMP in muscles from cGKI(-/-) mice and to 65% in wild-type aortas. The thromboxane analogue U-46619 induced contraction at constant [Ca(2+)], which was only partially relaxed by 8-Br-cGMP but completely relaxed by Y-27632. The effect of 8-Br-cGMP on U-46619-induced contraction was attenuated by PKI 5-24. These results show that cGKI has only a small inhibitory effect on Ca(2+) sensitization in murine aortas.
Collapse
Affiliation(s)
- René Wörner
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Biedersteiner Str. 29, 80802 München, Germany
| | | | | | | |
Collapse
|
31
|
. EQ, . FA, . MK, . MAZ, . YAG. Effects of Kreysigine, an Alkaloid Isolated from Colchicum decaisnea on Ileum Smooth Muscle and Intestinal Motility of Rats. INT J PHARMACOL 2006. [DOI: 10.3923/ijp.2006.451.454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Luo G, Jamali R, Cao YX, Edvinsson L, Xu CB. Vascular endothelin ET(B) receptor-mediated contraction requires phosphorylation of ERK1/2 proteins. Eur J Pharmacol 2006; 538:124-31. [PMID: 16650404 DOI: 10.1016/j.ejphar.2006.03.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 03/23/2006] [Accepted: 03/27/2006] [Indexed: 11/16/2022]
Abstract
In cardiovascular diseases, endothelin type B (ET(B)) receptors in arterial smooth muscle cells are upregulated. The present study revealed that organ culture of rat mesenteric artery segments enhanced endothelin ET(B) receptor-mediated contraction paralleled with increase in the receptor mRNA and protein expressions. The endothelin ET(B) receptor-mediated contraction was associated with increase in phosphorylation of extracellular regulation kinase 1 and 2 (ERK1/2) proteins and elevated levels of intracellular calcium. The elevation curve of intracellular calcium consisted of two phases: one rapid and one sustained. Inhibition of ERK1/2 phosphorylation by SB386023 or blockage of calcium channels by nifedipine significantly reduced the endothelin ET(B) receptor-mediated contraction (P<0.05) and decreased the sustained phase of intracellular calcium level, but not the rapid phase. Thus, phosphorylation of ERK1/2 proteins and elevation of intracellular calcium level are required for endothelin ET(B) receptor-mediated contraction in rat mesenteric artery.
Collapse
Affiliation(s)
- Guogang Luo
- Neurology Department of the First Hospital, Medical College of Xian Jiaotong University, P. R. China
| | | | | | | | | |
Collapse
|
33
|
Porter M, Evans MC, Miner AS, Berg KM, Ward KR, Ratz PH. Convergence of Ca2+-desensitizing mechanisms activated by forskolin and phenylephrine pretreatment, but not 8-bromo-cGMP. Am J Physiol Cell Physiol 2006; 290:C1552-9. [PMID: 16421202 DOI: 10.1152/ajpcell.00534.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractile stimuli can sensitize myosin to Ca2+ by activating RhoA kinase (ROK) and PKC that inhibit myosin light chain phosphatase (MLCP) activity. Relaxant stimuli, acting through PKA and PKG (cyclic nucleotide-dependent protein kinases), and pretreatment with contractile agents such as phenylephrine (PE), can desensitize myosin to Ca2+. It is unknown precisely how these stimuli cause Ca2+ desensitization. To test the hypothesis that PKA, PKG, and PE pretreatment signaling systems converge to cause relaxation by inhibition of ROK in intact, isolated tissues, we examined the effects of forskolin (FSK; PKA activation), 8-bromo-cGMP (8br-cGMP; PKG activation), and PE pretreatment on KCl-induced force maintenance in rabbit arteries, a response nearly completely dependent on ROK activation. PE pretreatment and agents activating PKA and PKG caused Ca2+ desensitization by inhibiting KCl-induced tonic force and MLC phosphorylation without inhibiting intracellular [Ca2+]. At pCa 5 in beta-escin-permeabilized muscle, FSK and 8b-cGMP accelerated the relaxation rate when tissues were returned to pCa 9, suggesting that both agents can elevate MLCP activity. However, a component of the Ca2+ desensitization attributed to PKG activation in intact tissues appeared to involve a MLC phosphorylation-independent component. Inhibition of KCl-induced tonic force by the ROK inhibitor, Y-27632, and by PE pretreatment, were synergistically potentiated by 8b-cGMP, but not FSK. FSK and PE pretreatment, but not 8b-cGMP, inhibited the KCl-induced increase in site-specific myosin phosphatase target protein-1 phosphorylation at Thr853. These data support the hypothesis that PKA and PE pretreatment converge on a common Ca2+-desensitization pathway, but that PKG can act by a mechanism different from that activated by PKA and PE pretreatment.
