1
|
Zhang Q, Lu L, Wang J, Lu M, Liu D, Zhou C, Liu Z. Metabolomic profiling reveals the step-wise alteration of bile acid metabolism in patients with diabetic kidney disease. Nutr Diabetes 2024; 14:85. [PMID: 39384774 PMCID: PMC11464666 DOI: 10.1038/s41387-024-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the major complication of diabetes concomitant with gut dysbiosis and glycometabolic disorder, which are strongly associated with bile acid (BA) metabolism. Yet studies investigating the BA metabolism involving in DKD pathogenesis are limited. This study aimed to explore the metabolomic profiling of BAs in DKD and analyze its association with DKD progression. METHODS An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established to quantify BAs in the plasma, fecal and urine samples of patients with DKD or T2DM and healthy individuals (n = 30 for each group). The key BAs associated with DKD were identified by orthogonal partial least-squares discriminant analysis (OPLS-DA) and receiver-operating characteristic (ROC) curve. Polynomial regression and Pearson's correlation analyses were performed to assess the correlation between the key BAs and the clinical indicators reflecting DKD progression. RESULTS Metabolomic profiling of 50 kinds of BAs presented the markedly step-wise alterations of BAs in plasma and feces as well as the little in urine of patients with DKD. Eight kinds of BAs in the plasma, eight kinds in the feces and three kinds in the urine were abnormally expressed, accompanying with the increased conjugated/unconjugated ratios of cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid and hyocholic acid in the plasma, and of cholic acid, chenodeoxycholic acid and lithocholic acid in the feces. Moreover, the increased plasma level of glycochenodeoxycholic acid, and the increased fecal levels of glycolithocholic acid, 7-ketodeoxycholic acid and chenodeoxycholic acid-3-β-D-glucuronide are strongly correlated with the clinical indicators reflecting DKD progression, including eGFR, 24 h urinary protein and 24 h urinary microalbumin. CONCLUSIONS Our study for the first time disclosed the specific alterations of BA metabolism reflecting the step-wise progression of DKD, providing the basis for early identification and therapeutical strategies for DKD.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Liqian Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Jiao Wang
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Manman Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Chunyu Zhou
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Yang J, Pontoglio M, Terzi F. Bile Acids and Farnesoid X Receptor in Renal Pathophysiology. Nephron Clin Pract 2024; 148:618-630. [PMID: 38412845 DOI: 10.1159/000538038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bile acids (BAs) act not only as lipids and lipid-soluble vitamin detergents but also function as signaling molecules, participating in diverse physiological processes. The identification of BA receptors in organs beyond the enterohepatic system, such as the farnesoid X receptor (FXR), has initiated inquiries into their organ-specific functions. Among these organs, the kidney prominently expresses FXR. SUMMARY This review provides a comprehensive overview of various BA species identified in kidneys and delves into the roles of renal apical and basolateral BA transporters. Furthermore, we explore changes in BAs and their potential implications for various renal diseases, particularly chronic kidney disease. Lastly, we center our discussion on FXR, a key BA receptor in the kidney and a potential therapeutic target for renal diseases, providing current insights into the protective mechanisms associated with FXR agonist treatments. KEY MESSAGES Despite the relatively low concentrations of BAs in the kidney, their presence is noteworthy, with rodents and humans exhibiting distinct renal BA compositions. Renal BA transporters efficiently facilitate either reabsorption into systemic circulation or excretion into the urine. However, adaptive changes in BA transporters are evident during cholestasis. Various renal diseases are accompanied by alterations in BA concentrations and FXR expression. Consequently, the activation of FXR in the kidney could be a promising target for mitigating kidney damage.
Collapse
Affiliation(s)
- Jiufang Yang
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France,
| | - Marco Pontoglio
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Jovanovich A, Cai X, Frazier R, Bundy JD, He J, Rao P, Lora C, Dobre M, Go A, Shafi T, Feldman HI, Rhee EP, Miyazaki M, Isakova T, Chonchol M. Deoxycholic Acid and Coronary Artery Calcification in the Chronic Renal Insufficiency Cohort. J Am Heart Assoc 2022; 11:e022891. [PMID: 35322682 PMCID: PMC9075491 DOI: 10.1161/jaha.121.022891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Background Deoxycholic acid (DCA) is a secondary bile acid that may promote vascular calcification in experimental settings. Higher DCA levels were associated with prevalent coronary artery calcification (CAC) in a small group of individuals with advanced chronic kidney disease. Whether DCA levels are associated with CAC prevalence, incidence, and progression in a large and diverse population of individuals with chronic kidney disease stages 2 to 4 is unknown. Methods and Results In the CRIC (Chronic Renal Insufficiency Cohort) study, we evaluated cross-sectional (n=1057) and longitudinal (n=672) associations between fasting serum DCA levels and computed tomographic CAC using multivariable-adjusted regression models. The mean age was 57±12 years, 47% were women, and 41% were Black. At baseline, 64% had CAC (CAC score >0 Agatston units). In cross-sectional analyses, models adjusted for demographics and clinical factors showed no association between DCA levels and CAC >0 compared with no CAC (prevalence ratio per 1-SD higher log DCA, 1.08 [95% CI, 0.91-1.26). DCA was not associated with incident CAC (incidence per 1-SD greater log DCA, 1.08 [95% CI, 0.85-1.39]) or CAC progression (risk for increase in ≥100 and ≥200 Agatston units per year per 1-SD greater log DCA, 1.05 [95% CI, 0.84-1.31] and 1.26 [95% CI, 0.77-2.06], respectively). Conclusions Among CRIC study participants, DCA was not associated with prevalent, incident, or progression of CAC.
Collapse
Affiliation(s)
- Anna Jovanovich
- Renal SectionVA Eastern Colorado Healthcare SystemAuroraCO
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Xuan Cai
- Division of Nephrology/HypertensionNorthwestern UniversityChicagoIL
| | - Rebecca Frazier
- Division of Nephrology/HypertensionNorthwestern UniversityChicagoIL
| | - Josh D. Bundy
- Nephrology and HypertensionTulane UniversityNew OrleansLA
| | - Jiang He
- Nephrology and HypertensionTulane UniversityNew OrleansLA
| | | | - Claudia Lora
- Division of NephrologyUniversity of Illinois at ChicagoChicagoIL
| | - Mirela Dobre
- Division of NephrologyCase Western Reserve UniversityClevelandOH
| | - Alan Go
- Division of ResearchKaiser Permanente Northern CaliforniaOaklandCA
| | - Tariq Shafi
- Division of NephrologyUniversity of MississippiJacksonMI
| | - Harold I. Feldman
- Division of Renal Electrolyte and HypertensionUniversity of PennsylvaniaPhiladelphiaPA
| | - Eugene P. Rhee
- Nephrology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Makoto Miyazaki
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Tamara Isakova
- Division of Nephrology/HypertensionNorthwestern UniversityChicagoIL
| | - Michel Chonchol
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCO
| |
Collapse
|
4
|
Frazier R, Cai X, Lee J, Bundy JD, Jovanovich A, Chen J, Deo R, Lash JP, Anderson AH, Go AS, Feldman HI, Shafi T, Rhee EP, Miyazaki M, Chonchol M, Isakova T. Deoxycholic Acid and Risks of Cardiovascular Events, ESKD, and Mortality in CKD: The CRIC Study. Kidney Med 2022; 4:100387. [PMID: 35072049 PMCID: PMC8767130 DOI: 10.1016/j.xkme.2021.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rationale & Objective Elevated levels of deoxycholic acid (DCA) are associated with adverse outcomes and may contribute to vascular calcification in patients with chronic kidney disease (CKD). We tested the hypothesis that elevated levels of DCA were associated with increased risks of cardiovascular disease, CKD progression, and death in patients with CKD. Study Design Prospective observational cohort study. Setting & Participants We included 3,147 Chronic Renal Insufficiency Cohort study participants who had fasting DCA levels. The average age was 59 ± 11 years, 45.3% were women, 40.6% were African American, and the mean estimated glomerular filtration rate was 42.5 ± 16.0 mL/min/1.73 m2. Predictor Fasting DCA levels in Chronic Renal Insufficiency Cohort study participants. Outcomes Risks of atherosclerotic and heart failure events, end-stage kidney disease (ESKD), and all-cause mortality. Analytical Approach We used Tobit regression to identify predictors of DCA levels. We used Cox regression to examine the association between fasting DCA levels and clinical outcomes. Results The strongest predictors of elevated DCA levels in adjusted models were increased age and nonuse of statins. The associations between log-transformed DCA levels and clinical outcomes were nonlinear. After adjustment, DCA levels above the median were independently associated with higher risks of ESKD (HR, 2.67; 95% CI, 1.51-4.74) and all-cause mortality (HR, 2.13; 95% CI, 1.25-3.64). DCA levels above the median were not associated with atherosclerotic and heart failure events, and DCA levels below the median were not associated with clinical outcomes. Limitations We were unable to measure DCA longitudinally or in urinary or fecal samples, and we were unable to measure other bile acids. We also could not measure many factors that affect DCA levels. Conclusions In 3,147 participants with CKD stages 2-4, DCA levels above the median were independently associated with ESKD and all-cause mortality.
