1
|
Wang H, Zhang S, Kui X, Ren J, Zhang X, Gao W, Zhang Y, Liu H, Yan J, Sun M, Wu S, Wang C, Yan J. Ciwujianoside E inhibits Burkitt lymphoma cell proliferation and invasion by blocking ENO1-plasminogen interaction and TGF-β1 activation. Biomed Pharmacother 2024; 177:116970. [PMID: 38897160 DOI: 10.1016/j.biopha.2024.116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Burkitt's lymphoma (BL) is a rare and highly aggressive B-cell non-Hodgkin lymphoma. Although the outcomes of patients with BL have greatly improved, options for patients with relapsed and refractory BL are limited. Therefore, there is an urgent need to improve BL therapeutics and to develop novel drugs with reduced toxicity. In this study, we demonstrated that enolase 1 (ENO1) is a potential novel drug target for BL treatment. We determined that ENO1 was aberrantly upregulated in BL, which was closely related to its invasiveness and poor clinical outcomes. Furthermore, using RNA interference, we demonstrated that ENO1 depletion significantly inhibited cell proliferation and invasion both in vitro and in vivo. Mechanistically, we established that ENO1 knockdown suppressed the PI3K-AKT and epithelial-mesenchymal transition (EMT) signaling pathways by reducing plasminogen (PLG) recruitment, plasmin (PL) generation, and TGF-β1 activation. Addition of activated TGF-β1 protein to the culture medium of shENO1 cells reversed the inhibitory effects on cell proliferation and invasion, as well as those on the PI3K-AKT and EMT signaling pathways. Notably, our research led to the discovery of a novel ENO1-PLG interaction inhibitor, Ciwujianoside E (L-06). L-06 effectively disrupts the interaction between ENO1 and PLG, consequently reducing PL generation and suppressing TGF-β1 activation. In both in vitro and in vivo experiments, L-06 exerted impressive antitumor effects. In summary, our study elucidated the critical role of ENO1 in BL cell proliferation and invasion and introduced a novel ENO1 inhibitor, which holds promise for improving the treatment of patients with BL in the future.
Collapse
Affiliation(s)
- Haina Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Shanshan Zhang
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Xiangjie Kui
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Jinhong Ren
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjuan Gao
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yinggang Zhang
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hongchen Liu
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Jingyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China
| | - Mingzhong Sun
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Sijin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| | - Chaoran Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Dalian Institute of Chemical Physics, China.
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China; Department of Pediatric, Pediatric Oncology and Hematology Center, the Second Hospital of Dalian Medical University, Dalian 116027, China.
| |
Collapse
|
2
|
Hemmadi V, Biswas M, Mohsin M, Bano R. Biochemical and biophysical analysis of the interaction of a recombinant form of Staphylococcus aureus enolase with plasminogen. Future Microbiol 2022; 17:1455-1473. [DOI: 10.2217/fmb-2022-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim: Pathogenic invasion of Staphylococcus aureus is critically dependent on host plasminogen activation. Materials & methods: The pathophysiological implications of the interactions between S. aureus recombinant enolase and host plasminogen were investigated. The effects of mutation and small synthetic peptide inhibitors on interactions were assessed. Results: In vitro, the S. aureus recombinant enolase exists as a catalytically active fragile octamer and a robust dimer. The dimer interacts with the host plasminogen on the S. aureus surface. Conclusion: The interaction of host plasminogen and S. aureus enolase might mediate bacterial adherence to the host, activate the plasminogen with the help of plasminogen activators and prevent α2-antiplasmin-mediated inhibition of plasmin. Incorporating mutant and synthetic peptides inhibited the interactions and their associated pathophysiological consequences.
Collapse
Affiliation(s)
- Vijay Hemmadi
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Mohd Mohsin
- Department of Biosciences, Metabolic Engineering Lab, Jamia Millia Islamia, New Delhi, 110025, India
| | - Reshma Bano
- Department of Biosciences, Metabolic Engineering Lab, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
3
|
Zhang K, Li S, Wang Y, Wang Z, Mulvenna N, Yang H, Zhang P, Chen H, Li Y, Wang H, Gao Y, Wigneshweraraj S, Matthews S, Zhang K, Liu B. Bacteriophage protein PEIP is a potent Bacillus subtilis enolase inhibitor. Cell Rep 2022; 40:111026. [PMID: 35793626 DOI: 10.1016/j.celrep.2022.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022] Open
Abstract
Enolase is a highly conserved enzyme that presents in all organisms capable of glycolysis or fermentation. Its immediate product phosphoenolpyruvate is essential for other important processes like peptidoglycan synthesis and the phosphotransferase system in bacteria. Therefore, enolase inhibitors are of great interest. Here, we report that Gp60, a phage-encoded enolase inhibitor protein (PEIP) of bacteriophage SPO1 for Bacillus subtilis, is an enolase inhibitor. PEIP-expressing bacteria exhibit growth attenuation, thinner cell walls, and safranin color in Gram staining owing to impaired peptidoglycan synthesis. We solve the structure of PEIP-enolase tetramer and show that PEIP disassembles enolase by disrupting the basic dimer unit. The structure reveals that PEIP does not compete for substrate binding but induces a cascade of conformational changes that limit accessibility to the enolase catalytic site. This phage-inspired disassembly of enolase represents an alternative strategy for the development of anti-microbial drugs.