Collapse
Affiliation(s)
- Melissa Porter
- Virginia Commonwealth Univ. School of Medicine, Dept of Biochemistry, 1101 E. Marshall St., PO Box 980614, Richmond, VA 23298-0614, USA
| | | | | | | | | | | |
Collapse
|
34
|
Liou SF, Wu JR, Lai WT, Sheu SH, Chen IJ, Yeh JL. The vasorelaxing action of labedipinedilol-A involves endothelial cell-derived NO and eNOS expression caused by calcium influx. J Cardiovasc Pharmacol 2005; 45:232-40. [PMID: 15725948 DOI: 10.1097/01.fjc.0000154375.88283.5c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Labedipinedilol-A, a novel dihydropyridine-type calcium antagonist, has been shown to induce hypotension and vasorelaxation. The objective of the present study was to investigate the effect of labedipinedilol-A on vascular function of rat aortic rings and cultured human umbilical vein endothelial cells (HUVECs). Labedipinedilol-A induced vasorelaxation in rat aortic rings that had been precontracted with phenylephrine in a concentration-dependent manner. This labedipinedilol-A-induced relaxation was significantly reduced by endothelium removal and by exposure to L-NG-nitroarginine methyl ester (L-NAME), methylene blue, or 1H-[1,2,4]oxadiazolol[4,3,a]quinoxalin-1-one (ODQ). In addition, the cyclic GMP content was significantly increased by labedipinedilol-A, which was inhibited by L-NAME in aorta. In cultured HUVECs, labedipinedilol-A induced concentration-dependent formation of NO and Ca2+ influx, and it increased the abundance of endothelial NO synthase (eNOS) protein. Furthermore, labedipinedilol-A suppressed basal, 10% FBS- and thrombin-stimulated endothelin-1 production, which were reversed by pretreatment with L-NAME, demonstrating that NO was able to inhibit production of ET-1 in HUVECs. Labedipinedilol-A significantly protected cultured HUVECs against dihydroxyfumarate/iron ion-induced decrease of glutathione and cell death. Moreover, labedipinedilol-A also inhibited iron-induced lipid peroxidation in rat brain homogenate and scavenged 2,2'-azobis (2-amidinopropane) dihydrochloride-derived peroxy radicals. Labedipinedilol-A acts as lacidipine with additional antioxidant effects and can protect endothelial cells against free radical-induced lipid peroxidation and cell injury. Our results indicate that the endothelium-dependent vasorelaxation by labedipinedilol-A is mediated through Ca2+-dependent activation of NO synthase and stimulation of NO/cyclic GMP pathway.