Collapse
|
5
|
Baek J, He C, Afshinnia F, Michailidis G, Pennathur S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 2022; 18:38-55. [PMID: 34616096 PMCID: PMC9146017 DOI: 10.1038/s41581-021-00488-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Dyslipidaemia is a hallmark of chronic kidney disease (CKD). The severity of dyslipidaemia not only correlates with CKD stage but is also associated with CKD-associated cardiovascular disease and mortality. Understanding how lipids are dysregulated in CKD is, however, challenging owing to the incredible diversity of lipid structures. CKD-associated dyslipidaemia occurs as a consequence of complex interactions between genetic, environmental and kidney-specific factors, which to understand, requires an appreciation of perturbations in the underlying network of genes, proteins and lipids. Modern lipidomic technologies attempt to systematically identify and quantify lipid species from biological systems. The rapid development of a variety of analytical platforms based on mass spectrometry has enabled the identification of complex lipids at great precision and depth. Insights from lipidomics studies to date suggest that the overall architecture of free fatty acid partitioning between fatty acid oxidation and complex lipid fatty acid composition is an important driver of CKD progression. Available evidence suggests that CKD progression is associated with metabolic inflexibility, reflecting a diminished capacity to utilize free fatty acids through β-oxidation, and resulting in the diversion of accumulating fatty acids to complex lipids such as triglycerides. This effect is reversed with interventions that improve kidney health, suggesting that targeting of lipid abnormalities could be beneficial in preventing CKD progression.
Collapse
Affiliation(s)
- Judy Baek
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chenchen He
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Subramaniam Pennathur
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Fickert P, Rosenkranz AR. Bile Acids Are Important Contributors to AKI Associated with Liver Disease: PRO. KIDNEY360 2021; 3:17-20. [PMID: 35378026 PMCID: PMC8967615 DOI: 10.34067/kid.0005932020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/03/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Peter Fickert
- Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
7
|
Fecal Metabolomics Reveals Distinct Profiles of Kidney Transplant Recipients and Healthy Controls. Diagnostics (Basel) 2021; 11:diagnostics11050807. [PMID: 33946812 PMCID: PMC8145417 DOI: 10.3390/diagnostics11050807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Monitoring graft recipients remains dependent on traditional biomarkers and old technologies lacking specificity, sensitivity, or accuracy. Recently, metabolomics is becoming a promising approach that may offer to kidney transplants a more effective and specific monitoring. Furthermore, emerging evidence suggested a fundamental role of gut microbiota as an important determinant of patients’ metabolomes. In the current study, we enrolled forty stable renal allografts recipients compared to twenty healthy individuals. Samples were taken at different time points from patient to patient following transplantation surgery, which varied from 3 months to 22 years post-graft. All patients started the immunosuppression therapy immediately following kidney graft (Day 0). Gas chromatography–mass spectrometry (GC–MS) was employed to perform untargeted analysis of fecal metabolites. Globally, the fecal metabolic signature was significantly different between kidney transplants and the control group. Fecal metabolome was dominated by lipids (sterols and fatty acids) in the stable transplant group compared to the controls (p < 0.05). Overall, 18 metabolites were significantly altered within kidney transplant recipients. Furthermore, the most notable altered metabolic pathways in kidney transplants include ubiquinone and other terpenoid-quinone biosynthesis, tyrosine metabolism, tryptophan biosynthesis, and primary bile acid biosynthesis. Fecal metabolites could effectively distinguish stable transplant recipients from controls, supporting the potential utility of metabolomics in rapid and non-invasive diagnosis to produce relevant biomarkers and to help clinicians in monitoring kidney transplants. Further investigations are needed to clarify the physiological relevance of fecal metabolome and to assess the impact of microbiota modulation.
Collapse
|
8
|
Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non-renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol 2021; 17:515-542. [PMID: 33749483 DOI: 10.1080/17425255.2021.1899159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The solute carrier (SLC) and the ATP-binding cassette (ABC) transporter superfamilies play essential roles in the disposition of small molecules (endogenous metabolites, uremic toxins, drugs) in the blood, kidney, liver, intestine, and other organs. In chronic kidney disease (CKD), the loss of renal function is associated with altered function of remote organs. As renal function declines, many molecules accumulate in the plasma. Many studies now support the view that ABC and SLC transporters as well as drug metabolizing enzymes (DMEs) in renal and non-renal tissues are directly or indirectly affected by the presence of various types of uremic toxins, including those derived from the gut microbiome; this can lead to aberrant inter-organ communication. AREAS COVERED Here, the expression, localization and/or function of various SLC and ABC transporters as well as DMEs in the kidney and other organs are discussed in the context of CKD and systemic pathophysiology. EXPERT OPINION According to the Remote Sensing and Signaling Theory (RSST), a transporter and DME-centric network that optimizes local and systemic metabolism maintains homeostasis in the steady state and resets homeostasis following perturbations due to renal dysfunction. The implications of this view for pharmacotherapy of CKD are also discussed.
Collapse
Affiliation(s)
- Adriana M Torres
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ankur V Dnyanmote
- Department of Pediatrics, IWK Health Centre - Dalhousie University, 5850 University Ave, Halifax, NS, B3K 6R8, Canada
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| | - Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
9
|
Metabolomic analysis of uremic pruritus in patients on hemodialysis. PLoS One 2021; 16:e0246765. [PMID: 33577623 PMCID: PMC7880487 DOI: 10.1371/journal.pone.0246765] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pruritus is a common debilitating symptom experienced by hemodialysis patients. Treatment is difficult because the cause of uremic pruritus is not known. This study addressed the hypothesis that pruritus is caused by solutes that accumulate in the plasma when the kidneys fail. We sought to identify solutes responsible for uremic pruritus using metabolomic analysis to compare the plasma of hemodialysis patients with severe pruritus versus mild/no pruritus. Pruritus severity in hemodialysis patients was assessed using a 100-mm visual analogue scale (VAS), with severe pruritus defined as >70 mm and mild/no pruritus defined as <10 mm. Twelve patients with severe pruritus (Itch) and 24 patients with mild/no pruritus (No Itch) were included. Pre-treatment plasma and plasma ultrafiltrate were analyzed using an established metabolomic platform (Metabolon, Inc.). To identify solutes associated with pruritus, we compared the average peak area of each solute in the Itch patients to that of the No Itch patients using the false discovery rate (q value) and principal component analysis. Dialysis vintage, Kt/Vurea, and serum levels of calcium, phosphorus, PTH, albumin, ferritin, and hemoglobin were similar in the Itch and No Itch patients. Metabolomic analysis identified 1,548 solutes of which 609 were classified as uremic. No difference in the plasma or plasma ultrafiltrate levels of any solute or group of solutes was found between the Itch and No Itch patients. Metabolomic analysis of hemodialysis patients did not reveal any solutes associated with pruritus. A limitation of metabolomic analysis is that the solute of interest may not be included in the metabolomic platform’s chemical library. A role for uremic solutes in pruritus remains to be established.
