1
|
Silva MLS. Lectin-modified drug delivery systems - Recent applications in the oncology field. Int J Pharm 2024; 665:124685. [PMID: 39260750 DOI: 10.1016/j.ijpharm.2024.124685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Chemotherapy with cytotoxic drugs remains the core treatment for cancer but, due to the difficulty to find general and usable biochemical differences between cancer cells and normal cells, many of these drugs are associated with lack of specificity, resulting in side effects and collateral cytotoxicity that impair patients' adherence to therapy. Novel cancer treatments in which the cytotoxic effect is maximized while adverse effects are reduced can be implemented by developing targeted therapies that exploit the specific features of cancer cells, such as the typical expression of aberrant glycans. Modification of drug delivery systems with lectins is one of the strategies to implement targeted chemotherapies, as lectins are able to specifically recognize and bind to cancer-associated glycans expressed at the surface of cancer cells, guiding the drug treatment towards these cells and not affecting healthy ones. In this paper, recent advances on the development of lectin-modified drug delivery systems for targeted cancer treatments are thoroughly reviewed, with a focus on their properties and performance in diverse applications, as well as their main advantages and limitations. The synthesis and analytical characterization of the cited lectin-modified drug delivery systems is also briefly described. A comparison with free-drug treatments and with antibody-modified drug delivery systems is presented, emphasizing the advantages of lectin-modified drug delivery systems. Main constraints and potential challenges of lectin-modified drug delivery systems, including key difficulties for clinical translation of these systems, and the required developments in this area, are also signalled.
Collapse
Affiliation(s)
- Maria Luísa S Silva
- Centro de Estudos Globais, Universidade Aberta, Rua da Escola Politécnica 147, 1269-001 Lisboa, Portugal.
| |
Collapse
|
2
|
Sumya FT, Aragon-Ramirez WS, Lupashin VV. Comprehensive Proteomic Characterization of the Intra-Golgi Trafficking Intermediates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620336. [PMID: 39484492 PMCID: PMC11527126 DOI: 10.1101/2024.10.25.620336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Intracellular trafficking relies on small vesicular intermediates, though their specific role in Golgi function is still debated. To clarify this, we induced acute dysfunction of the Conserved Oligomeric Golgi (COG) complex and analyzed vesicles from cis, medial, and trans-Golgi compartments. Proteomic analysis of Golgi-derived vesicles from wild-type cells revealed distinct molecular profiles, indicating a robust recycling system for Golgi proteins. Notably, these vesicles retained various vesicular coats, while COG depletion accelerated uncoating. The increased overlap in molecular profiles with COG depletion suggests that persistent defects in vesicle tethering disrupt intra-Golgi sorting. Our findings reveal that the entire Golgi glycosylation machinery recycles within vesicles in a COG-dependent manner, whereas secretory and ER-Golgi trafficking proteins were not enriched. These results support a model in which the COG complex orchestrates multi-step recycling of glycosylation machinery, coordinated by specific Golgi coats, tethers, Rabs, and SNAREs.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Walter S. Aragon-Ramirez
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| | - Vladimir V Lupashin
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, Arkansas, US
| |
Collapse
|
3
|
Ng YJ, Chan SS, Khoo KS, Munawaroh HSH, Lim HR, Chew KW, Ling TC, Saravanan A, Ma Z, Show PL. Recent advances and discoveries of microbial-based glycolipids: Prospective alternative for remediation activities. Biotechnol Adv 2023; 68:108198. [PMID: 37330152 DOI: 10.1016/j.biotechadv.2023.108198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/22/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Surfactants have always been a prominent chemical that is useful in various sectors (e.g., cleaning agent production industry, textile industry and painting industry). This is due to the special ability of surfactants to reduce surface tension between two fluid surfaces (e.g., water and oil). However, the current society has long omitted the harmful effects of petroleum-based surfactants (e.g., health issues towards humans and reducing cleaning ability of water bodies) due to their usefulness in reducing surface tension. These harmful effects will significantly damage the environment and negatively affect human health. As such, there is an urgency to secure environmentally friendly alternatives such as glycolipids to reduce the effects of these synthetic surfactants. Glycolipids is a biomolecule that shares similar properties with surfactants that are naturally synthesized in the cell of living organisms, glycolipids are amphiphilic in nature and can form micelles when glycolipid molecules clump together, reducing surface tension between two surfaces as how a surfactant molecule is able to achieve. This review paper aims to provide a comprehensive study on the recent advances in bacteria cultivation for glycolipids production and current lab scale applications of glycolipids (e.g., medical and waste bioremediation). Studies have proven that glycolipids are effective anti-microbial agents, subsequently leading to an excellent anti-biofilm forming agent. Heavy metal and hydrocarbon contaminated soil can also be bioremediated via the use of glycolipids. The major hurdle in the commercialization of glycolipid production is that the cultivation stage and downstream extraction stage of the glycolipid production process induces a very high operating cost. This review provides several solutions to overcome this issue for glycolipid production for the commercialization of glycolipids (e.g., developing new cultivating and extraction techniques, using waste as cultivation medium for microbes and identifying new strains for glycolipid production). The contribution of this review aims to serve as a future guideline for researchers that are dealing with glycolipid biosurfactants by providing an in-depth review on the recent advances of glycolipid biosurfactants. By summarizing the points discussed as above, it is recommended that glycolipids can substitute synthetic surfactants as an environmentally friendly alternative.
Collapse
Affiliation(s)
- Yan Jer Ng
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Sook Sin Chan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Heli Siti Halimatul Munawaroh
- Chemistry Program, Department of Chemistry Education, Universitas Pendidikan Indonesia, Bandung 40154, West Java, Indonesia.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Anbalagan Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai, India
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, People's Republic of China.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Le HT, Liu M, Grimes CL. Application of bioanalytical and computational methods in decoding the roles of glycans in host-pathogen interactions. Curr Opin Chem Biol 2023; 74:102301. [PMID: 37080155 PMCID: PMC10296625 DOI: 10.1016/j.cbpa.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/22/2023]
Abstract
Host-pathogen interactions (HPIs) are complex processes that require tight regulation. A common regulatory mechanism of HPIs is through glycans of either host cells or pathogens. Due to their diverse sequences, complex structures, and conformations, studies of glycans require highly sensitive and powerful tools. Recent improvements in technology have enabled the application of many bioanalytical techniques and modeling methods to investigate glycans and their mechanisms in HPIs. This mini-review highlights how these advances have been used to understand the role glycans play in HPIs in the past 2 years.