Collapse
Affiliation(s)
- Shu-Fen Liou
- Department and Graduate Institute of Pharmacology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Carrillo E, Galindo JM, García MC, Sánchez JA. Regulation of muscle Cav1.1 channels by long-term depolarization involves proteolysis of the alpha1s subunit. J Membr Biol 2005; 199:155-61. [PMID: 15457372 DOI: 10.1007/s00232-004-0683-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/12/2004] [Indexed: 10/26/2022]
Abstract
The effects of long-term depolarization on frog skeletal muscle Cav1.1 channels were assessed. Voltage-clamp and Western-blot experiments revealed that long-term depolarization brings about a drastic reduction in the amplitude of currents flowing through Cav1.1 channels and in the levels of the alpha1s subunit, the main subunit of muscle L-type channels. The decline of both phenomena was prevented by the action of the protease inhibitors E64 (50 microM) and leupeptin (50 microM). In contrast, long-term depolarization had no effect on beta1, the auxiliary subunit of alpha1s. The levels of mRNAs coding the alpha1s and the beta1 subunits were measured by RNase protection assays. Neither the content of the alpha1s nor the beta1 subunit mRNAs were affected by long-term depolarization, indicating that the synthesis of Cav1.1 channels remained unaffected. Taken together, our experiments suggest that the reduction in the amplitude of membrane currents and in the alpha1s subunit levels is caused by increased degradation of this subunit by a Ca2+-dependent protease.
Collapse
Affiliation(s)
- E Carrillo
- Department of Pharmacology, Cinvestav, A.P.14-740, 07300, México, D.F
| | | | | | | |
Collapse
|
36
|
Szászi K, Sirokmány G, Di Ciano-Oliveira C, Rotstein OD, Kapus A. Depolarization induces Rho-Rho kinase-mediated myosin light chain phosphorylation in kidney tubular cells. Am J Physiol Cell Physiol 2005; 289:C673-85. [PMID: 15857905 DOI: 10.1152/ajpcell.00481.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Myosin-based contractility plays important roles in the regulation of epithelial functions, particularly paracellular permeability. However, the triggering factors and the signaling pathways that control epithelial myosin light chain (MLC) phosphorylation have not been elucidated. Herein we show that plasma membrane depolarization provoked by distinct means, including high extracellular K(+), the lipophilic cation tetraphenylphosphonium, or the ionophore nystatin, induced strong diphosphorylation of MLC in kidney epithelial cells. In sharp contrast to smooth muscle, depolarization of epithelial cells did not provoke a Ca(2+) signal, and removal of external Ca(2+) promoted rather than inhibited MLC phosphorylation. Moreover, elevation of intracellular Ca(2+) did not induce significant MLC phosphorylation, and the myosin light chain kinase (MLCK) inhibitor ML-7 did not prevent the depolarization-induced MLC response, suggesting that MLCK is not a regulated element in this process. Instead, the Rho-Rho kinase (ROK) pathway is the key mediator because 1) depolarization stimulated Rho and induced its peripheral translocation, 2) inhibition of Rho by Clostridium difficile toxin B or C3 transferase abolished MLC phosphorylation, and 3) the ROK inhibitor Y-27632 suppressed the effect. Importantly, physiological depolarizing stimuli were able to activate the same pathway: L-alanine, the substrate of the electrogenic Na(+)-alanine cotransporter, stimulated Rho and induced Y-27632-sensitive MLC phosphorylation in a Na(+)-dependent manner. Together, our results define a novel mode of the regulation of MLC phosphorylation in epithelial cells, which is depolarization triggered and Rho-ROK-mediated but Ca(2+) signal independent. This pathway may be a central mechanism whereby electrogenic transmembrane transport processes control myosin phosphorylation and thereby regulate paracellular transport.