Collapse
|
10
|
Wang X, Yang S, Li S, Zhao L, Hao Y, Qin J, Zhang L, Zhang C, Bian W, Zuo L, Gao X, Zhu B, Lei XG, Gu Z, Cui W, Xu X, Li Z, Zhu B, Li Y, Chen S, Guo H, Zhang H, Sun J, Zhang M, Hui Y, Zhang X, Liu X, Sun B, Wang L, Qiu Q, Zhang Y, Li X, Liu W, Xue R, Wu H, Shao D, Li J, Zhou Y, Li S, Yang R, Pedersen OB, Yu Z, Ehrlich SD, Ren F. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 2020; 69:2131-2142. [PMID: 32241904 PMCID: PMC7677483 DOI: 10.1136/gutjnl-2019-319766] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Patients with renal failure suffer from symptoms caused by uraemic toxins, possibly of gut microbial origin, as deduced from studies in animals. The aim of the study is to characterise relationships between the intestinal microbiome composition, uraemic toxins and renal failure symptoms in human end-stage renal disease (ESRD). DESIGN Characterisation of gut microbiome, serum and faecal metabolome and human phenotypes in a cohort of 223 patients with ESRD and 69 healthy controls. Multidimensional data integration to reveal links between these datasets and the use of chronic kidney disease (CKD) rodent models to test the effects of intestinal microbiome on toxin accumulation and disease severity. RESULTS A group of microbial species enriched in ESRD correlates tightly to patient clinical variables and encode functions involved in toxin and secondary bile acids synthesis; the relative abundance of the microbial functions correlates with the serum or faecal concentrations of these metabolites. Microbiota from patients transplanted to renal injured germ-free mice or antibiotic-treated rats induce higher production of serum uraemic toxins and aggravated renal fibrosis and oxidative stress more than microbiota from controls. Two of the species, Eggerthella lenta and Fusobacterium nucleatum, increase uraemic toxins production and promote renal disease development in a CKD rat model. A probiotic Bifidobacterium animalis decreases abundance of these species, reduces levels of toxins and the severity of the disease in rats. CONCLUSION Aberrant gut microbiota in patients with ESRD sculpts a detrimental metabolome aggravating clinical outcomes, suggesting that the gut microbiota will be a promising target for diminishing uraemic toxicity in those patients. TRIAL REGISTRATION NUMBER This study was registered at ClinicalTrials.gov (NCT03010696).
Collapse
Affiliation(s)
- Xifan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Songtao Yang
- Department of Nephrology, Aerospace Center Hospital, Beijing, China
| | | | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | - Lian Zhang
- Department of Epidemiology, School of Oncology, Beijing University, Beijing, China
| | - Chengying Zhang
- Department of Nephrology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weijing Bian
- Renal Division, Beijing AnZhen Hospital, Capital Medical University, Beijing, China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Xiu Gao
- Department of Nephrology, Peking University Shougang Hospital, Beijing, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York, USA
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Xiping Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China,Renal Division, Nanfang Hospital, National Clinical Research Center for Kidney Disease, Southern Medical University, State Key Laboratory for Organ Failure Research, Guangzhou, Guangdong, China
| | | | - Benzhong Zhu
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shangwu Chen
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hao Zhang
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Sun
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ming Zhang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yan Hui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaolin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoxue Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bowen Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Longjiao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qinglu Qiu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuchan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xingqi Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weiqian Liu
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Rui Xue
- Shanghai SLAC Laboratory Animal Co., Ltd, Shanghai Laboratory Animal Center, Shanghai, China
| | - Hong Wu
- Department of Nephrology, Aerospace Center Hospital, Beijing, China
| | - DongHua Shao
- Department of Nephrology, Aerospace Center Hospital, Beijing, China
| | - Junling Li
- Department of Nephrology, Peking University Shougang Hospital, Beijing, China
| | | | | | | | - Oluf Borbye Pedersen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, Kobenhavns Universitet, Kobenhavn, Denmark
| | - Zhengquan Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China .,State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Stanislav Dusko Ehrlich
- Metagenopolis, Université Paris-Saclay, INRAE, MGP, 78350, Jouy-en-Josas, France .,Dental Institute, King's College London, London, London, UK
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Wei H, Wang L, An Z, Xie H, Liu W, Du Q, Guo Y, Wu X, Li S, Shi Y, Zhang X, Liu H. QiDiTangShen granules modulated the gut microbiome composition and improved bile acid profiles in a mouse model of diabetic nephropathy. Biomed Pharmacother 2020; 133:111061. [PMID: 33378964 DOI: 10.1016/j.biopha.2020.111061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
QiDiTangShen granules (QDTS), a traditional Chinese herbal medicine, have been used in clinical practice for treating diabetic kidney disease for several years. In our previous study, we have demonstrated that QDTS displayed good efficacy on reducing proteinuria in mice with diabetic nephropathy (DN). However, the exact mechanism by which QDTS exerts its reno-protection remains largely unknown. To ascertain whether QDTS could target the gut microbiota-bile acid axis, the db/db mice were adopted as a mouse model of DN. After a 12-week of treatment, we found that QDTS significantly reduced urinary albumin excretion (UAE), and attenuated the pathological injuries of kidney in the db/db mice, while the body weight and blood glucose levels of those mice were not affected. In addition, we found that QDTS significantly altered the gut microbiota composition, and decreased serum levels of total bile acid (TBA) and BA profiles such as β-muricholic acid (β-MCA), taurocholic acid (TCA), tauro β-muricholic acid (Tβ-MCA) and deoxycholic acid (DCA). These BAs are associated with the activation of farnesoid X receptor (FXR), which is highly expressed in kidney. However, there was no significant difference between QDTS-treated and -untreated db/db mice regarding the renal expression of FXR, indicating that other mechanisms may be involved. Conclusively, our study revealed that QDTS significantly alleviated renal injuries in mice with DN. The gut microbiota-bile acid axis may be an important target for the reno-protection of QDTS in DN, but the specific mechanism merits further study.
Collapse
Affiliation(s)
- Huili Wei
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Lin Wang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Zhichao An
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Huidi Xie
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Weijing Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Qing Du
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yan Guo
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xi Wu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Sicheng Li
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yang Shi
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xianhui Zhang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Health Management Center, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Dongsibei Road No. 279, Dongcheng District, Beijing, 100700, China.
| | - Hongfang Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China.