Collapse
Affiliation(s)
- Ha T Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Min Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
5
|
Bieberich E. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. ADVANCES IN NEUROBIOLOGY 2023; 29:65-93. [PMID: 36255672 DOI: 10.1007/978-3-031-12390-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Many membrane-resident and secreted proteins, including growth factors and their receptors are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolicholpyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review will discuss the biology of N-glycoprotein synthesis, processing and function with specific reference to the physiology and pathophysiology of the immune and nervous system, as well as infectious diseases such as Covid-19.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
- Veteran Affairs Medical Center, Lexington, KY, USA.
| |
Collapse
|
6
|
Oinam L, Tateno H. Glycan Profiling by Sequencing to Uncover Multicellular Communication: Launching Glycobiology in Single Cells and Microbiomes. Front Cell Dev Biol 2022; 10:919168. [PMID: 35712658 PMCID: PMC9197256 DOI: 10.3389/fcell.2022.919168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Glycans are essential building blocks of life that are located at the outermost surface of all cells from mammals to bacteria and even viruses. Cell surface glycans mediate multicellular communication in diverse biological processes and are useful as "surface markers" to identify cells. Various single-cell sequencing technologies have already emerged that enable the high-throughput analysis of omics information, such as transcriptome and genome profiling on a cell-by-cell basis, which has advanced our understanding of complex multicellular interactions. However, there has been no robust technology to analyze the glycome in single cells, mainly because glycans with branched and heterogeneous structures cannot be readily amplified by polymerase chain reactions like nucleic acids. We hypothesized that the generation of lectins conjugated with DNA barcodes (DNA-barcoded lectins) would enable the conversion of glycan information to gene information, which may be amplified and measured using DNA sequencers. This technology will enable the simultaneous analysis of glycan and RNA in single cells. Based on this concept, we developed a technology to analyze glycans and RNA in single cells, which was referred to as scGR-seq. Using scGR-seq, we acquired glycan and gene expression profiles of individual cells constituting heterogeneous cell populations, such as tissues. We further extended Glycan-seq to the profiling of the surface glycans of bacteria and even gut microbiota. Glycan-seq and scGR-seq are new technologies that enable us to elucidate the function of glycans in cell-cell and cell-microorganism communication, which extends glycobiology to the level of single cells and microbiomes.
Collapse
Affiliation(s)
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| |
Collapse
|
7
|
Role and therapeutic implications of protein glycosylation in neuroinflammation. Trends Mol Med 2022; 28:270-289. [PMID: 35120836 DOI: 10.1016/j.molmed.2022.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The importance of glycosylation (post-translational attachment of glycan residues to proteins) in the context of neuroinflammation is only now beginning to be understood. Although the glycome is challenging to investigate due to its complexity, this field is gaining interest because of the emergence of novel analytical methods. These investigations offer the possibility of further understanding the molecular signature of disorders with underlying neuroinflammatory cascades. In this review, we portray the clinically relevant trends in glyconeurobiology and suggest glyco-related paths that could be targeted therapeutically to decrease neuroinflammation. A combinatorial insight from glycobiology and neurology can be harnessed to better understand neuroinflammatory-related conditions to identify relevant molecular targets.
Collapse
|
8
|
Khosrowabadi E, Wenta T, Keskitalo S, Manninen A, Kellokumpu S. Altered glycosylation of several metastasis-associated glycoproteins with terminal GalNAc defines the highly invasive cancer cell phenotype. Oncotarget 2022; 13:73-89. [PMID: 35028012 PMCID: PMC8751650 DOI: 10.18632/oncotarget.28167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Several distinct metastasis-associated glycosylation changes have been shown to promote cancer cell invasion and metastasis, the main cause of death of cancer patients. However, it is unclear whether their presence reflects cell- or tissue-specific variations for metastasis, or species needed to drive different phases of the metastatic cascade. To address this issue from a different perspective, we investigated here whether different cancer cell lines share any glycotopes that are common and important for their invasive phenotype. By using lectin microarray glycan profiling and an established myoma tissue-based 3D invasion assay, we identified a single glycotope recognized by Helix Pomatia agglutinin (HPA), whose expression level in different cancer cells correlated significantly with their invasive potential. Lectin pull-down assay and LC-MS/MS analysis in highly- (A431 and SW-48) and poorly invasive (HepG2 and RCC4) cancer cells revealed ~85 glycoproteins of which several metastasis-promoting members of the integrin family of cell adhesion receptors, the epidermal growth factor receptor (EGFR) and the matrix metalloproteinase-14 (MMP-14) were among the abundant ones. Moreover, we showed that the level of the GalNAc glycotope in MMP-14, EGFR, αV-, β1- and β4 integrin in highly and poorly invasive cancer cells correlated positively with their invasive potential. Collectively, our findings suggest that altered glycosylation of several metastasis-associated glycoproteins with terminal GalNAc drives the highly invasive cancer cell phenotype.
Collapse
Affiliation(s)
- Elham Khosrowabadi
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Tomasz Wenta
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Aki Manninen
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Sakari Kellokumpu
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| |
Collapse
|
9
|
Pothukuchi P, Agliarulo I, Pirozzi M, Rizzo R, Russo D, Turacchio G, Nüchel J, Yang JS, Gehin C, Capolupo L, Hernandez-Corbacho MJ, Biswas A, Vanacore G, Dathan N, Nitta T, Henklein P, Thattai M, Inokuchi JI, Hsu VW, Plomann M, Obeid LM, Hannun YA, Luini A, D'Angelo G, Parashuraman S. GRASP55 regulates intra-Golgi localization of glycosylation enzymes to control glycosphingolipid biosynthesis. EMBO J 2021; 40:e107766. [PMID: 34516001 PMCID: PMC8521277 DOI: 10.15252/embj.2021107766] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis‐trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI‐based retrograde transport vesicles, thus concentrating them in the trans‐Golgi. In genome‐edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis‐Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Marinella Pirozzi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Gabriele Turacchio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Julian Nüchel
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte Gehin
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laura Capolupo
- École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Ansuman Biswas
- National Center of Biological Sciences, Bengaluru, India
| | - Giovanna Vanacore
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Nina Dathan
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Takahiro Nitta
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Petra Henklein
- Universitätsmedizin Berlin Institut für Biochemie Charité CrossOver Charitéplatz 1 / Sitz, Berlin, Germany
| | - Mukund Thattai
- National Center of Biological Sciences, Bengaluru, India
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Markus Plomann
- Medical Faculty, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Lina M Obeid
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Stony Brook University Medical Center, Stony Brook, NY, USA
| | - Alberto Luini
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy
| | - Giovanni D'Angelo
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Rome, Italy.,École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | |
Collapse
|
10
|
Blackburn JB, D'Souza Z, Lupashin VV. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett 2019; 593:2466-2487. [PMID: 31381138 PMCID: PMC6771879 DOI: 10.1002/1873-3468.13570] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
The conserved oligomeric Golgi (COG) complex, a multisubunit tethering complex of the CATCHR (complexes associated with tethering containing helical rods) family, controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle targeting within the Golgi. In humans, COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). The COG complex both physically and functionally interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, and vesicular coats. Here, we review our current knowledge of COG-related trafficking and glycosylation defects in humans and model organisms, and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting.