Collapse
Affiliation(s)
- Katalin Szászi
- Department of Surgery, The Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
37
|
Ratz PH, Berg KM, Urban NH, Miner AS. Regulation of smooth muscle calcium sensitivity: KCl as a calcium-sensitizing stimulus. Am J Physiol Cell Physiol 2005; 288:C769-83. [PMID: 15761211 DOI: 10.1152/ajpcell.00529.2004] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
KCl has long been used as a convenient stimulus to bypass G protein-coupled receptors (GPCR) and activate smooth muscle by a highly reproducible and relatively “simple” mechanism involving activation of voltage-operated Ca2+channels that leads to increases in cytosolic free Ca2+([Ca2+]i), Ca2+-calmodulin-dependent myosin light chain (MLC) kinase activation, MLC phosphorylation and contraction. This KCl-induced stimulus-response coupling mechanism is a standard tool-set used in comparative studies to explore more complex mechanisms generated by activation of GPCRs. One area where this approach has been especially productive is in studies designed to understand Ca2+sensitization, the relationship between [Ca2+]iand force produced by GPCR agonists. Studies done in the late 1980s demonstrated that a unique relationship between stimulus-induced [Ca2+]iand force does not exist: for a given increase in [Ca2+]i, GPCR activation can produce greater force than KCl, and relaxant agents can produce the opposite effect to cause Ca2+desensitization. Such changes in Ca2+sensitivity are now known to involve multiple cell signaling strategies, including translocation of proteins from cytosol to plasma membrane, and activation of enzymes, including RhoA kinase and protein kinase C. However, recent studies show that KCl can also cause Ca2+sensitization involving translocation and activation of RhoA kinase. Rather than complicating the Ca2+sensitivity story, this surprising finding is already providing novel insights into mechanisms regulating Ca2+sensitivity of smooth muscle contraction. KCl as a “simple” stimulus promises to remain a standard tool for smooth muscle cell physiologists, whose focus is to understand mechanisms regulating Ca2+sensitivity.
Collapse
Affiliation(s)
- Paul H Ratz
- Virginia Commonwealth Univ., School of Medicine, Dept. of Biochemistry, 1101 E. Marshall St., PO Box 980614, Richmond, VA 23298-0614, USA.
| | | | | | | |
Collapse
|
38
|
Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 2004; 84:935-86. [PMID: 15269341 DOI: 10.1152/physrev.00038.2003] [Citation(s) in RCA: 634] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detrusor smooth muscle is the main muscle component of the urinary bladder wall. Its ability to contract over a large length interval and to relax determines the bladder function during filling and micturition. These processes are regulated by several external nervous and hormonal control systems, and the detrusor contains multiple receptors and signaling pathways. Functional changes of the detrusor can be found in several clinically important conditions, e.g., lower urinary tract symptoms (LUTS) and bladder outlet obstruction. The aim of this review is to summarize and synthesize basic information and recent advances in the understanding of the properties of the detrusor smooth muscle, its contractile system, cellular signaling, membrane properties, and cellular receptors. Alterations in these systems in pathological conditions of the bladder wall are described, and some areas for future research are suggested.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Dept. of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
39
|
Affiliation(s)
- Hideaki Karaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 1138657, Japan.
| |
Collapse
|
40
|
Abstract
Extracellular Ca2+-sensing receptors (CaRs) are the molecular basis by which specialized cells detect and respond to changes in the extracellular [Ca2+] ([Ca2+]o). CaRs belong to the family C of G-protein coupled receptors (GPCRs). Activation of CaRs triggers signaling pathways that modify numerous cell functions. Multiple ligands regulate the activation of CaRs including multivalent cations, L-amino acids, and changes in ionic strength and pH. CaRs in parathyroid cells play a central role in systemic Ca2+ homeostasis in terrestrial tetrapods. Mutations of the CaR gene in humans cause diseases in which serum and urine [Ca2+] and parathyroid hormone (PTH) levels are altered. CaR homologues are also expressed in organs critical to Ca2+ transport in ancient and modern fish, suggesting that similar receptors may have long been involved in Ca2+ homeostasis in lower vertebrates before parathyroid glands developed in terrestrial vertebrates. CaR mRNA and protein are also expressed in tissues not directly involved in Ca2+ homeostasis. This implies that there may be other biological roles for CaRs. Studies of CaR-knockout mice confirm the importance of CaRs in the parathyroid gland and kidney. The functions of CaRs in tissues other than kidney and parathyroid gland, however, remain to be elucidated.