| |
Collapse
|
12
|
Kimber C, Zhang S, Johnson C, West RE, Prokopienko AJ, Mahnken JD, Yu AS, Hoofnagle AN, Ir D, Robertson CE, Miyazaki M, Chonchol M, Jovanovich A, Kestenbaum B, Frank DN, Nolin TD, Stubbs JR. Randomized, Placebo-Controlled Trial of Rifaximin Therapy for Lowering Gut-Derived Cardiovascular Toxins and Inflammation in CKD. ACTA ACUST UNITED AC 2020; 1:1206-1216. [PMID: 34322673 PMCID: PMC8315698 DOI: 10.34067/kid.0003942020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Recent evidence suggests the systemic accumulation of by-products of gut microbes contributes to cardiovascular morbidity in patients with CKD. Limiting the generation of toxic bacterial by-products by manipulating the intestinal microbiota may be a novel strategy for reducing cardiovascular disease in CKD. Rifaximin is a minimally absorbed, oral antibiotic that targets intestinal pathogens and is commonly used as chronic therapy for the prevention of encephalopathy in patients with cirrhosis. Methods We conducted a randomized, double-blinded, placebo-controlled trial to determine the effect of a 10-day course of oral rifaximin 550 mg BID versus placebo on circulating concentrations of gut-derived cardiovascular toxins and proinflammatory cytokines in patients with stage 3-5 CKD (n=38). The primary clinical outcome was change in serum trimethylamine N-oxide (TMAO) concentrations from baseline to study end. Secondary outcomes included change in serum concentrations of p-cresol sulfate, indoxyl sulfate, kynurenic acid, deoxycholic acid, and inflammatory cytokines (C-reactive protein, IL-6, IL-1β), and change in composition and diversity of fecal microbiota. Results A total of 19 patients were randomized to each of the rifaximin and placebo arms, with n=17 and n=14 completing both study visits in these respective groups. We observed no difference in serum TMAO change (post-therapy minus baseline TMAO) between the rifaximin and placebo groups (mean TMAO change -3.9±15.4 for rifaximin versus 0.5±9.5 for placebo, P=0.49). Similarly, we found no significant change in serum concentrations for p-cresol sulfate, indoxyl sulfate, kynurenic acid, deoxycholic acid, and inflammatory cytokines. We did observe differences in colonic bacterial communities, with the rifaximin group exhibiting significant decreases in bacterial richness (Chao1, P=0.02) and diversity (Shannon H, P=0.05), along with altered abundance of several bacterial genera. Conclusions Short-term rifaximin treatment failed to reduce gut-derived cardiovascular toxins and inflammatory cytokines in patients with CKD. Clinical Trial registry name and registration number Rifaximin Therapy in Chronic Kidney Disease, NCT02342639.
Collapse
Affiliation(s)
- Cassandra Kimber
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shiqin Zhang
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Cassandra Johnson
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Raymond E West
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexander J Prokopienko
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan D Mahnken
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan S Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Diana Ir
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Charles E Robertson
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anna Jovanovich
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Bryan Kestenbaum
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington.,Kidney Research Institute, Seattle, Washington
| | - Daniel N Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado
| | - Thomas D Nolin
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jason R Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Division of Nephrology and Hypertension, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
13
|
Liu J, Qu J, Chen H, Ge P, Jiang Y, Xu C, Chen H, Shang D, Zhang G. The pathogenesis of renal injury in obstructive jaundice: A review of underlying mechanisms, inducible agents and therapeutic strategies. Pharmacol Res 2020; 163:105311. [PMID: 33246170 DOI: 10.1016/j.phrs.2020.105311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Kidney injury is one of the main complications of obstructive jaundice (OJ) and its pathogenesis has not been clarified. As an independent risk factor for OJ associated with significant morbidity and mortality, it can be mainly divided into two types of morphological injury and functional injury. We called these dysfunctions caused by OJ-induced kidney injury as OJKI. However, the etiology of OJKI is still not fully clear, and research studies on how OJKI becomes a facilitated factor of OJ are limited. This article reviews the underlying pathological mechanism from five aspects, including metabolisms of bile acids, hemodynamic disturbances, oxidative stress, inflammation and the organic transporter system. Some nephrotoxic drugs and measures that can enhance or reduce the renal function with potential intervention in perioperative periods to alleviate the incidence of OJKI were also described. Furthermore, a more in-depth study on the pathogenesis of OJKI from multiple aspects for exploring more targeted treatment measures were further put forward, which may provide new methods for the prevention and treatment of clinical OJKI and improve the prognosis.
Collapse
Affiliation(s)
- Jiayue Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Jialin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Haiyang Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Yuankuan Jiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Caiming Xu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Hailong Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Guixin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China.
| |
Collapse
|
14
|
Changes in the Fecal Metabolome Are Associated with Feeding Fiber Not Health Status in Cats with Chronic Kidney Disease. Metabolites 2020; 10:metabo10070281. [PMID: 32660033 PMCID: PMC7407581 DOI: 10.3390/metabo10070281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/25/2022] Open
Abstract
The objective was to determine the effects of feeding different fiber sources to cats with chronic kidney disease (CKD) compared with healthy cats (both n = 10) on fecal metabolites. A cross-over within split-plot study design was performed using healthy and CKD cats (IRIS stage 1, 2, and 3). After cats were fed a complete and balanced dry food designed to aid in the management of renal disease for 14 days during a pre-trial period, they were randomly assigned to two fiber treatments for 4 weeks each. The treatment foods were formulated similar to pre-trial food and contained 0.500% betaine, 0.586% oat beta glucan, and either 0.407% short chain fructooligosaccharides (scFOS) fiber or 3.44% apple pomace. Both treatment foods had similar crude fiber (2.0 and 2.1% for scFOS and apple pomace, respectively) whereas soluble fiber was 0.8 and 1.6%, respectively. At baseline, CKD had very little impact on the fecal metabolome. After feeding both fiber sources, some fecal metabolite concentrations were significantly different compared with baseline. Many fecal uremic toxins decreased, although in healthy cats some increased; and some more so when feeding apple pomace compared with scFOS, e.g., hippurate, 4-hydroxyhippurate, and 4-methylcatechol sulfate; the latter was also increased in CKD cats. Changes in secondary bile acid concentrations were more numerous in healthy compared with CKD cats, and cats in both groups had greater increases in some secondary bile acids after consuming apple pomace compared with scFOS, e.g., tauroursodeoxycholate and hyocholate. Although changes associated with feeding fiber were more significant than changes associated with disease status, differential modulation of the gut-kidney axis using dietary fiber may benefit cats.
Collapse
|
15
|
Jia S, Guan T, Zhang X, Liu Y, Liu Y, Zhao X. Serum metabonomics analysis of quercetin against the toxicity induced by cadmium in rats. J Biochem Mol Toxicol 2020; 34:e22448. [PMID: 31967702 DOI: 10.1002/jbt.22448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the protective effect of quercetin against the toxicity induced by chronic exposure to low levels of cadmium in rats by an ultra performance liquid chromatography mass spectrometer. Rats were randomly divided into six groups as follows: control group (C), low dose of quercetin group (Q1: 10 mg/kg·bw), high dose of quercetin group (Q2: 50 mg/kg·bw), cadmium chloride group (D), low dose of quercetin plus cadmium chloride group (DQ1), and high dose of quercetin plus cadmium chloride group (DQ2). Cadmium chloride (CdCl2 ) was administered to rats by drinking water ad libitum in a concentration of 40 mg/L. The final amount of CdCl2 ingested was estimated from the water consumption data to be 4.85, 4.91, and 4.89 mg/kg·bw/day, for D, DQ1, and DQ2 groups, respectively. After a 12-week treatment, the serum samples of rats were collected for metabonomics analysis. Ten potential biomarkers were identified for which intensities were significantly increased or reduced as a result of the treatment. These metabolites included isorhamnetin 4'-O-glucuronide, 3-indolepropionic acid, tetracosahexaenoic acid, lysophosphatidylcholine (LysoPC) (20:5), lysoPC (18:3), lysophosphatidylethanolamine (LysoPE) (20:5/0:0), bicyclo-prostaglandin E2, sulpholithocholylglycine, lithocholyltaurine, and glycocholic acid. Results indicated that quercetin exerted a protective effect against cadmium-induced toxicity by regulating lipid and amino acid metabolism, enhancing the antioxidant defense system and protecting liver and kidney function.