Collapse
Affiliation(s)
- Jessica B. Blackburn
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Present address:
Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Zinia D'Souza
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Vladimir V. Lupashin
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical SciencesLittle RockARUSA
| |
Collapse
|
11
|
The many faces (and phases) of ceramide and sphingomyelin II - binary mixtures. Biophys Rev 2017; 9:601-616. [PMID: 28823080 DOI: 10.1007/s12551-017-0298-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
A rather widespread idea on the functional importance of sphingolipids in cell membranes refers to the occurrence of ordered domains enriched in sphingomyelin and ceramide that are largely assumed to exist irrespective of the type of N-acyl chain in the sphingolipid. Ceramides and sphingomyelins are the simplest kind of two-chained sphingolipids and show a variety of species, depending on the fatty acyl chain length, hydroxylation, and unsaturation. Abundant evidences have shown that variations of the N-acyl chain length in ceramides and sphingomyelins markedly affect their phase state, interfacial elasticity, surface topography, electrostatics, and miscibility, and that even the usually conceived "condensed" sphingolipids and many of their mixtures may exhibit liquid-like expanded states. Their lateral miscibility properties are subtlety regulated by those chemical differences. Even between ceramides with different acyl chain length, their partial miscibility is responsible for a rich two-dimensional structural variety that impacts on the membrane properties at the mesoscale level. In this review, we will discuss the miscibility properties of ceramide, sphingomyelin, and glycosphingolipids that differ in their N-acyl or oligosaccharide chains. This work is a second part that accompanies a previous overview of the properties of membranes formed by pure ceramides or sphingomyelins, which is also included in this Special Issue.
Collapse
|
12
|
Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2016; 147:175-198. [DOI: 10.1007/s00418-016-1518-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
13
|
Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy. Arch Virol 2016; 161:1751-60. [PMID: 27068162 PMCID: PMC7087181 DOI: 10.1007/s00705-016-2855-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Abstract
Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection.
Collapse
|
14
|
Reis MM, Bermingham EN, Reis MG, Deb-Choudhury S, MacGibbon A, Fong B, McJarrow P, Bibiloni R, Bassett SA, Roy NC. Effect of Dietary Complex Lipids on the Biosynthesis of Piglet Brain Gangliosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1245-1255. [PMID: 26808587 DOI: 10.1021/acs.jafc.5b05211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gangliosides, found in mammalian milk, are known for their roles in brain development of the newborn. However, the mechanism involved in the impact of dietary gangliosides on brain metabolism is not fully understood. The impact of diets containing complex lipids rich in milk-derived ganglioside GD3 on the biosynthesis of gangliosides (assessed from the incorporation of deuterium) in the frontal lobe of a piglet model is reported. Higher levels of incorporation of deuterium was observed in the GM1 and GD1a containing stearic acid in samples from piglets fed milk containing 18.2 μg/mL of GD3 compared to that in those fed milk containing 25 μg/mL of GD3. This could suggest that the gangliosides from the diet may be used as a precursor for de novo biosynthesis of brain gangliosides or lead to the reduction of de novo biosynthesis of these gangliosides. This effect was more pronounced in the left compared to that in the right brain hemisphere.
Collapse
Affiliation(s)
- Marlon M Reis
- Food Assurance & Meat Quality Team, Food & Bio-Based Products Group, AgResearch Ruakura , Hamilton 3240, New Zealand
| | - Emma N Bermingham
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| | - Mariza G Reis
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch Ruakura , Hamilton 3240, New Zealand
| | | | - Alastair MacGibbon
- Fonterra Research and Development Centre , Palmerston North 4442, New Zealand
| | - Bertram Fong
- Fonterra Research and Development Centre , Palmerston North 4442, New Zealand
| | - Paul McJarrow
- Fonterra Research and Development Centre , Palmerston North 4442, New Zealand
| | - Rodrigo Bibiloni
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| | - Shalome A Bassett
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands , Palmerston North 4442, New Zealand
| |
Collapse
|
15
|
Anugraham M, Everest-Dass AV, Jacob F, Packer NH. A platform for the structural characterization of glycans enzymatically released from glycosphingolipids extracted from tissue and cells. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015. [PMID: 26212272 DOI: 10.1002/rcm.7130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
RATIONALE Glycosphingolipids (GSLs) constitute a highly diverse class of glyco-conjugates which are involved in many aspects of cell membrane function and disease. The isolation, detection and structural characterization of the carbohydrate (glycan) component of GSLs are particularly challenging given their structural heterogeneity and thus rely on the development of sensitive, analytical technologies. METHODS Neutral and acidic GSL standards were immobilized onto polyvinylidene difluoride (PVDF) membranes and glycans were enzymatically released using endoglycoceramidase II (EGCase II), separated by porous graphitized carbon (PGC) liquid chromatography and structurally characterized by negative ion mode electrospray ionization tandem mass spectrometry (PGC-LC/ESI-MS/MS). This approach was then employed for GSLs isolated from 100 mg of serous and endometrioid cancer tissue and from cell line (10(7) cells) samples. RESULTS Glycans were released from GSL standards comprising of ganglio-, asialo-ganglio- and the relatively resistant globo-series glycans, using as little as 1 mU of enzyme and 2 µg of GSL. The platform of analysis was then applied to GSLs isolated from tissue and cell line samples and the released isomeric and isobaric glycan structures were chromatographically resolved on PGC and characterized by comparison with the MS(2) fragment ion spectra of the glycan standards and by application of known structural MS(2) fragment ions. This approach identified several (neo-)lacto-, globo- and ganglio-series glycans and facilitated the discrimination of isomeric structures containing Lewis A, H type 1 and type 2 blood group antigens and sialyl-tetraosylceramides. CONCLUSION We describe a relatively simple, detergent-free, enzymatic release of glycans from PVDF-immobilized GSLs, followed by the detailed structural analysis afforded by PGC-LC-ESI-MS/MS, to offer a versatile method for the analysis of tumour and cell-derived GSL-glycans. The method uses the potential of MS(2) fragmentation in negative ion ESI mode to characterize, in detail, the biologically relevant glycan structures derived from GSLs.