Collapse
Affiliation(s)
- Kaining Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhihao Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nancy Mulvenna
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Peipei Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yongxiang Gao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | - Steve Matthews
- Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Heterologous Expression, Biochemical Characterisation and Computational Analysis of Bacteroides fragilis Enolase. Comput Biol Chem 2022; 98:107658. [DOI: 10.1016/j.compbiolchem.2022.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022]
|
5
|
Chen R, Zhao L, Gan R, Feng Z, Cui C, Xie X, Hao F, Zhang Z, Wang L, Ran T, Wang W, Zhang S, Li Y, Zhang W, Pang M, Xiong Q, Shao G. Evidence for the Rapid and Divergent Evolution of Mycoplasmas: Structural and Phylogenetic Analysis of Enolases. Front Mol Biosci 2022; 8:811106. [PMID: 35145997 PMCID: PMC8822174 DOI: 10.3389/fmolb.2021.811106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Mycoplasmas are a group of prokaryotes without cell walls that have evolved through several rounds of degenerative evolution. With a low cell DNA G + C content and definitively long genetic lineages, mycoplasmas are thought to be in a state of rapid evolution. However, little associated evidence has been provided. Enolase is a key enzyme in glycolysis that is widely found in all species from the three domains, and it is evolutionarily conserved. In our previous studies, enolase acted as a virulence factor and participated in cell-surface adhesion in Mycoplasma hyopneumoniae. Furthermore, unique loop regions were first found in the crystal structure of Mhp Eno. Here, enolase structures from Mycoplasma pneumoniae and Mycoplasma bovis were determined. An extra helix 7 is specific and conservatively found in almost all mycoplasma enolases, as confirmed by crystal structures and sequence alignment. Particular motifs for helix 7, which is composed of F-K/G-K-L/F-K-X-A-I, have been proposed and could be regarded as molecular markers. To our surprise, the genetic distances between any two mycoplasma enolases were obviously longer than those between the two corresponding species themselves, indicating divergent evolution of mycoplasma enolases, whereas no horizontal gene transfer was detected in mycoplasma enolase genens. Furthermore, different evolutionary patterns were adopted by different loop regions of mycoplasma enolase. Enolases from different Mycoplasma species also showed different affinities for PLG and fibronectin. Our results indicate the rapid and divergent evolution of mycoplasma enolase and mycoplasmas. This study will also aid understanding the independent evolution of Mycoplasma species after separation from their common ancestor.
Collapse
Affiliation(s)
- Rong Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lin Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chenxi Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xing Xie
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fei Hao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Li Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tingting Ran
- Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shuijun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yufeng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology of Ministry of Agriculture, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Wei Zhang, ; Maoda Pang, ; Qiyan Xiong,
| | - Maoda Pang
- State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Wei Zhang, ; Maoda Pang, ; Qiyan Xiong,
| | - Qiyan Xiong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Wei Zhang, ; Maoda Pang, ; Qiyan Xiong,
| | - Guoqing Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
6
|
Moonlighting in Bacillus subtilis: The Small Proteins SR1P and SR7P Regulate the Moonlighting Activity of Glyceraldehyde 3-Phosphate Dehydrogenase A (GapA) and Enolase in RNA Degradation. Microorganisms 2021; 9:microorganisms9051046. [PMID: 34066298 PMCID: PMC8152036 DOI: 10.3390/microorganisms9051046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
Moonlighting proteins are proteins with more than one function. During the past 25 years, they have been found to be rather widespread in bacteria. In Bacillus subtilis, moonlighting has been disclosed to occur via DNA, protein or RNA binding or protein phosphorylation. In addition, two metabolic enzymes, enolase and phosphofructokinase, were localized in the degradosome-like network (DLN) where they were thought to be scaffolding components. The DLN comprises the major endoribonuclease RNase Y, 3'-5' exoribonuclease PnpA, endo/5'-3' exoribonucleases J1/J2 and helicase CshA. We have ascertained that the metabolic enzyme GapA is an additional component of the DLN. In addition, we identified two small proteins that bind scaffolding components of the degradosome: SR1P encoded by the dual-function sRNA SR1 binds GapA, promotes the GapA-RNase J1 interaction and increases the RNase J1 activity. SR7P encoded by the dual-function antisense RNA SR7 binds to enolase thereby enhancing the enzymatic activity of enolase bound RNase Y. We discuss the role of small proteins in modulating the activity of two moonlighting proteins.