Collapse
Affiliation(s)
- Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Tong Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yajing Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yanli Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Li R, Zeng L, Xie S, Chen J, Yu Y, Zhong L. Targeted metabolomics study of serum bile acid profile in patients with end-stage renal disease undergoing hemodialysis. PeerJ 2019; 7:e7145. [PMID: 31245185 PMCID: PMC6585905 DOI: 10.7717/peerj.7145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background Bile acids are important metabolites of intestinal microbiota, which have profound effects on host health. However, whether metabolism of bile acids is involved in the metabolic complications of end-stage renal disease (ESRD), and the effects of bile acids on the prognosis of ESRD remain obscure. Therefore, this study investigated the relationship between altered bile acid profile and the prognosis of ESRD patients. Methods A targeted metabolomics approach based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the changes in serum bile acids between ESRD patients (n = 77) and healthy controls (n = 30). Univariate and multivariate statistical analyses were performed to screen the differential proportions of bile acids between the two groups. Results Six differentially expressed bile acids were identified as potential biomarkers for differentiating ESRD patients from healthy subjects. The decreased concentrations of chenodeoxycholic acid, deoxycholic acid and cholic acid were significantly associated with dyslipidemia in ESRD patients. Subgroup analyses revealed that the significantly increased concentrations of taurocholic acid, taurochenodeoxycholic acid, taurohyocholic acid and tauro α-muricholic acid were correlated to the poor prognosis of ESRD patients. Conclusions The serum bile acid profile of ESRD patients differed significantly from that of healthy controls. In addition, the altered serum bile acid profile might contribute to the poor prognosis and metabolic complications of ESRD patients.
Collapse
Affiliation(s)
- Rong Li
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuqin Xie
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwei Chen
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Yu
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Bryniarski MA, Hamarneh F, Yacoub R. The role of chronic kidney disease-associated dysbiosis in cardiovascular disease. Exp Biol Med (Maywood) 2019; 244:514-525. [PMID: 30682892 PMCID: PMC6547008 DOI: 10.1177/1535370219826526] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT Negative alterations, or dysbiosis, in the intestinal microbial community balance in response to chronic kidney disease is emerging as a substantial and important factor in inducing and exacerbating multiple comorbid conditions. Patients with renal insufficiency experience a substantial increase in cardiovascular risk, and recent evidence is shedding light on the close interaction between microbiome dysbiosis and increased cardiovascular events in this population. Previous association and recent causality studies utilizing experimental animal models have enriched our understanding and confirmed the impact of microbial community imbalance on cardiac health in both the general population and in patients with renal impairment.
Collapse
Affiliation(s)
- Mark A Bryniarski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Fares Hamarneh
- University College Dublin School of Medicine and Medical Science, Dublin, Ireland
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Rabi Yacoub
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
18
|
Weigand KM, Schirris TJJ, Houweling M, van den Heuvel JJMW, Koenderink JB, Dankers ACA, Russel FGM, Greupink R. Uremic solutes modulate hepatic bile acid handling and induce mitochondrial toxicity. Toxicol In Vitro 2019; 56:52-61. [PMID: 30639138 DOI: 10.1016/j.tiv.2019.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/11/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Abstract
Chronic kidney disease (CKD) is accompanied by accumulating levels of uremic solutes in the circulation. Changes in the size and composition of the bile acid pool have also been observed. We investigated via which mechanisms uremic solutes may interfere with hepatocyte function and thus contribute to altered bile acid handling. We studied interference on the level of bile acid synthesis by cytochrome P450 7A1 (CYP7A1), explored effects on hepatic bile acid transporters, and investigated effects on mitochondrial function. In HEK293 cells overexpressing bile salt transporters, we observed that p-cresyl sulfate inhibited Na+-taurocholate cotransporting polypeptide (NTCP)-mediated uptake of taurocholic acid (TCA), whereas organic anion-transporting polypeptide 1B1 (OATP1B1)-mediated TCA uptake was increased. Assays in transporter-overexpressing membrane vesicles revealed that kynurenic acid inhibited TCA transport via the bile salt efflux pump (BSEP), whereas p-cresyl glucuronide and hippuric acid increased TCA efflux via multidrug resistance-associated protein 3 (MRP3). Moreover, indoxyl sulfate decreased mRNA expression of NTCP, OATP1B3 and CYP7A1 in primary human hepatocytes. Transport studies confirmed a decreased TCA uptake in indoxyl sulfate-exposed hepatocytes. Decreased hepatocyte viability was found for all seven uremic solutes tested, whereas five out of seven also decreased intracellular ATP levels and mitochondrial membrane potential. In conclusion, uremic solutes affect hepatic bile acid transport and mitochondrial function. This can contribute to the altered bile acid homeostasis observed in CKD patients.
Collapse
Affiliation(s)
- Karl M Weigand
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Megan Houweling
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anita C A Dankers
- Janssen Pharmaceutical Companies of Johnson & Johnson, Department of Pharmacokinetics, Dynamics and Metabolism, Beerse, Belgium
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Abstract
Patients with CKD exhibit a disproportionate burden of cardiovascular mortality, which likely stems from the presence of unique, nontraditional risk factors that accompany deteriorating kidney function. Mounting evidence suggests that alterations to the intestinal microbiome in CKD may serve as one such risk factor. The human intestinal tract is home to >100 trillion micro-organisms made up of a collection of commensal, symbiotic, and pathogenic species. These species along with their local environment constitute the intestinal microbiome. Patients with CKD show intestinal dysbiosis, an alteration of the gut micro-organism composition and function. Recent evidence links byproducts of intestinal dysbiosis to vascular calcification, atherosclerosis formation, and adverse cardiovascular outcomes in CKD. CKD-associated intestinal dysbiosis may also be accompanied by defects in intestinal barrier function, which could further enhance the negative effects of pathogenic intestinal bacteria in the human host. Thus, intestinal dysbiosis, defective intestinal barrier function, and a reduced capacity for clearance by the kidney of absorbed bacterial byproducts may all potentiate the development of cardiovascular disease in CKD. This narrative review focuses on microbiome-mediated mechanisms associated with CKD that may promote atherosclerosis formation and cardiovascular disease. It includes (1) new data supporting the hypothesis that intestinal barrier dysfunction leads to bacterial translocation and endotoxemia that potentiate systemic inflammation, (2) information on the accumulation of dietary-derived bacterial byproducts that stimulate pathways promoting atheromatous changes in arteries and cardiovascular disease, and (3) potential interventions. Despite great scientific interest in and a rapidly growing body of literature on the relationship between the microbiome and cardiovascular disease in CKD, many important questions remain unanswered.