Collapse
Affiliation(s)
- Merrina Anugraham
- Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Faculty of Science, Macquarie University, Sydney, 2109, Australia
| | - Arun Vijay Everest-Dass
- Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Faculty of Science, Macquarie University, Sydney, 2109, Australia
| | - Francis Jacob
- Gynecological Research Group, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Faculty of Science, Macquarie University, Sydney, 2109, Australia
| |
Collapse
|
16
|
Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep 2015; 5:8926. [PMID: 25748215 PMCID: PMC4352867 DOI: 10.1038/srep08926] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
Abstract
N-linked glycosylation is one of the most important, chemically complex, and ubiquitous post-translational modifications in all eukaryotes. The N-glycans that are covalently linked to proteins are involved in numerous biological processes. There is considerable interest in developments of general approaches to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in protein design with advantageous properties. In this study, the impacts of N-glycans on protein structure and dynamics are systematically investigated using an integrated computational approach of the Protein Data Bank structure analysis and atomistic molecular dynamics simulations of glycosylated and deglycosylated proteins. Our study reveals that N-glycosylation does not induce significant changes in protein structure, but decreases protein dynamics, likely leading to an increase in protein stability. Overall, these results suggest not only a common role of glycosylation in proteins, but also a need for certain proteins to be properly glycosylated to gain their intrinsic dynamic properties.
Collapse
|
17
|
Number of sialic acid residues in ganglioside headgroup affects interactions with neighboring lipids. Biophys J 2014; 105:1421-31. [PMID: 24047994 DOI: 10.1016/j.bpj.2013.07.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/01/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022] Open
Abstract
Monolayers of binary mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and asialo-(GA1), disialo-(GD1b) and trisialo-(GT1b) gangliosides were used to determine the effect of ganglioside headgroup charge and geometry on its interactions with the neighboring zwitterionic lipid. Surface pressure versus molecular area isotherm measurements along with concurrent fluorescence microscopy of the monolayers at the air-water interface were complemented with atomic force microscopy imaging of monolayers deposited on solid substrates. Results were used to further develop a proposed geometric packing model that the complementary geometry of DPPC and monosialoganglioside GM1 headgroups affects their close molecular packing, inducing condensation of the layer at small mol % of ganglioside. For GA1, GD1b, and GT1b, a similar condensing effect, followed by a fluidizing effect is seen that varies with glycosphingolipid concentration, but results do not directly follow from geometric arguments because less DPPC is needed to condense ganglioside molecules with larger cross-sectional areas. The variations in critical packing mole ratios can be explained by global effects of headgroup charge and resultant dipole moments within the monolayer. Atomic force microscopy micrographs further support the model of ganglioside-induced DPPC condensation with condensed domains composed of a striped phase of condensed DPPC and DPPC/ganglioside geometrically packed complexes at low concentrations.
Collapse
|
18
|
Abstract
Glycans participate in many key cellular processes during development and in physiology and disease. In this review, the functional role of various glycans in the regeneration of neurons and body parts in adult metazoans is discussed. Understanding glycosylation may facilitate research in the field of stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Ponnusamy Babu
- Glycomics and Glycoproteomics,
Centre for Cellular and Molecular Platforms, NCBS-TIFR, GKVK Post, Bangalore 560065, India
| |
Collapse
|
19
|
Bieberich E. Synthesis, Processing, and Function of N-glycans in N-glycoproteins. ADVANCES IN NEUROBIOLOGY 2014; 9:47-70. [PMID: 25151374 DOI: 10.1007/978-1-4939-1154-7_3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many membrane-resident and secrected proteins, including growth factors and their receptors, are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolichol pyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose, or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review discusses the biology of N-glycoprotein synthesis, processing, and function with specific reference to the physiology and pathophysiology of the nervous system.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, 1120 15th Street Room CA4012, Augusta, GA, 30912, USA,
| |
Collapse
|
20
|
Reynders E, Foulquier F, Annaert W, Matthijs G. How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology 2010; 21:853-63. [PMID: 21112967 DOI: 10.1093/glycob/cwq179] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Protein glycosylation is one of the major biosynthetic functions occurring in the endoplasmic reticulum and Golgi compartments. It requires an amazing number of enzymes, chaperones, lectins and transporters whose actions delicately secure the fidelity of glycan structures. Over the past 30 years, glycobiologists hammered that glycan structures are not mere decorative elements but serve crucial cellular functions. This becomes dramatically illustrated by a group of mostly severe, inherited human disorders named congenital disorders of glycosylation (CDG). To date, many types of CDG have been defined genetically and most of the time the defects impair the biosynthesis, transfer and remodeling of N-glycans. Recently, the identification of the several types of CDG caused by deficiencies in the conserved oligomeric Golgi (COG) complex, a complex involved in vesicular Golgi trafficking, expanded the field of CDG but also brought novel insights in glycosylation. The molecular mechanisms underlying the complex pathway of N-glycosylation in the Golgi are far from understood. The availability of COG-deficient CDG patients and patients' cells offered a new way to study how COG, and its different subunits, could influence the Golgi N-glycosylation machinery and localization. This review summarizes the recent findings on the implication of COG in Golgi glycosylation. It highlights the need for a dynamic, finely tuned balance between anterograde and retrograde trafficking for the correct localization of Golgi enzymes to assure the stepwise maturation of N-glycan chains.
Collapse
Affiliation(s)
- Ellen Reynders
- Laboratory for Membrane Trafficking, Center for Human Genetics, KULeuven, Department for Molecular and Developmental Genetics (VIB), Leuven, Belgium
| | | | | | | |
Collapse
|
21
|
Kittl R, Withers SG. New approaches to enzymatic glycoside synthesis through directed evolution. Carbohydr Res 2010; 345:1272-9. [PMID: 20427037 DOI: 10.1016/j.carres.2010.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/02/2010] [Accepted: 04/03/2010] [Indexed: 11/26/2022]
Abstract
The expanding field of glycobiology requires tools for the synthesis of structurally defined oligosaccharides and glycoconjugates, while any potential therapeutic applications of sugar-based derivates would require access to substantial quantities of such compounds. Classical chemical approaches are not well suited for such large-scale syntheses, thus enzymatic approaches are sought. Traditional routes to the enzymatic assembly of oligosaccharides have involved the use of either Nature's own biosynthetic enzymes, the glycosyl transferases, or glycosidases run in transglycosylation mode. However, each approach has drawbacks that have limited its application. Glycosynthases are mutant glycosidases in which the catalytic nucleophile has been replaced by mutation, inactivating them as hydrolases. When used in conjunction with glycosyl fluorides of the opposite anomeric configuration to that of the substrate, these enzymes function as highly efficient transferases, frequently giving stoichiometric yields of products. Further improvements can be obtained through directed evolution of the gene encoding the enzyme in question, but this requires the ability to screen very large libraries of catalysts. In this review we survey new screening methods for the formation of glycosidic linkages using high-throughput techniques, such as FACS, chemical complementation, and robot-assisted ELISA assays. Enzymes were evolved to have higher catalytic activity with their natural substrates, to show altered substrate specificities or to be promiscuous for efficient application in oligosaccharide, glycolipid, and glycoprotein synthesis.