Collapse
|
7
|
Hemmadi V, Das A, Chouhan OP, Biswas S, Biswas M. Effect of ions and inhibitors on the catalytic activity and structural stability of S. aureus enolase. J Biosci 2019. [DOI: 10.1007/s12038-019-9912-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Chen R, Yu Y, Feng Z, Gan R, Xie X, Zhang Z, Xie Q, Wang W, Ran T, Zhang W, Xiong Q, Shao G. Featured Species-Specific Loops Are Found in the Crystal Structure of Mhp Eno, a Cell Surface Adhesin From Mycoplasma hyopneumoniae. Front Cell Infect Microbiol 2019; 9:209. [PMID: 31263685 PMCID: PMC6585157 DOI: 10.3389/fcimb.2019.00209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Enolase is an evolutionarily conserved enzyme involved in the processes of glycolysis and gluconeogenesis. Mycoplasma hyopneumoniae belongs to Mycoplasma, whose species are wall-less and among the smallest self-replicating bacteria, and is an important colonizing respiratory pathogen in the pig industry worldwide. Mycoplasma hyopneumoniae enolase (Mhp Eno) expression is significantly increased after infection and was previously found to be a virulence factor candidate. Our studies show that Mhp Eno is a cell surface-localized protein that can adhere to swine tracheal epithelial cells (STECs). Adhesion to STECs can be specifically inhibited by an Mhp Eno antibody. Mhp Eno can recognize and interact with plasminogen with high affinity. Here, the first crystal structure of the mycoplasmal enolase from Mycoplasma hyopneumoniae was determined. The structure showed unique features of Mhp Eno in the S3/H1, H6/S6, H7/H8, and H13 regions. All of these regions were longer than those of other enolases and were exposed on the Mhp Eno surface, making them accessible to host molecules. These results show that Mhp Eno has specific structural characteristics and acts as a multifunctional adhesin on the Mycoplasma hyopneumoniae cell surface.
Collapse
Affiliation(s)
- Rong Chen
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qingyun Xie
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Weiwu Wang
- Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Tingting Ran
- Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology of Ministry of Agriculture, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology of Ministry of Agriculture, National Center for Engineering Research of Veterinary Bioproducts, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Massaiu I, Pasotti L, Sonnenschein N, Rama E, Cavaletti M, Magni P, Calvio C, Herrgård MJ. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains. Microb Cell Fact 2019; 18:3. [PMID: 30626384 PMCID: PMC6325765 DOI: 10.1186/s12934-018-1052-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/29/2018] [Indexed: 12/15/2022] Open
Abstract
Background Genome-scale metabolic models (GEMs) allow predicting metabolic phenotypes from limited data on uptake and secretion fluxes by defining the space of all the feasible solutions and excluding physio-chemically and biologically unfeasible behaviors. The integration of additional biological information in genome-scale models, e.g., transcriptomic or proteomic profiles, has the potential to improve phenotype prediction accuracy. This is particularly important for metabolic engineering applications where more accurate model predictions can translate to more reliable model-based strain design. Results Here we present a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO) model of Bacillus subtilis, which uses publicly available proteomic data and enzyme kinetic parameters for central carbon (CC) metabolic reactions to constrain the flux solution space. This model allows more accurate prediction of the flux distribution and growth rate of wild-type and single-gene/operon deletion strains compared to a standard genome-scale metabolic model. The flux prediction error decreased by 43% and 36% for wild-type and mutants respectively. The model additionally increased the number of correctly predicted essential genes in CC pathways by 2.5-fold and significantly decreased flux variability in more than 80% of the reactions with variable flux. Finally, the model was used to find new gene deletion targets to optimize the flux toward the biosynthesis of poly-γ-glutamic acid (γ-PGA) polymer in engineered B. subtilis. We implemented the single-reaction deletion targets identified by the model experimentally and showed that the new strains have a twofold higher γ-PGA concentration and production rate compared to the ancestral strain. Conclusions This work confirms that integration of enzyme constraints is a powerful tool to improve existing genome-scale models, and demonstrates the successful use of enzyme-constrained models in B. subtilis metabolic engineering. We expect that the new model can be used to guide future metabolic engineering efforts in the important industrial production host B. subtilis.
Collapse
Affiliation(s)
- Ilaria Massaiu
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Dep. Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy.,Centre for Health Technologies, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - Lorenzo Pasotti
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Dep. Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy.,Centre for Health Technologies, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Erlinda Rama
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Matteo Cavaletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Paolo Magni
- Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Dep. Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy.,Centre for Health Technologies, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - Cinzia Calvio
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
10
|
Biochemical and Biophysical Characterization of the Enolase from Helicobacter pylori. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9538193. [PMID: 30648111 PMCID: PMC6311853 DOI: 10.1155/2018/9538193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
Enolase, which catalyses the conversion of 2-phospho-D-glycerate to phosphoenolpyruvate, is an important enzyme in the classic glycolysis pathway in cells. Enolase is highly conserved in organisms from bacteria to humans, indicating its importance in cells. Thus, enolase is a good target for developing new drugs. In the last decade, new functions of this enzyme have been found. Helicobacter pylori is a common human pathogen that causes gastric diseases and even gastric cancer. In this study, the sequence of H. pylori enolase (HpEno) was analysed; the conservation (at least partial) of binding sites for cofactor, plasminogen, and host extracellular RNA, as well as catalytic site, indicates that HpEno should be capable of performing the functions. Recombinant HpEno was overexpressed and purified from E. coli. Compared to the enolases from other species, HpEno had similar characteristics for its secondary structure. The temperature-induced profiles indicate that HpEno is quite stable to temperature, compared to other homologs. Regarding the kinetics of the unfolding reaction, we found that the activation enthalpy associated with the thermal unfolding reaction is equivalent to the reported activation enthalpy for yeast enolase, indicating a similar scaffold and kinetic stability. Although a wide range of experimental conditions were assayed, it was not possible to detect any enzymatic activity of HpEno. To prove the lack of activity, still a much wider range of experiments should be carried out.