Collapse
Affiliation(s)
- Anna Jovanovich
- Renal Section, Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Jason Stubbs
- The Jared Grantham Kidney Institute, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
20
|
Fujisue K, Nagamatsu S, Shimomura H, Yamashita T, Nakao K, Nakamura S, Ishihara M, Matsui K, Yamamoto N, Koide S, Matsumura T, Fujimoto K, Tsunoda R, Morikami Y, Matsuyama K, Oshima S, Sakamoto K, Izumiya Y, Kaikita K, Hokimoto S, Ogawa H, Tsujita K. Impact of statin-ezetimibe combination on coronary atheroma plaque in patients with and without chronic kidney disease - Sub-analysis of PRECISE-IVUS trial. Int J Cardiol 2018; 268:23-26. [PMID: 29925472 DOI: 10.1016/j.ijcard.2018.04.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Chronic kidney disease (CKD) deteriorates the prognosis of patients undergoing percutaneous coronary intervention (PCI). Because coronary artery disease (CAD) is the major cause of death in CKD patients, cardiovascular risk reduction has been clinically important in CKD. We hypothesized intensive lipid-lowering with statin/ezetimibe attenuated coronary atherosclerotic development even in patients with CKD. METHODS In the prospective, randomized, controlled, multicenter PRECISE-IVUS trial, 246 patients undergoing intravascular ultrasound (IVUS)-guided PCI were randomly assigned to receive atorvastatin/ezetimibe combination or atorvastatin alone (the dosage of atorvastatin was up-titrated to achieve the level of low-density lipoprotein cholesterol < 70 mg/dL). Serial volumetric IVUS findings obtained at baseline and 9-12 month follow-up to quantify the coronary plaque response in 202 patients were compared stratified by the presence or absence of CKD. RESULTS CKD was observed in 52 patients (26%) among 202 enrolled patients. Compared with the non-CKD group, the CKD group was significantly older (71.5 ± 8.6 years vs. 64.4 ± 9.6 years, P < 0.001) with similar prevalence of comorbid coronary risk factors and lipid profiles. Similar to the non-CKD group (-1.4 [-2.8 to -0.1]% vs. -0.2 [-1.7 to 1.0]%, P = 0.002), the atorvastatin/ezetimibe combination significantly reduced ∆PAV compared with atorvastatin alone even in the CKD group (-2.6 [-5.6 to -0.4]% vs. -0.9 [-2.4 to 0.2]%, P = 0.04). CONCLUSIONS As with non-CKD, intensive lipid-lowering therapy with atorvastatin/ezetimibe demonstrated stronger coronary plaque regression effect even in patients with CKD compared with atorvastatin monotherapy. TRIAL REGISTRATION NCT01043380 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Koichiro Fujisue
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Suguru Nagamatsu
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideki Shimomura
- Department of Cardiovascular Medicine, Fukuoka Tokushukai Medical Center, Kasuga, Japan
| | | | - Koichi Nakao
- Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center, Kumamoto, Japan
| | - Sunao Nakamura
- Interventional Cardiology Unit, New Tokyo Hospital, Matsudo, Japan
| | - Masaharu Ishihara
- Division of Coronary Heart Disease, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kunihiko Matsui
- Department of Community Medicine, Kumamoto University, Kumamoto, Japan
| | - Nobuyasu Yamamoto
- Division of Cardiology, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Shunichi Koide
- Division of Cardiology, Health Insurance Kumamoto General Hospital, Yatsushiro, Japan
| | - Toshiyuki Matsumura
- Division of Cardiology, Japan Labor Health and Welfare Organization Kumamoto Rosai Hospital, Yatsushiro, Japan
| | - Kazuteru Fujimoto
- Department of Cardiology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Ryusuke Tsunoda
- Division of Cardiology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | | | | | - Shuichi Oshima
- Division of Cardiology, Kumamoto Central Hospital, Kumamoto, Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Hokimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisao Ogawa
- National Cerebral and Cardiovascular Center, Suita, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
21
|
Definitive profiling of plasma bile acids as potential biomarkers for human liver diseases using UPLC–HRMS. Bioanalysis 2018; 10:917-932. [DOI: 10.4155/bio-2018-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Investigation of bile acids (BAs) as biomarkers for liver and kidney diseases has gained momentum recently to fulfill the needs in drug development and clinical practice, but a thorough and rapid profiling of BAs in human plasma has been hindered by the large interindividual variability and lack of selective methods. Results: A selective and efficient UPLC-high resolution mass spectrometry method was developed and fully validated for the definitive profiling of 26 BAs in human plasma with a curve rage of 1–1000 ng/ml and a runtime of 7.2 min. Conclusion: Four BA combinations with good sensitivity and specificity show potential biomarker applications for liver injury and diseases.
Collapse
|
22
|
Hu L, Bo L, Zhang M, Li S, Zhao X, Sun C. Metabonomics analysis of serum from rats given long-term and low-level cadmium by ultra-performance liquid chromatography-mass spectrometry. Xenobiotica 2017; 48:1079-1088. [PMID: 29143552 DOI: 10.1080/00498254.2017.1397811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. This study evaluated the toxicity of chronic exposure to low-level cadmium (Cd) in rats using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Forty male Sprague-Dawley rats were randomly assigned to four groups, namely, the control group, low-dose group (0.13 mg/kg·bw), middle-dose group (0.8 mg/kg·bw) and high-dose group (4.89 mg/kg·bw). The rats continuously received CdCl2 via drinking water for 24 weeks. Serum samples were collected for metabonomics analysis. The data generated from the UPLC-MS was analysed using principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA). PLS-DA model with satisfactory explanatory and predictive ability is capable of discriminating the treatment groups from the control group. 2. Finally, the 10 metabolites were identified and showed significant changes in some treatment groups compared with that in the control group (p < 0.0167 or p < 0.003). Exposure to Cd resulted in increased intensities of lysophosphatidic acid (P-16:0e/0:0), glycocholic acid, bicyclo-prostaglandin E2, lithocholyltaurine, sulfolithocholylglycine, lysophosphatidylethanolamine (20:5/0:0) and lysophosphatidylcholine (20:0), as well as decreased intensities of 3-indolepropionic acid, phosphatidylcholine (18:4/18:0) and 15S-hydroxyeicosatrienoic acid in rat serum. 3. Results suggest that exposure to Cd can cause disturbances in the lipid metabolism, amino acid metabolism, nervous system, antioxidant defence system, liver and kidney function.
Collapse
Affiliation(s)
- Liyan Hu
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Lu Bo
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Meiyan Zhang
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Siqi Li
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Xiujuan Zhao
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Changhao Sun
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| |
Collapse
|
23
|
Jovanovich A, Isakova T, Block G, Stubbs J, Smits G, Chonchol M, Miyazaki M. Deoxycholic Acid, a Metabolite of Circulating Bile Acids, and Coronary Artery Vascular Calcification in CKD. Am J Kidney Dis 2017; 71:27-34. [PMID: 28801122 DOI: 10.1053/j.ajkd.2017.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Vascular calcification is common among patients with chronic kidney disease (CKD), and it is associated with all-cause and cardiovascular disease mortality. Deoxycholic acid, a metabolite of circulating bile acids, is elevated in CKD and induces vascular mineralization and osteogenic differentiation in animal models. STUDY DESIGN Cohort analysis of clinical trial participants. SETTING & PARTICIPANTS 112 patients with moderate to severe CKD (estimated glomerular filtration rate, 20-45mL/min/1.73m2) who participated in a randomized controlled study to examine the effects of phosphate binders on vascular calcification. PREDICTOR Serum deoxycholic acid concentration. OUTCOMES Baseline coronary artery calcification (CAC) volume score and bone mineral density (BMD) and change in CAC volume score and BMD after 9 months. MEASUREMENTS Deoxycholic acid was assayed in stored baseline serum samples using liquid chromatography-tandem mass spectrometry, CAC was measured using a GE-Imitron C150 scanner, and BMD was determined using computed tomographic scans of the abdomen with calibrated phantom of known density. RESULTS Higher serum deoxycholic acid concentrations were significantly correlated with greater baseline CAC volume and lower baseline BMD. After adjusting for demographics, coexisting illness, body mass index, estimated glomerular filtration rate, and concentrations of circulating markers of mineral metabolism, including serum calcium, phosphorus, vitamin D, parathyroid hormone, and fibroblast growth factor 23, a serum deoxycholic acid concentration > 58ng/mL (the median) was positively associated with baseline CAC volume (β=0.71; 95% CI, 0.26-1.16; P=0.003) and negatively associated with baseline BMD (β = -20.3; 95% CI, -1.5 to -39.1; P=0.04). Serum deoxycholic acid concentration > 58ng/mL was not significantly associated with change in CAC volume score after 9 months (β=0.06; 95% CI, -0.09 to 0.21; P=0.4). The analysis for the relationship between baseline deoxycholic acid concentrations and change in BMD after 9 months was not statistically significant, but was underpowered. LIMITATIONS The use of nonfasting serum samples is a limitation because deoxycholic acid concentrations may vary based on time of day and dietary intake. Few trial participants with complete data to evaluate the change in CAC volume score (n=75) and BMD (n=59). No data for changes in deoxycholic acid concentrations over time. CONCLUSIONS Among patients with moderate to severe CKD, higher serum deoxycholic acid concentrations were independently associated with greater baseline CAC volume score and lower baseline BMD.