Collapse
Affiliation(s)
- Wenhan Chang
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California, San Francisco, CA, USA.
| | | |
Collapse
|
41
|
Cheng YW, Li CH, Lee CC, Kang JJ. Alpha-naphthoflavone induces vasorelaxation through the induction of extracellular calcium influx and NO formation in endothelium. Naunyn Schmiedebergs Arch Pharmacol 2003; 368:377-85. [PMID: 14564451 DOI: 10.1007/s00210-003-0820-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Accepted: 09/05/2003] [Indexed: 01/13/2023]
Abstract
The effect of alpha-naphthoflavone (alpha-NF) on vascular function was studied in isolated ring segments of the rat thoracic aorta and in primary cultures of human umbilical vein endothelial cells (HUVECs). alpha-NF induced concentration-dependent relaxation of the phenylephrine-precontracted aorta endothelium-dependently and -independently at lower and higher concentrations, respectively. The cGMP, but not cAMP, content was increased significantly in alpha-NF-treated aorta. Pretreatment with N(omega)-nitro- l-arginine methyl ester (L-NAME) or methylene blue attenuated both alpha-NF induced vasorelaxation and the increase of cGMP content significantly. The increase of cGMP content induced by alpha-NF was also inhibited by chelating extracellular Ca(2+) with EGTA. These results suggest that the endothelium-dependent vasorelaxation induced by alpha-NF is mediated most probably through Ca(2+)-dependent activation of NO synthase and guanylyl cyclase. In HUVECs, alpha-NF induced concentration-dependent formation of NO and Ca(2+) influx. alpha-NF-induced NO formation was abolished by removal of extracellular Ca(2+) and by pretreatment with the Ca(2+) channel blockers SKF 96365 and Ni(2+), but not by the L-type Ca(2+) channel blocker verapamil. The Ca(2+) influx, as measured by (45)Ca(2+) uptake, induced by alpha-NF was also inhibited by SKF 96365 and Ni(2+). Our data imply that alpha-NF, at lower concentrations, induces endothelium-dependent vasorelaxation by promoting extracellular Ca(2+) influx in endothelium and the activation of the NO-cGMP pathway.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- School of Pharmacy, Taipei Medical University, 250 Wu Hsing Street, Taipei, Taiwan
| | | | | | | |
Collapse
|
42
|
Abstract
This short overview of the mechanical properties of smooth muscle focusses on the force-velocity relation of (mainly pig urinary bladder) smooth muscle, and its dependence on the length of the muscle and its degree of activation. Also the response of the muscle to length and force changes at a rate beyond the physiological range is discussed. The force-velocity relation of this type of muscle can be approximated by the hyperbolic Hill equation, with a normalised maximum shortening velocity in the order of 0.25 muscle lengths/s. As in striated muscle, the maximum isometric force depends on the stretched muscle length and shows a maximum at a certain length. Interestingly, smooth muscle does not normally seem to operate at this length, but far below it. Both the isometric force and the unloaded shortening velocity depend on the degree of activation of the muscle, and so does the 'curvature' of the Hill equation. The series elasticity of the muscle, which can be measured by applying length changes at a rate beyond the physiological shortening velocity, is found partly in the cross-bridges, and partly external to these. An isometric quick release of 4-10% of the muscle length is necessary to remove all tension, depending on the total force exerted by the muscle. Force recovery after such a release is biexponential in a 700 ms window. The slowest component of this recovery, with a time constant in the order of 0.45 s is mainly associated with cycling of the cross-bridges, the fastest with the external series (visco)elasticity. Isometric force development has a time constant in the order of 3 s. indicating that excitation-contraction coupling rather than cross-bridge cycling is rate limiting in this process.
Collapse
Affiliation(s)
- R van Mastrigt
- Department of Urology,Erasmus University Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Pfitzer G, Wirth A, Lucius C, Brkic-Koric D, Manser E, de Lanerolle P, Arner A. Regulation of Smooth Muscle Contraction by Calcium, Monomeric Gtpases of the Rho Subfamily and Their Effector Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:89-99; discussion 99. [PMID: 15098657 DOI: 10.1007/978-1-4419-9029-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- G Pfitzer
- Department of Vegetative Physiologie, University of Cologne, Robert-Koch Str. 39, 50931 Koeln, Germany.
| | | | | | | | | | | | | |
Collapse
|