Collapse
|
11
|
Dutta S, Tewari A, Balaji C, Verma R, Moitra A, Yadav M, Agrawal P, Sahal D, Jarori GK. Strain-transcending neutralization of malaria parasite by antibodies against Plasmodium falciparum enolase. Malar J 2018; 17:304. [PMID: 30126436 PMCID: PMC6102825 DOI: 10.1186/s12936-018-2455-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022] Open
Abstract
Background Plasmodium enolase is a target for the growth neutralizing antibodies. Interestingly, the three invasive stages i.e. sporozoites, merozoites, and ookinetes express this protein on their cell surface. Polyclonal anti-Plasmodium falciparum enolase (Pfeno) antibodies disrupt traversal of ookinete through mosquito mid-gut wall as well as have inhibitory effect on parasite growth at erythrocytic stage. In a recent study, it was observed that immunization with a unique epitope of parasite enolase (EWGWS) could confer partial protection against mouse malaria. Further validation is needed for the protective potential of this unique epitope in otherwise highly conserved enolase. Methods In order to investigate the efficacy of growth inhibitory potential of the epitope of P falciparum enolase, a monoclonal antibody specific to EWGWS is generated. In vitro parasite growth inhibition assays and passive immunization of Plasmodium yoelii (or Plasmodium berghei) infected mice were used to assess the parasite growth neutralizing activity of the antibody. Results Screening a panel of monoclonal antibodies raised against recombinant Pfeno that were specific to EWGWS resulted in isolation of H12E1. This antibody recognized only EWGWS epitope containing enolases. H12E1 strongly inhibited parasite growth in culture. This inhibition was strain transcending. Passive infusion of this antibody in P. yoelii or P. berghei infected mice showed significant reduction in parasitemia as compared to controls (p < 0.001). Surface Plasmon Resonance measurements indicated high affinity binding of H12E1 to P. falciparum enolase (KD ~ 7.6 × 10−9M). Conclusions A monoclonal antibody directed against EWGWS epitope of Pfeno was shown to inhibit the growth of blood stage malarial parasites. This inhibition was species/strain transcending and is likely to arise due to blockade of enolase on the surface of merozoites, functionally implicating Pfeno in invasion related events. Presence of enolase on the cell surface of merozoites and ookinetes could potentially result in inhibition of host cell invasions at erythrocytic and transmission stages in the parasite life cycle. It is suggested that antibodies against EWGWS epitope have the potential to confer dual stage, species and strain transcending protection against malaria. Electronic supplementary material The online version of this article (10.1186/s12936-018-2455-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sneha Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.,Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Graduate School of Arts and Sciences, Harvard University, Boston, USA
| | - Aneesha Tewari
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.,Department of Biology, Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology (MIT), Boston, USA
| | - Chinthapalli Balaji
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Reena Verma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Anasuya Moitra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India
| | - Mamta Yadav
- International Center for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, India
| | - Prakhar Agrawal
- International Center for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, India
| | - Dinkar Sahal
- International Center for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, India
| | - Gotam K Jarori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, India.
| |
Collapse
|
12
|
Yakarsonmez S, Cayir E, Mutlu O, Nural B, Sariyer E, Topuzogullari M, Milward MR, Cooper PR, Erdemir A, Turgut-Balik D. Cloning, expression and characterization of the gene encoding the enolase from Fusobacterium nucleatum. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816010142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Dutta S, Mukherjee D, Jarori GK. Replacement of Ser108 in Plasmodium falciparum enolase results in weak Mg(II) binding: role of a parasite-specific pentapeptide insert in stabilizing the active conformation of the enzyme. FEBS J 2015; 282:2296-308. [PMID: 25787157 DOI: 10.1111/febs.13272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 01/20/2023]
Abstract
A distinct structural feature of Plasmodium falciparum enolase (Pfeno) is the presence of a five amino acid insert -104EWGWS108- that is not found in host enolases. Its conservation among apicomplexan enolases has raised the possibility of its involvement in some important physiological function(s). Deletion of this sequence is known to lower k(cat)/K(m), increase K(a) for Mg(II) and convert dimer into monomers (Vora HK, Shaik FR, Pal-Bhowmick I, Mout R & Jarori GK (2009) Arch Biochem Biophys 485, 128-138). These authors also raised the possibility of the formation of an H-bond between Ser108 and Leu49 that could stabilize the apo-Pfeno in an active closed conformation that has high affinity for Mg(II). Here, we examined the effect of replacement of Ser108 with Gly/Ala/Thr on enzyme activity, Mg(II) binding affinity, conformational states and oligomeric structure and compared it with native recombinant Pfeno. The results obtained support the view that Ser108 is likely to be involved in the formation of certain crucial H-bonds with Leu49. The presence of these interactions can stabilize apo-Pfeno in an active closed conformation similar to that of Mg(II) bound yeast enolase. As predicted, S108G/A-Pfeno variants (where Ser108-Leu49 H-bonds are likely to be disrupted) were found to exist in an open conformation and had low affinity for Mg(II). They also required Mg(II) induced conformational changes to acquire the active closed conformational state essential for catalysis. The possible physiological relevance of apo-Pfeno being in such an active state is discussed.