Collapse
Affiliation(s)
- Anna Jovanovich
- Renal Section, Denver VA Medical Center, Denver, CO; Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, CO.
| | - Tamara Isakova
- Division of Nephrology and Hypertension, Department of Medicine and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Jason Stubbs
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Gerard Smits
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
24
|
Bush KT, Wu W, Lun C, Nigam SK. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut-liver-kidney axis. J Biol Chem 2017; 292:15789-15803. [PMID: 28765282 DOI: 10.1074/jbc.m117.796516] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) have similar substrate specificity for drugs, but it is far from clear whether this holds for endogenous substrates. By analysis of more than 600 metabolites in the Oat3KO (Oat3 knockout) by LC/MS, we demonstrate OAT3 involvement in the movement of gut microbiome products, key metabolites, and signaling molecules, including those flowing through the gut-liver-kidney axis. Major pathways affected included those involved in metabolism of bile acids, flavonoids, nutrients, amino acids (including tryptophan-derivatives that are uremic toxins), and lipids. OAT3 is also critical in elimination of liver-derived phase II metabolites, particularly those undergoing glucuronidation. Analysis of physicochemical features revealed nine distinct metabolite groups; at least one member of most clusters has been previously validated in transport assays. In contrast to drugs interacting with the OATs, endogenous metabolites accumulating in the Oat1KO (Oat1 knockout) versus Oat3KO have distinct differences in their physicochemical properties; they are very different in size, number of rings, hydrophobicity, and molecular complexity. Consistent with the Remote Sensing and Signaling Hypothesis, the data support the importance of the OAT transporters in inter-organ and inter-organismal remote communication via transporter-mediated movement of key metabolites and signaling molecules (e.g. gut microbiome-to-intestine-to-blood-to-liver-to-kidney-to-urine). We discuss the possibility of an intimate connection between OATs and metabolite sensing and signaling pathways (e.g. bile acids). Furthermore, the metabolomics and pathway analysis support the view that OAT1 plays a greater role in kidney proximal tubule metabolism and OAT3 appears relatively more important in systemic metabolism, modulating levels of metabolites flowing through intestine, liver, and kidney.
Collapse
Affiliation(s)
| | | | - Christina Lun
- Biology, University of California San Diego, La Jolla, California 92093
| | | |
Collapse
|
25
|
Shimizu H, Hagio M, Iwaya H, Tsuneki I, Lee JY, Fukiya S, Yokota A, Miyazaki H, Hara H, Ishizuka S. Deoxycholic acid is involved in the proliferation and migration of vascular smooth muscle cells. J Nutr Sci Vitaminol (Tokyo) 2016; 60:450-4. [PMID: 25866311 DOI: 10.3177/jnsv.60.450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Obesity is increasingly becoming associated with increased risk of atherosclerosis. Serum levels of the bile acid deoxycholic acid (DCA) are elevated in mice with obesity induced by a high-fat (HF) diet. Therefore, we investigated the influence of DCA on the functions of vascular smooth muscle cells (VSMCs) because the initiation and progression of atherosclerosis are associated with VSMC proliferation and migration. DCA induced c-jun N-terminal kinase (JNK) activation whereas a JNK inhibitor prevented DCA-induced VSMC proliferation and migration. Based on these findings, we examined whether DCA promotes the expression of platelet-derived growth factor β-receptor (PDGFRβ) that has a c-Jun binding site in its promoter region. The mRNA and protein expression levels of PDGFRβ were upregulated in VSMCs after a 24- and 48-h incubation with DCA, respectively. The effects of PDGF such as proliferation and migration of VSMCs were promoted after a 48-h incubation with DCA despite the absence of DCA during PDGF stimulation. These findings suggest that elevated serum concentrations of DCA are involved in the pathogenesis of atherosclerosis in HF-induced obesity.
Collapse
Affiliation(s)
- Hidehisa Shimizu
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chu L, Zhang K, Zhang Y, Jin X, Jiang H. Mechanism underlying an elevated serum bile acid level in chronic renal failure patients. Int Urol Nephrol 2015; 47:345-51. [PMID: 25539619 DOI: 10.1007/s11255-014-0901-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/06/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bile acids play an important role in the digestion of dietary lipids. Bile acid metabolism is regulated by the digestive system. The kidney is an important organ of the urinary system and is believed to play a minor role in bile acid excretion; however, many recent studies have reported an increased serum bile acid level and alterations in bile acid homeostasis in both clinical and animal model studies on chronic renal failure. The existing research findings on the mechanisms underlying this phenomenon were mostly derived from animal model studies, but clinical investigations have been limited. MATERIALS AND METHODS Kidney tissues and serum and urine samples from CRF patients and normal controls were studied. RESULTS We found increased serum bile acid levels and decreased urine bile acid output levels in chronic renal failure patients. Mesangial cell and endothelial cell proliferation, glomerular sclerosis, renal interstitial fibrosis, and intrarenal vascular sclerosis were observed based on hematoxylin-eosin and Masson trichrome staining pathology analysis. Scatter diagram and Pearson correlation analysis showed that in chronic renal failure patients, the estimated glomerular filtration rate and serum bile acid level were interrelated. Reverse transcription polymerase chain reaction and Western blotting results indicated that reabsorption and secretion of bile acid at the apical surface of the proximal renal tubular did not contribute to the elevated serum BA level. CONCLUSION The increase in plasma bile acid is due to decreased bile acid filtration through the kidneys in CRF patients.
Collapse
Affiliation(s)
- Lei Chu
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677 Jingshi Road, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
27
|
Kott AFE, Bakry KAA, Eltantawy WA. Preventive and Curative Effects of Zingiber officinale Extract against Histopathological and Ki-67 Immunohistochemical Changes of Glycerol-Induced Acute Renal Failure in Rat. JOURNAL OF MEDICAL SCIENCES 2014. [DOI: 10.3923/jms.2015.25.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Gai Z, Chu L, Hiller C, Arsenijevic D, Penno CA, Montani JP, Odermatt A, Kullak-Ublick GA. Effect of chronic renal failure on the hepatic, intestinal, and renal expression of bile acid transporters. Am J Physiol Renal Physiol 2013; 306:F130-7. [PMID: 24197062 DOI: 10.1152/ajprenal.00114.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although the kidney is believed to play a minor role in bile acid (BA) excretion, chronic renal failure (CRF) has been reported to be associated with increased serum bile acid levels and alterations in BA homeostasis. The mechanisms for elevated BA levels are poorly understood in both clinical and experimental studies. This study was designed to examine the effects of naturally progressing CRF of longer duration on the hepatic and renal mRNA and protein levels of the BA-synthesizing enzyme Cyp7a1 and the BA transporters Ntcp, Bsep, Mrp3, Ost-α, and Ost-β. Sprague-Dawley rats were randomized to the CRF group (⅚ nephrectomy) or to the sham-operated control group and were analyzed 8 wk after surgery. Results obtained in the CRF rats were compared with those obtained in rats that had undergone uninephrectomy (UNX). The CRF group exhibited significantly increased plasma cholesterol and BA concentrations. Hepatic Cyp7a1 mRNA and protein levels were almost identical in the two groups. Hepatic Mrp3, Ost-α, and Ost-β expression was increased, suggesting increased basolateral efflux of bile acids into the blood. However, no such changes in BA transporter expression were observed in the remnant kidney. In UNX rats, similar changes in plasma BA levels and in the expression of BA transporters were found. We hypothesize that the increase in plasma BA is an early event in the progression of CRF and is caused by increased efflux across the basolateral hepatocyte membrane.
Collapse
Affiliation(s)
- Zhibo Gai
- Dept. of Clinical Pharmacology and Toxicology, Univ. Hospital Zurich, Rämistrasse 100, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Létourneau D, Lefebvre A, Lavigne P, LeHoux JG. STARD5 specific ligand binding: comparison with STARD1 and STARD4 subfamilies. Mol Cell Endocrinol 2013; 371:20-5. [PMID: 23337244 DOI: 10.1016/j.mce.2013.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
We present herein a review of our recent results on the characterization of the binding sites of STARD1, STARD5 and STARD6 using NMR and other biophysical techniques. Whereas STARD1 and STARD6 bind cholesterol, no cholesterol binding could be detected for STARD5. However, titration of STARD5 with cholic acid and chenodeoxycholic acid led to specific binding. Using perturbation of the (1)H-(15)N-HSQC spectra and the sequence specific NMR assignments, we identified the amino acids in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Interestingly, these residues are not conserved in STARD1 and STARD6 and could therefore be key structural determinants of the specificity of START domains toward their ligands. We highlight three tissues expressing STARD5 that are affected by bile acids.