Collapse
Affiliation(s)
- Roman Kittl
- Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
22
|
Zava S, Milani S, Sottocornola E, Berra B, Colombo I. Two active and differently N
-glycosylated isoforms of human ST3Gal-V are produced from the placental mRNA variant by a leaky scanning mechanism. FEBS Lett 2010; 584:1476-80. [DOI: 10.1016/j.febslet.2010.02.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 11/24/2022]
|
23
|
Kamei N, Fukui R, Suzuki Y, Kajihara Y, Kinoshita M, Kakehi K, Hojo H, Tezuka K, Tsuji T. Definitive evidence that a single N-glycan among three glycans on inducible costimulator is required for proper protein trafficking and ligand binding. Biochem Biophys Res Commun 2009; 391:557-63. [PMID: 19931508 DOI: 10.1016/j.bbrc.2009.11.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 11/16/2009] [Indexed: 11/26/2022]
Abstract
Glycosylation is a widespread post-translational modification found in glycoproteins. Glycans play key roles in protein folding, quality control in the endoplasmic reticulum (ER) and protein trafficking within cells. However, it remains unclear whether all positions of protein glycosylation are involved in glycan functions, or if specific positions have individual roles. Here we demonstrate the integral involvement of a specific N-glycan from amongst the three glycans present on inducible costimulator (ICOS), a T-cell costimulatory molecule, in proper protein folding and intracellular trafficking to the cell surface membrane. We found that glycosylation-defective mutant proteins lacking N-glycan at amino-acid position 89 (N89), but not proteins lacking either N23 or N110, were retained within the cell and were not detected on the cell surface membrane. Additional evidence suggested that N89 glycosylation was indirectly involved in ICOS ligand binding. These data suggest that amongst the three putative ICOS glycosylation sites, N89 is required for proper ICOS protein folding in the ER, intracellular trafficking and ligand binding activity. This study represents a substantial contribution to the current mechanistic understanding of the necessity and potential functions of a specific N-glycan among the multiple glycans of glycoproteins.
Collapse
Affiliation(s)
- Naoki Kamei
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Naumowicz M, Figaszewski ZA. Impedance spectroscopic investigation of the bilayer lipid membranes formed from the phosphatidylserine-ceramide mixture. J Membr Biol 2009; 227:67-75. [PMID: 19122973 DOI: 10.1007/s00232-008-9144-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/22/2008] [Indexed: 10/21/2022]
Abstract
Electrochemical impedance spectroscopy was used for the study of two-component lipid membranes. Phosphatidylserine and ceramide were to be investigated because they play an important biochemical role in cell membranes. The research on biolipid interaction was focused on a quantitative description of processes that take part in a bilayer. Assumed models of interaction between amphiphilic molecules and the equilibria that take place there were described by mathematical equations for the studied system. The possibility of complex formation for a two-component system forming bilayers was assumed, which could explain the deviation from the additivity rule. The molecular area and the equilibrium constant of the complex were determined.
Collapse
Affiliation(s)
- Monika Naumowicz
- Institute of Chemistry, University of Bialystok, Al. J. Pilsudskiego 11/4, 15-443, Bialystok, Poland
| | | |
Collapse
|
25
|
Shaikh FA, Withers SG. Teaching old enzymes new tricks: engineering and evolution of glycosidases and glycosyl transferases for improved glycoside synthesis. Biochem Cell Biol 2008; 86:169-77. [PMID: 18443630 DOI: 10.1139/o07-149] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The therapeutic potential of glycosides has made them an attractive target for drug development. The biological extraction and chemical synthesis of these molecules is often challenging and low yielding, thus alternative methods for the synthesis of polysaccharides are being pursued. A new class of enzymes, glycosynthases, which are nucleophile mutants of glycosidases, can perform the transglycosylation reaction without hydrolyzing the product, and thus provide a valuable resource for polysaccharide and glycan synthesis. Directed evolution of glycosynthases has expanded the repertoire of glycosidic linkages formed and the donors and acceptors (both sugar and nonsugar) that can be used by the glycosynthase. The application of new screening methods, such as FACS, to the directed evolution of glycosynthases will aid in the development of enzymes that are able to efficiently synthesize new, and therapeutically relevant glycosidic linkages.
Collapse
Affiliation(s)
- Fathima Aidha Shaikh
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| | | |
Collapse
|
26
|
Abstract
Gangliosides are a family of glycolipids characterized by containing a variable number of sialic acid residues. Nearly, all animal cells contain at least some class of ganglioside in their membranes, but membranes from the CNS are characterized by their high content of these lipids. The synthesis of the oligosaccharide moiety of glycolipids is carried out in the Golgi complex. In this study, I will discuss the cellular and molecular basis of the organization of the glycosylating machinery in the Golgi complex, with particular attention to the mutual relationships, sub-Golgi localization, and intracellular trafficking of glycolipid glycosyltransferases, and to their relationships with the corresponding glycolipid acceptors and sugar nucleotide donors. I will also discuss how the organization of the glycosylating machinery in the Golgi may adapt to events controlling glycolipid expression.