Collapse
Affiliation(s)
- Sneha Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Debanjan Mukherjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Gotam K Jarori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
14
|
Abstract
Enolase is a conserved cytoplasmic metalloenzyme existing universally in both eukaryotic and prokaryotic cells. The enzyme can also locate on the cell surface and bind to plasminogen, via which contributing to the mucosal surface localization of the bacterial pathogens and assisting the invasion into the host cells. The functions of the eukaryotic enzymes on the cell surface expression (including T cells, B cells, neutrophils, monocytoes, neuronal cells and epithelial cells) are not known. Streptococcus suis serotype 2 (S. suis 2, SS2) is an important zoonotic pathogen which has recently caused two large-scale outbreaks in southern China with severe streptococcal toxic shock syndrome (STSS) never seen before in human sufferers. We recently identified the SS2 enolase as an important protective antigen which could protect mice from fatal S.suis 2 infection. In this study, a 2.4-angstrom structure of the SS2 enolase is solved, revealing an octameric arrangement in the crystal. We further demonstrated that the enzyme exists exclusively as an octamer in solution via a sedimentation assay. These results indicate that the octamer is the biological unit of SS2 enolase at least in vitro and most likely in vivo as well. This is, to our knowledge, the first comprehensive characterization of the SS2 enolase octamer both structurally and biophysically, and the second octamer enolase structure in addition to that of Streptococcus pneumoniae. We also investigated the plasminogen binding property of the SS2 enzyme.
Collapse
|
15
|
Levering J, Musters MWJM, Bekker M, Bellomo D, Fiedler T, de Vos WM, Hugenholtz J, Kreikemeyer B, Kummer U, Teusink B. Role of phosphate in the central metabolism of two lactic acid bacteria - a comparative systems biology approach. FEBS J 2012; 279:1274-90. [DOI: 10.1111/j.1742-4658.2012.08523.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Newman JA, Hewitt L, Rodrigues C, Solovyova AS, Harwood CR, Lewis RJ. Dissection of the network of interactions that links RNA processing with glycolysis in the Bacillus subtilis degradosome. J Mol Biol 2012; 416:121-36. [PMID: 22198292 DOI: 10.1016/j.jmb.2011.12.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 11/16/2022]
Abstract
The RNA degradosome is a multiprotein macromolecular complex that is involved in the degradation of messenger RNA in bacteria. The composition of this complex has been found to display a high degree of evolutionary divergence, which may reflect the adaptation of species to different environments. Recently, a degradosome-like complex identified in Bacillus subtilis was found to be distinct from those found in proteobacteria, the degradosomes of which are assembled around the unstructured C-terminus of ribonuclease E, a protein not present in B. subtilis. In this report, we have investigated in vitro the binary interactions between degradosome components and have characterized interactions between glycolytic enzymes, RNA-degrading enzymes, and those that appear to link these two cellular processes. The crystal structures of the glycolytic enzymes phosphofructokinase and enolase are presented and discussed in relation to their roles in the mediation of complex protein assemblies. Taken together, these data provide valuable insights into the structure and dynamics of the RNA degradosome, a fascinating and complex macromolecular assembly that links RNA degradation with central carbon metabolism.
Collapse
Affiliation(s)
- Joseph A Newman
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
17
|
Podar D, Scherer J, Noordally Z, Herzyk P, Nies D, Sanders D. Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 2011; 287:3185-96. [PMID: 22139846 DOI: 10.1074/jbc.m111.305649] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. Members of the CDF family are ubiquitously found in all living entities and show principal selectivity for Zn(2+), Mn(2+), and Fe(2+). Little is known regarding metal selectivity determinants of CDFs. We identified a novel cereal member of CDFs in barley, termed HvMTP1, that localizes to the vacuolar membrane. Unlike its close relative AtMTP1, which is highly selective for Zn(2+), HvMTP1 exhibits selectivity for both Zn(2+) and Co(2+) as assessed by its ability to suppress yeast mutant phenotypes for both metals. Expression of HvMTP1/AtMTP1 chimeras in yeast revealed a five-residue sequence within the AtMTP1 N-segment of the His-rich intracytoplasmic loop that confines specificity to Zn(2+). Furthermore, mutants of AtMTP1 generated through random mutagenesis revealed residues embedded within transmembrane domain 3 that additionally specify the high degree of Zn(2+) selectivity. We propose that the His-rich loop, which might play a role as a zinc chaperone, determines the identity of the metal ions that are transported. The residues within transmembrane domain 3 can also influence metal selectivity, possibly through conformational changes induced at the cation transport site located within the membrane or at the cytoplasmic C-terminal domain.