Collapse
Affiliation(s)
- Danny Létourneau
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | |
Collapse
|
30
|
Kremer AE, Oude Elferink RPJ, Beuers U. Pathophysiology and current management of pruritus in liver disease. Clin Res Hepatol Gastroenterol 2011; 35:89-97. [PMID: 21809485 DOI: 10.1016/j.clinre.2010.10.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pruritus is frequently reported by patients with cholestatic hepatobiliary diseases such as primary biliary cirrhosis, primary sclerosing cholangitis, intrahepatic cholestasis of pregnancy and hereditary cholestatic syndromes, but may accompany almost any other liver disease. Increased concentrations of bile salts, histamine, progesterone metabolites or endogenous opioids have been controversially discussed as potential pruritogens in cholestasis in the past. Most recently, novel insights unravelled lysophosphatidic acid (LPA), a potent neuronal activator, as a potential pruritogen in pruritus of cholestasis. Nevertheless, the pathogenesis of pruritus in cholestasis is still not clearly defined and current antipruritic treatment strategies provide relief only in a part of the affected patients. Based on recent experimental and clinical findings, this review outlines the actual insight in pathogenesis of pruritus in cholestasis and summarizes evidence-based and experimental therapeutic interventions for cholestatic patients suffering from itch.
Collapse
Affiliation(s)
- Andreas E Kremer
- Tytgat Institute for liver and intestinal research, Department of gastroenterology and hepatology, Academic Medical Center, S1-164, University of Amsterdam, Meibergdreef 69-71, NL-1105 BK Amsterdam, The Netherlands.
| | | | | |
Collapse
|
31
|
Lin S, Chan W, Li J, Cai Z. Liquid chromatography/mass spectrometry for investigating the biochemical effects induced by aristolochic acid in rats: the plasma metabolome. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1312-1318. [PMID: 20391603 DOI: 10.1002/rcm.4516] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry in conjunction with chemometric methods including principal components analysis was used to investigate metabolic profiling in plasma samples from rats dosed with aristolochic acid (AA). Differentiating metabolites were identified by high-resolution mass spectrometry and tandem mass spectrometry analyses, database searching and comparison with the analytical results of authentic standards. Several metabolites in plasma including a glucuronide conjugate, bile acids, lysophosphatidylcholines and fatty acids were detected in rats exposed to AA. To improve visualization, a z-score plot and a cluster heat map were generated for the concentration fluctuations of the metabolites in different dosage groups. The results obtained from this study indicated that class-specific metabolomic patterns were obviously differentiated for each metabolite in the different dosage groups of AA.
Collapse
Affiliation(s)
- Shuhai Lin
- Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | | | | | | |
Collapse
|
32
|
Kremer AE, Beuers U, Oude-Elferink RPJ, Pusl T. Pathogenesis and treatment of pruritus in cholestasis. Drugs 2009; 68:2163-82. [PMID: 18840005 DOI: 10.2165/00003495-200868150-00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pruritus is an enigmatic, seriously disabling symptom accompanying cholestatic liver diseases and a broad range of other disorders. Most recently, novel itch-specific neuronal pathways, itch mediators and their relevant receptors have been identified. In addition, new antipruritic therapeutic strategies have been developed and/or are under evaluation. This review highlights recent experimental and clinical findings focusing on the pathogenesis and actual treatment of pruritus in cholestatic liver disease. Evidence-based therapeutic recommendations, including the use of anion exchange resins cholestyramine, colestipol and colesevelam, the microsomal enzyme inducer rifampicin, the opioid receptor antagonists naltrexone and naloxone, and the serotonin reuptake inhibitor sertraline, are provided.
Collapse
Affiliation(s)
- Andreas E Kremer
- Liver Center, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | |
Collapse
|
33
|
Lu H, Klaassen C. Gender differences in mRNA expression of ATP-binding cassette efflux and bile acid transporters in kidney, liver, and intestine of 5/6 nephrectomized rats. Drug Metab Dispos 2007; 36:16-23. [PMID: 17855625 DOI: 10.1124/dmd.107.014845] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
ATP-binding cassette (ABC) transporters including multidrug resistance proteins (Mdr), multidrug resistance-associated proteins (Mrp), and breast cancer resistance protein (Bcrp/Abcg2) play major roles in tissue defense. Abcg5/g8 is essential in cholesterol efflux. The present study was aimed at elucidating alteration in expression of these transporters and bile-acid transporters during chronic kidney disease (CKD) and underlying molecular mechanisms. Seven weeks after 5/6 nephrectomy (Nx), mRNA expression of 16 aforementioned transporters in kidney, liver, jejunum, and large intestine of male and female Nx rats was quantified with the branched DNA signal amplification assay. In Nx males, intestinal expression of all the transporters remained unchanged; hepatic expression of most transporters was not altered, except increases in Mdr1a, Mrp3, and Abcg8. In male remnant kidneys, kidney-predominant transporter Abcg2 decreased and correlated with CKD severity, whereas Mdr1b, Mrp3, and ileal bile-acid transporter increased and correlated with CKD severity. Such changes were largely absent in Nx females. Renal alterations of these transporters correlated with increases of cytokines and/or decreases of nuclear receptors such as estrogen receptor alpha and glucocorticoid receptor. Renal protein expression of Mrp2 increased, whereas that of Mrp4 remained unchanged in both genders of Nx rats. Treatment of rat proximal tubule NRK-52E cells with interleukin (IL)-1beta and IL-6 increased Mrp3 mRNA expression. In conclusion, during CKD, renal expression of many ABC transporters was altered at the transcriptional level, whereas hepatic mRNA expression of most ABC transporters remained unchanged. Down-regulation of steroid hormone receptors and increase of inflammatory cytokines may contribute to alteration of transporter gene expression in kidney during CKD.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7417, USA
| | | |
Collapse
|
34
|
Qin P, Tang X, Elloso MM, Harnish DC. Bile acids induce adhesion molecule expression in endothelial cells through activation of reactive oxygen species, NF-kappaB, and p38. Am J Physiol Heart Circ Physiol 2006; 291:H741-7. [PMID: 16582018 DOI: 10.1152/ajpheart.01182.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bile acids are synthesized in the liver, stored in gallbladder, and secreted into the intestine to aid in the absorption of lipid-soluble nutrients. In addition, bile acids also actively participate in regulation of gene expression through their ability to act as ligands for the nuclear receptor farnesoid X receptor or by activating kinase signaling pathways. Under cholestatic conditions, elevated levels of bile acids in the liver induce hepatic inflammation, and because bile acid levels are also elevated in the circulation, they might also induce vascular inflammation. To test this hypothesis, primary human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells were treated with bile acids, and the expression of ICAM-1, VCAM-1, and E-selectin were monitored. The three major bile acids found in the circulation, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid, all strongly induced both the mRNA and protein expression of ICAM-1 and VCAM-1. To delineate the mechanism, the experiments were conducted in the presence of various kinase inhibitors. The results demonstrate that the bile acid-mediated induction of adhesion molecule expression occurs by stimulation of NF-kappaB and p38 MAPK signaling pathways through the elevation in reactive oxygen species. The bile acid-induced cell surface expression of ICAM-1 and VCAM-1 was sufficient to result in the increased adhesion of THP-1 monocytes to the HUVEC, suggesting that elevated levels of bile acids in the circulation may cause endothelium dysfunction and contribute to the initiation of early events associated with vascular lesion formation.
Collapse
Affiliation(s)
- Pu Qin
- Wyeth Research, Cardiovascular & Metabolic Disease Research, N2236, 500 Arcola Rd., Collegeville, PA 19426, USA
| | | | | | | |
Collapse
|