Collapse
Affiliation(s)
- Hugo J F Maccioni
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| |
Collapse
|
27
|
Maggio B, Borioli GA, Del Boca M, De Tullio L, Fanani ML, Oliveira RG, Rosetti CM, Wilke N. Composition-driven surface domain structuring mediated by sphingolipids and membrane-active proteins. Above the nano- but under the micro-scale: mesoscopic biochemical/structural cross-talk in biomembranes. Cell Biochem Biophys 2007; 50:79-109. [PMID: 17968678 DOI: 10.1007/s12013-007-9004-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
Abstract
Biomembranes contain a wide variety of lipids and proteins within an essentially two-dimensional structure. The coexistence of such a large number of molecular species causes local tensions that frequently relax into a phase or compositional immiscibility along the lateral and transverse planes of the interface. As a consequence, a substantial microheterogeneity of the surface topography develops and that depends not only on the lipid-protein composition, but also on the lateral and transverse tensions generated as a consequence of molecular interactions. The presence of proteins, and immiscibility among lipids, constitute major perturbing factors for the membrane sculpturing both in terms of its surface topography and dynamics. In this work, we will summarize some recent evidences for the involvement of membrane-associated, both extrinsic and amphitropic, proteins as well as membrane-active phosphohydrolytic enzymes and sphingolipids in driving lateral segregation of phase domains thus determining long-range surface topography.
Collapse
Affiliation(s)
- Bruno Maggio
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba - CONICET, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
de Aguirres AB, Mello PA, Andrade CMB, Breier AC, Margis R, Guaragna RM, Borojevic R, Guma FCR, Trindade VMT. Variations of ganglioside biosynthetic pathways in the phenotype conversion from myofibroblasts to lipocytes in murine hepatic stellate cell line. Mol Cell Biochem 2007; 303:121-30. [PMID: 17440688 DOI: 10.1007/s11010-007-9464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 03/21/2007] [Indexed: 01/30/2023]
Abstract
GRX cell line represents hepatic stellate cell and can be transformed from an actively proliferation myofibroblast phenotype into a quiescent fat-storing lipocyte phenotype. Both express the same gangliosides (GM3, GM2, GM1 and GD1a), which are resolved as doublets on HPTLC. Upper/lower band ratio is increased in lipocyte-like cells and the upper band is composed by ceramides with long-chain fatty acids. This study evaluated the contribution of de novo synthesis, sphingosine and Golgi recycling pathways on ganglioside biosynthesis, in both phenotypes. Cells were preincubated with 5 mM beta-chloroalanine (SPT: serine palmitoyltransferase inhibitor) or with 25 muM fumonisin B1 (ceramide synthase inhibitor) and then radiolabeled with [U-(14)C]galactose in the continued presence of inhibitors. Gangliosides were extracted, purified and analyzed by HPTLC. In myofibroblast-like cells, simple gangliosides use the de novo pathway while complex gangliosides are mainly synthesized by recycling pathways. In lipocyte-like cells, de novo pathway has a lesser contribution and this is in agreement with the lower activity of the committed enzyme of sphingolipid synthesis (SPT) detected in this phenotype. SPT mRNA has an identical expression in both phenotypes. It was also observed that gangliosides doublets from myofibroblast-like cells have the same distribution between triton soluble and insoluble fractions (upper band > lower band) while the gangliosides doublets from lipocyte-like cells show an inversion in the insoluble fraction (lower band > upper band) in comparison to soluble fraction. These results indicate that myofibroblast- and lipocyte-like cells have important differences between the glycosphingolipid biosynthetic pathways, which could contribute with the respective glycosphingolipid-enriched membrane microdomain's composition.
Collapse
Affiliation(s)
- Aline B de Aguirres
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 - anexo, CEP 90.035-003, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Larsson EA, Olsson U, Whitmore CD, Martins R, Tettamanti G, Schnaar RL, Dovichi NJ, Palcic MM, Hindsgaul O. Synthesis of reference standards to enable single cell metabolomic studies of tetramethylrhodamine-labeled ganglioside GM1. Carbohydr Res 2007; 342:482-9. [PMID: 17069778 PMCID: PMC1933503 DOI: 10.1016/j.carres.2006.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/02/2006] [Accepted: 10/02/2006] [Indexed: 12/22/2022]
Abstract
Ganglioside GM1 and its seven potential catabolic products: asialo-GM1, GM2, asialo-GM2, GM3, Lac-Cer, Glc-Cer and Cer, were labeled with tetramethylrhodamine (TMR) to permit ultra-sensitive analysis using laser-induced fluorescence (LIF) detection. The preparation involved acylation of the homogenous C(18)lyso-forms of GM1, Lac-Cer, Glc-Cer and Cer with the N-hydroxysuccinimide ester of a beta-alanine-tethered 6-TMR derivative, followed by conversion of these labeled products using galactosidase, sialidase, and sialyltransferase enzymes. The TMR-glycolipid analogs produced are detectable on TLC down to the 1 ng level by the naked eye. All eight compounds could be separated within 4 min in capillary electrophoresis where they could be detected at the zeptomole (ca. 1000 molecule) level using LIF.
Collapse
|
30
|
Kolter T, Sandhoff K. Sphingolipid metabolism diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2057-79. [PMID: 16854371 DOI: 10.1016/j.bbamem.2006.05.027] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/26/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated "cross correction", gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT.
Collapse
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | | |
Collapse
|
31
|
Maggio B, Fanani ML, Rosetti CM, Wilke N. Biophysics of sphingolipids II. Glycosphingolipids: An assortment of multiple structural information transducers at the membrane surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1922-44. [PMID: 16780791 DOI: 10.1016/j.bbamem.2006.04.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 04/11/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Glycosphingolipids are ubiquitous components of animal cell membranes. They are constituted by the basic structure of ceramide with its hydroxyl group linked to single carbohydrates or oligosaccharide chains of different complexity. The combination of the properties of their hydrocarbon moiety with those derived from the variety and complexity of their hydrophilic polar head groups confers to these lipids an extraordinary capacity for molecular-to-supramolecular transduction across the lateral/transverse planes in biomembranes and beyond. In our opinion, most of the advances made over the last decade on the biophysical behavior of glycosphingolipids can be organized into three related aspects of increasing structural complexity: (1) intrinsic codes: local molecular interactions of glycosphingolipids translated into structural self-organization. (2) Surface topography: projection of molecular shape and miscibility of glycosphingolipids into formation of coexisting membrane domains. (3) Beyond the membrane interface: glycosphingolipid as modulators of structural topology, bilayer recombination and surface biocatalysis.
Collapse
Affiliation(s)
- Bruno Maggio
- Departamento de Química Biológica - CIQUIBIC, Universidad Nacional de Córdoba - CONICET, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | | | | | | |
Collapse
|
32
|
Abstract
Glycosylation produces an abundant, diverse, and highly regulated repertoire of cellular glycans that are frequently attached to proteins and lipids. The past decade of research on glycan function has revealed that the enzymes responsible for glycosylation-the glycosyltransferases and glycosidases-are essential in the development and physiology of living organisms. Glycans participate in many key biological processes including cell adhesion, molecular trafficking and clearance, receptor activation, signal transduction, and endocytosis. This review discusses the increasingly sophisticated molecular mechanisms being discovered by which mammalian glycosylation governs physiology and contributes to disease.