Collapse
Affiliation(s)
- Dorina Podar
- Department of Biology, University of York, York YO10 5DD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
18
|
Karbassi F, Quiros V, Pancholi V, Kornblatt MJ. Dissociation of the octameric enolase from S. pyogenes--one interface stabilizes another. PLoS One 2010; 5:e8810. [PMID: 20098674 PMCID: PMC2809091 DOI: 10.1371/journal.pone.0008810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/20/2009] [Indexed: 11/18/2022] Open
Abstract
Most enolases are homodimers. There are a few that are octamers, with the eight subunits arranged as a tetramer of dimers. These dimers have the same basic fold and same subunit interactions as are found in the dimeric enolases. The dissociation of the octameric enolase from S. pyogenes was examined, using NaClO4, a weak chaotrope, to perturb the quaternary structure. Dissociation was monitored by sedimentation velocity. NaClO4 dissociated the octamer into inactive monomers. There was no indication that dissociation of the octamer into monomers proceeded via formation of significant amounts of dimer or any other intermediate species. Two mutations at the dimer-dimer interface, F137L and E363G, were introduced in order to destabilize the octameric structure. The double mutant was more easily dissociated than was the wild type. Dissociation could also be produced by other salts, including tetramethylammonium chloride (TMACl) or by increasing pH. In all cases, no significant amounts of dimers or other intermediates were formed. Weakening one interface in this protein weakened the other interface as well. Although enolases from most organisms are dimers, the dimeric form of the S. pyogenes enzyme appears to be unstable.
Collapse
Affiliation(s)
- Farhad Karbassi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Veronica Quiros
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Vijay Pancholi
- Department of Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Mary J. Kornblatt
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
19
|
Sánchez-Miguel DS, Romero-Jiménez J, Reyes-López CA, Cabrera-Ávila AL, Carrillo-Ibarra N, Benítez-Cardoza CG. Chemical Unfolding of Enolase from Saccharomyces cerevisiae Exhibits a Three-State Model. Protein J 2009; 29:1-10. [DOI: 10.1007/s10930-009-9215-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Yamamoto H, Kunishima N. Purification, crystallization and preliminary crystallographic study of the putative enolase MJ0232 from the hyperthermophilic archaeon Methanococcus jannaschii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1087-90. [PMID: 18997349 DOI: 10.1107/s1744309108034180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 10/20/2008] [Indexed: 11/10/2022]
Abstract
Enolase is a glycolytic enzyme that catalyzes the interconversion of phosphoenolpyruvate and 2-phosphoglycerate. In order to gain insight into the biological significance of the oligomeric state of this enzyme, the putative enolase MJ0232 from the hyperthermophilic archaeon Methanococcus jannaschii was cloned, overexpressed and purified. Crystals were obtained by the oil-microbatch method at 291 K using PEG 4000 as a precipitant. A native data set was collected to 1.85 A resolution. The crystal belonged to the tetragonal space group I4, with unit-cell parameters a = 148.8, c = 91.2 A. An initial model was obtained by molecular replacement, which revealed an octameric subunit association (a tetramer of dimers). This result is consistent with that from a dynamic light-scattering experiment, suggesting biological relevance of the octameric state of MJ0232 in solution.
Collapse
Affiliation(s)
- Hitoshi Yamamoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | |
Collapse
|
21
|
Antikainen J, Kuparinen V, Lähteenmäki K, Korhonen TK. Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. ACTA ACUST UNITED AC 2007; 51:526-34. [PMID: 17892475 DOI: 10.1111/j.1574-695x.2007.00330.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enolase occurs as a cytoplasmic and a surface-associated protein in bacteria. Enolases of the bacterial pathogens Streptococcus pyogenes, Streptococcus pneumoniae and Staphylococcus aureus, as well as of the commensal lactic acid bacteria, Lactobacillus crispatus and Lactobacillus johnsonii, were purified as His(6)-fusion proteins from recombinant Escherichia coli. The fusion proteins were compared for putative virulence-associated functions, i.e., binding of human plasminogen, enhancement of plasminogen activation by human plasminogen activators, as well as binding to immobilized laminin, fibronectin and collagens. The individual enolases showed varying efficiencies in these functions. In particular, highly and equally effective interactions with plasminogen and laminin were seen with lactobacillar and staphylococcal enolases.
Collapse
Affiliation(s)
- Jenni Antikainen
- General Microbiology, Faculty of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
22
|
de A S Navarro MV, Gomes Dias SM, Mello LV, da Silva Giotto MT, Gavalda S, Blonski C, Garratt RC, Rigden DJ. Structural flexibility in Trypanosoma brucei enolase revealed by X-ray crystallography and molecular dynamics. FEBS J 2007; 274:5077-89. [PMID: 17822439 DOI: 10.1111/j.1742-4658.2007.06027.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enolase is a validated drug target in Trypanosoma brucei. To better characterize its properties and guide drug design efforts, we have determined six new crystal structures of the enzyme, in various ligation states and conformations, and have carried out complementary molecular dynamics simulations. The results show a striking structural diversity of loops near the catalytic site, for which variation can be interpreted as distinct modes of conformational variability that are explored during the molecular dynamics simulations. Our results show that sulfate may, unexpectedly, induce full closure of catalytic site loops whereas, conversely, binding of inhibitor phosphonoacetohydroxamate may leave open a tunnel from the catalytic site to protein surface offering possibilities for drug development. We also present the first complex of enolase with a novel inhibitor 2-fluoro-2-phosphonoacetohydroxamate. The molecular dynamics results further encourage efforts to design irreversible species-specific inhibitors: they reveal that a parasite enzyme-specific lysine may approach the catalytic site more closely than crystal structures suggest and also cast light on the issue of accessibility of parasite enzyme-specific cysteines to chemically modifying reagents. One of the new sulfate structures contains a novel metal-binding site IV within the catalytic site cleft.
Collapse
|
23
|
Pal-Bhowmick I, Krishnan S, Jarori GK. Differential susceptibility of Plasmodium falciparum versus yeast and mammalian enolases to dissociation into active monomers. FEBS J 2007; 274:1932-45. [PMID: 17371507 DOI: 10.1111/j.1742-4658.2007.05738.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the past, several unsuccessful attempts have been made to dissociate homodimeric enolases into their active monomeric forms. The main objective of these studies had been to understand whether intersubunit interactions are essential for the catalytic and structural stability of enolases. Further motivation to investigate the properties of monomeric enolase has arisen from several recent reports on the involvement of enolase in diverse nonglycolytic (moonlighting) functions, where it may occur in monomeric form. Here, we report successful dissociation of dimeric enolases from Plasmodium falciparum, yeast and rabbit muscle into active and isolatable monomers. Dimeric enolases could be dissociated into monomers by high concentrations ( approximately 250 mm) of imidazole and/or hydrogen ions. Two forms were separated using Superdex-75 gel filtration chromatography. A detailed comparison of the kinetic and structural properties of monomeric and dimeric forms of recombinant P. falciparum enolase showed differences in specific activity, salt-induced inhibition and inactivation, thermal stability, etc. Furthermore, we found that enolases from the three species differ in their dimer dissociation profiles. Specifically, on challenge with imidazole, Mg(II) protected the enolases of yeast and rabbit muscle but not of P. falciparum from dissociation. The observed differential stability of the P. falciparum enolase dimer interface with respect to mammalian enolases could be exploited to selectively dissociate the dimeric parasite enzyme into its catalytically inefficient, thermally unstable monomeric form. Thus enolase could be a novel therapeutic target for malaria.
Collapse
Affiliation(s)
- Ipsita Pal-Bhowmick
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | | |
Collapse
|
24
|
Lee JH, Kang HK, Moon YH, Cho DL, Kim D, Choe JY, Honzatko R, Robyt JF. Cloning, expression and characterization of an extracellular enolase from Leuconostoc mesenteroides. FEMS Microbiol Lett 2006; 259:240-8. [PMID: 16734786 DOI: 10.1111/j.1574-6968.2006.00274.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Enolase on the surface of streptococci putatively facilitates pathogenic invasion of the host organisms. The related Leuconostoc mesenteroides 512FMCM is nonpathogenic, but it too has an extracellular enolase. Purified isolates of extracellular dextransucrase from cultures of L. mesenteroides contain minute amounts of enolase, which separate as small crystals. Expression of L. mesenteroides enolase in Escherichia coli provides a protein (calculated subunit mass of 47 546 Da) catalyzing the conversion of 2-phsopho-D-glycerate to phosphoenolpyruvate. The pH optimum is 6.8, with Km and kcat values of 2.61 mM and 27.5 s(-1), respectively. At phosphate concentrations of 1 mM and below, fluoride is a noncompetitive inhibitor with respect to 2-phospho-D-glycerate, but in the presence of 20 mM phosphate, fluoride becomes a competitive inhibitor. Recombinant enolase significantly inhibits the activity of purified dextransucrase, and does not bind human plasminogen. Results here suggest that in some organisms enolase may participate in protein interactions that have no direct relevance to pathogenic invasion.
Collapse
Affiliation(s)
- Jin-Ha Lee
- Engineering Research Institute, Chonnam National University, Gwang-Ju, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pal-Bhowmick I, Sadagopan K, Vora HK, Sehgal A, Sharma S, Jarori GK. Cloning, over-expression, purification and characterization of Plasmodium falciparum enolase. ACTA ACUST UNITED AC 2005; 271:4845-54. [PMID: 15606772 DOI: 10.1111/j.1432-1033.2004.04450.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have cloned, over-expressed and purified enolase from Plasmodium falciparum strain NF54 in Escherichia coli in active form, as an N-terminal His6-tagged protein. The sequence of the cloned enolase from the NF54 strain is identical to that of strain 3D7 used in full genome sequencing. The recombinant enolase (r-Pfen) could be obtained in large quantities (approximately 50 mg per litre of culture) in a highly purified form (> 95%). The purified protein gave a single band at approximately 50 kDa on SDS/PAGE. MALDI-TOF analysis gave a mean +/- SD mass of 51396 +/- 16 Da, which is in good agreement with the mass calculated from the sequence. The molecular mass of r-Pfen determined in gel-filtration experiments was approximately 100 kDa, indicating that P. falciparum enolase is a homodimer. Kinetic measurements using 2-phosphoglycerate as substrate gave a specific activity of approximately 30 U.mg(-1) and K(m2PGA) = 0.041 +/- 0.004 mm. The Michaelis constant for the reverse reaction (K(mPEP)) is 0.25 +/- 0.03 mm. pH-dependent activity measurements gave a maximum at pH 7.4-7.6 irrespective of the direction of catalysis. The activity of this enzyme is inhibited by Na+, whereas K+ has a slight activating effect. The cofactor Mg2+ has an apparent activation constant of 0.18 +/-0.02 mm. However, at higher concentrations, it has an inhibitory effect. Polyclonal antibody raised against pure recombinant P. falciparum enolase in rabbit showed high specificity towards recombinant protein and is also able to recognize enolase from the murine malarial parasite, Plasmodium yoelii, which shares 90% identity with the P. falciparum protein.