Collapse
Affiliation(s)
- Kazuaki Ohtsubo
- Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, 9500 Gilman Drive-MC0625, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
33
|
Zhao W, Chen TLL, Vertel BM, Colley KJ. The CMP-sialic acid transporter is localized in the medial-trans Golgi and possesses two specific endoplasmic reticulum export motifs in its carboxyl-terminal cytoplasmic tail. J Biol Chem 2006; 281:31106-18. [PMID: 16923816 DOI: 10.1074/jbc.m605564200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The addition of sialic acid to glycoproteins and glycolipids requires Golgi sialyltransferases to have access to their glycoconjugate substrates and nucleotide sugar donor, CMP-sialic acid. CMP-sialic acid is transported into the lumen of the Golgi complex through the CMP-sialic acid transporter, an antiporter that also functions to transport CMP into the cytosol. We localized the transporter using immunofluorescence and deconvolution microscopy to test the prediction that it is broadly distributed across the Golgi stack to serve the many sialyltransferases involved in glycoconjugate sialylation. The transporter co-localized with ST6GalI in the medial and trans Golgi, showed partial overlap with a medial Golgi marker and little overlap with early Golgi or trans Golgi network markers. Endoplasmic reticulum-retained forms of sialyltransferases did not redistribute the transporter from the Golgi to the endoplasmic reticulum, suggesting that transporter-sialyltransferase complexes are not involved in transporter localization. Next we evaluated the role of the transporter's N- and C-terminal cytoplasmic tails in its trafficking and localization. The N-tail was not required for either endoplasmic reticulum export or Golgi localization. The C-tail was required for endoplasmic reticulum export and contained di-Ile and terminal Val motifs at its very C terminus that function as independent endoplasmic reticulum export signals. Deletion of the last four amino acids of the C-tail (IIGV) eliminated these export signals and prevented endoplasmic reticulum export of the transporter. This form of the transporter supplied limited amounts of CMP-sialic acid to Golgi sialyltransferases but was unable to completely rescue the transporter defect of Lec2 Chinese hamster ovary cells.
Collapse
Affiliation(s)
- Weihan Zhao
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
34
|
Daniotti JL, Crespo PM, Yamashita T. In vivo modulation of epidermal growth factor receptor phosphorylation in mice expressing different gangliosides. J Cell Biochem 2006; 99:1442-51. [PMID: 16817235 DOI: 10.1002/jcb.21034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We studied in this work the in vivo phosphorylation of the epidermal growth factor receptor (EGFr) in skin from knockout mice lacking different ganglioside glycosyltransferases. Results show an enhancement of EGFr phosphorylation, after EGF stimulation, in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice as compared with wild-type and Sial-T1 knockout mice. Qualitative analysis of ganglioside composition in mice skin suggest that the increase of EGFr phosphorylation observed in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice in response to EGF might not be primary attributed to the expression of GD3 or a-series gangliosides in mice skin. These studies provide, for the first time, an approach for studying the molecular mechanisms involved in the in vivo regulation of EGFr function by gangliosides.
Collapse
Affiliation(s)
- Jose L Daniotti
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | | | | |
Collapse
|
35
|
Abstract
Ganglioside biosynthesis is strictly regulated by the activities of glycosyltransferases and is necessarily controlled at the levels of gene transcription and posttranslational modification. Cells can switch between expressing simple and complex gangliosides or between different series within these two groups during brain development. The sequential biosynthesis of gangliosides in parallel enzymatic pathways, however, requires fine-tuned subcellular sequestration and orchestration of glycosyltransferases. A popular model predicts that this regulation is achieved by the vectorial organization of ganglioside biosynthesis: sequential biosynthetic steps occur with the traffic of ganglioside intermediates through subsequent subcellular compartments. Here, we review current models for the subcellular distribution of glycosyltransferases and discuss results that suggest a critical role of N-glycosylation for the processing, transport, and complex formation of these enzymes. In this context, we attempt to illustrate the regulation of ganglioside biosynthesis as well as the biological significance of N-glycosylation as a posttranslational regulatory mechanism. We also review the results of analyses of the 5' regulatory sequences of several glycosyltransferases in ganglioside biosynthesis and provide insights into how their synthesis can be regulated at the level of transcription.
Collapse
Affiliation(s)
- Robert K Yu
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
36
|
McGlynn R, Dobrenis K, Walkley SU. Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol 2005; 480:415-26. [PMID: 15558784 DOI: 10.1002/cne.20355] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mucopolysaccharidoses (MPSs) are a complex family of lysosomal storage disorders characterized by failure to degrade heparan sulfate (HS) and/or other types of glycosaminoglycans (GAGs) secondary to the absence of specific lysosomal enzymes. An accompanying storage of glycosphingolipids (GSLs), most notably GM2 and GM3 gangliosides, has also been documented to occur in many types of MPS disease and is believed to be caused by secondary inhibition of GSL-degradative enzymes by intracellular GAG accumulation. We have documented the presence of secondary ganglioside accumulation in mouse models of several MPS disorders (types I, IIIA, IIIB, and VII) and report that this storage is accompanied by sequestration of free cholesterol in a manner similar to that observed in primary gangliosidoses. Using confocal microscopy, we evaluated the cellular distribution of cholesterol, GM2 and GM3 gangliosides, and HS in brains of mice with MPS IIIA disease. Unexpectedly, we found that although both gangliosides often accumulated in the same neurons, they were consistently located in separate populations of cytoplasmic vesicles. Additionally, GM3 ganglioside only partially co-localized with the primary storage material (HS), and cholesterol likewise only partially co-localized with the GM2 and GM3 gangliosides. These findings raise significant questions about the mechanism(s) responsible for secondary accumulation of storage materials in MPS disease. Furthermore, given that GSLs and cholesterol are constituents of membrane rafts believed critical in signal transduction events in neurons, their co-sequestration in individual neurons suggests the presence of defects in the composition, trafficking, and/or recycling of raft components and thus possible new mechanisms to explain neuronal dysfunction in MPS disorders.
Collapse
Affiliation(s)
- Robert McGlynn
- Sidney Weisner Laboratory of Genetic Neurological Disease, Department of Neuroscience, Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
37
|
Abstract
In this review focus is given to the metabolic turnover of gangliosides/glycosphingolipids. The metabolism and accompanying intracellular trafficking of gangliosides/glycosphingolipids is illustrated with particular attention to the following events: (a) the de novo biosynthesis in the endoplasmic reticulum and Golgi apparatus, followed by vesicular sorting to the plasma membrane; (b) the enzyme-assisted chemical modifications occurring at the plasma membrane level; (c) the internalization via endocytosis and recycling to the plasma membrane; (d) the direct glycosylations taking place after sorting from endosomes to the Golgi apparatus; (e) the degradation at the late endosomal/lysosomal level with formation of fragments of sugar (glucose, galactose, hexosamine, sialic acid) and lipid (ceramide, sphingosine, fatty acid) nature; (f) the metabolic recycling of these fragments for biosynthetic purposes (salvage pathways); and (g) further degradation of fragments to waste products. Noteworthy, the correct course of ganglioside/glycosphingolipid metabolism requires the presence of the vimentin intracellular filament net work, likely to assist intracellular transport of sphingoid molecules. ut of the above events those that can be quantitatively evaluated with acceptable reliability are the processes of de novo biosynthesis, metabolic salvage and direct glycosylation. Depending on the cultured cells employed, the percentage of distribution of de novo biosynthesis, salvage pathways, and direct glycosylation, over total metabolism were reported to be: 35% (range: 10-90%) for de novo biosynthesis, 7% (range: 5-10%) for direct glycosylation, and 58% (range: 10-90%) for salvage pathways. The attempts made to calculate the half-life of overall ganglioside turnover provided data of unsure reliability, especially because in many studies salvage pathways were not taken into consideration. The values of half-life range from 2 to 6.5 h to 3 days depending on the cells used. Available evidence for changes of ganglioside/glycosphingolipid turnover, due to extracellular stimuli, is also considered and discussed.
Collapse
Affiliation(s)
- G Tettamanti
- Department of Medical Chemistry, Biochemistry and Biotechnology, and Study Center for the Functional Biochemistry and Biotechnology of Glycolipids, The Medical School, University of Milan, Italy.
| |
Collapse
|
38
|
Raimondi LP, Daniotti JL, Maccioni HJF. ETS-1 transcription factor activates the expression of mouse UDP-Gal:GA2/GM2/GD2/GT2 galactosyltransferase gene. FEBS Lett 2004; 576:487-91. [PMID: 15498585 DOI: 10.1016/j.febslet.2004.09.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 09/02/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
UDP-Gal:GA2/GM2/GD2/GT2 galactosyltransferase (Gal-T2) transfers galactose to the terminal N-acetylgalactosamine of either the neutral glycolipid GA2 or of the gangliosides GM2, GD2 and GT2. Previous studies revealed a tight regulation of Gal-T2 activity and mRNA expression during development of the rat CNS. Here, we study in PC12 cells the cis-acting elements involved in the activation of a fragment of 211 bp around the transcription initiation site of the mouse Gal-T2 promoter. Mutagenesis, competition experiments and functional assays showed that the Ets-1 transcription factor is involved in the activation of the Gal-T2 promoter.
Collapse
Affiliation(s)
- Lina P Raimondi
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC (UNC-CONICET), Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
39
|
Maggio B. Favorable and unfavorable lateral interactions of ceramide, neutral glycosphingolipids and gangliosides in mixed monolayers. Chem Phys Lipids 2004; 132:209-24. [PMID: 15555606 DOI: 10.1016/j.chemphyslip.2004.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/15/2004] [Accepted: 07/15/2004] [Indexed: 10/26/2022]
Abstract
Interactions among four natural neutral sphingolipids (ceramide, glucosyl-ceramide, lactosyl-ceramide and asialo-GM1) and six gangliosides (GM3, GM2, GM1, GD3, GD1a and GT1b) were studied in binary Langmuir monolayers at the air-buffer interface in terms of their molecular packing, compressibility, dipole potential and mixing behavior. The changes of surface organization can be grouped into three sets: (a) binary films of neutral GSLs, and of the latter with ceramide, exhibit thermodynamically unfavorable mixing with mean molecular area expansions and dipole moment hyperpolarization; (b) mixed monolayers of ceramide, or of GlcCer, and gangliosides occur with thermodynamically favorable interactions leading to mean molecular area condensation and depolarisation; (c) binary mixtures of LacCer or Gg4Cer with gangliosides, and all ganglioside species among them, revealed molecular immiscibility characterized by additive mean molecular area and dipole potential, with composition-independent constant collapse pressure. These results disclose basic tendencies of GSLs to molecularly mix or demix, leading to their surface segregation, which may underlay vectorial separation of their specific biosynthetic pathways.
Collapse
Affiliation(s)
- Bruno Maggio
- Departamento de Química Biológica-CIQUIBIC, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
40
|
Affiliation(s)
- W W Young
- Department of Molecular, Cellular, and Craniofacial Biology, School of Dentistry, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
41
|
Giraudo CG, Maccioni HJF. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem 2003; 278:40262-71. [PMID: 12900410 DOI: 10.1074/jbc.m305455200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The synthesis of gangliosides is compartmentalized in the Golgi complex. In most cells, glycosylation of LacCer, GM3, and GD3 to form higher order species (GA2, GM2, GD2, GM1, GD1b) is displaced toward the most distal aspects of the Golgi and the trans-Golgi network, where the involved transferases (GalNAcT and GalT2) form physical and functional associations. Glycosylation of the simple species LacCer, GM3, and GD3, on the other hand, is displaced toward more proximal Golgi compartments, and we investigate here whether the involved transferases (GalT1, SialT1, and SialT2) share the property of forming physical associations. Co-immunoprecipitation experiments from membranes of CHO-K1 cells expressing epitope-tagged versions of these enzymes indicate that GalT1, SialT1, and SialT2 associate physically in a SialT1-dependent manner and that their N-terminal domains participate in these interactions. Microscopic fluorescence resonance energy transfer and fluorescence recovery after photobleaching in living cells confirmed the interactions, and in addition to showing a Golgi apparatus localization of the complexes, mapped their formation to the endoplasmic reticulum. Neither co-immunoprecipitation nor fluorescence resonance energy transfer detected interactions between either GalT2 or GalNAcT and GalT1 or SialT1 or SialT2. These results, and triple color imaging of Golgi-derived microvesicles in nocodazole-treated cells, suggest that ganglioside synthesis is organized in distinct units each formed by associations of particular glycosyltransferases, which concentrate in different sub-Golgi compartments.
Collapse
Affiliation(s)
- Claudio G Giraudo
- CIQUIBIC, Universidad Nacional de Cordoba-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Argentina
| | | |
Collapse
|