Collapse
Affiliation(s)
- Ipsita Pal-Bhowmick
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | |
Collapse
|
26
|
Saavedra E, Encalada R, Pineda E, Jasso-Chávez R, Moreno-Sánchez R. Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J 2005; 272:1767-83. [PMID: 15794763 DOI: 10.1111/j.1742-4658.2005.04610.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The synthesis of ATP in the human parasite Entamoeba histolytica is carried out solely by the glycolytic pathway. Little kinetic and structural information is available for most of the pathway enzymes. We report here the gene cloning, overexpression and purification of hexokinase, hexose-6-phosphate isomerase, inorganic pyrophosphate-dependent phosphofructokinase, fructose-1,6 bisphosphate aldolase (ALDO), triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase, phosphoglycerate mutase (PGAM), enolase, and pyruvate phosphate dikinase (PPDK) enzymes from E. histolytica. Kinetic characterization of these 10 recombinant enzymes was made, establishing the kinetic constants at optimal and physiological pH values, analyzing the effect of activators and inhibitors, and investigating the storage stability and oligomeric state. Determination of the catalytic efficiencies at the pH optimum and at pH values that resemble those of the amoebal trophozoites was performed for each enzyme to identify possible controlling steps. This analysis suggested that PGAM, ALDO, GAPDH, and PPDK might be flux control steps, as they showed the lowest catalytic efficiencies. An in vitro reconstruction of the final stages of glycolysis was made to determine their flux control coefficients. Our results indicate that PGAM and PPDK exhibit high control coefficient values at physiological pH.
Collapse
Affiliation(s)
- Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Tlalpan, México DF, México.
| | | | | | | | | |
Collapse
|
27
|
Ehinger S, Schubert WD, Bergmann S, Hammerschmidt S, Heinz DW. Plasmin(ogen)-binding α-Enolase from Streptococcus pneumoniae: Crystal Structure and Evaluation of Plasmin(ogen)-binding Sites. J Mol Biol 2004; 343:997-1005. [PMID: 15476816 DOI: 10.1016/j.jmb.2004.08.088] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 08/24/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
Alpha-enolases are ubiquitous cytoplasmic, glycolytic enzymes. In pathogenic bacteria, alpha-enolase doubles as a surface-displayed plasmin(ogen)-binder supporting virulence. The plasmin(ogen)-binding site was initially traced to the two C-terminal lysine residues. More recently, an internal nine-amino acid motif comprising residues 248 to 256 was identified with this function. We report the crystal structure of alpha-enolase from Streptococcus pneumoniae at 2.0A resolution, the first structure both of a plasminogen-binding and of an octameric alpha-enolase. While the dimer is structurally similar to other alpha-enolases, the octamer places the C-terminal lysine residues in an inaccessible, inter-dimer groove restricting the C-terminal lysine residues to a role in folding and oligomerization. The nine residue plasminogen-binding motif, by contrast, is exposed on the octamer surface revealing this as the primary site of interaction between alpha-enolase and plasminogen.
Collapse
Affiliation(s)
- Stefanie Ehinger
- Division of Structural Biology, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
28
|
Chai G, Brewer JM, Lovelace LL, Aoki T, Minor W, Lebioda L. Expression, Purification and the 1.8Å Resolution Crystal Structure of Human Neuron Specific Enolase. J Mol Biol 2004; 341:1015-21. [PMID: 15289101 DOI: 10.1016/j.jmb.2004.05.068] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/25/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
Human neuron-specific enolase (NSE) or isozyme gamma has been expressed with a C-terminal His-tag in Escherichia coli. The enzyme has been purified, crystallized and its crystal structure determined. In the crystals the enzyme forms the asymmetric complex NSE x Mg2 x SO4/NSE x Mg x Cl, where "/" separates the dimer subunits. The subunit that contains the sulfate (or phosphate) ion and two magnesium ions is in the closed conformation observed in enolase complexes with the substrate or its analogues; the other subunit is in the open conformation observed in enolase subunits without bound substrate or analogues. This indicates negative cooperativity for ligand binding between subunits. Electrostatic charge differences between isozymes alpha and gamma, -19 at physiological pH, are concentrated in the regions of the molecular surface that are negatively charged in alpha, i.e. surface areas negatively charged in alpha are more negatively charged in gamma, while areas that are neutral or positively charged tend to be charge-conserved.
Collapse
Affiliation(s)
- Geqing Chai
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kitamura M, Takayama Y, Kojima S, Kohno K, Ogata H, Higuchi Y, Inoue H. Cloning and expression of the enolase gene from Desulfovibrio vulgaris (Miyazaki F). ACTA ACUST UNITED AC 2004; 1676:172-81. [PMID: 14746912 DOI: 10.1016/j.bbaexp.2003.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The gene encoding an enolase from Desulfovibrio vulgaris (Miyazaki F) was cloned and overexpressed in Escherichia coli. A 2.1-kb DNA fragment, isolated from D. vulgaris (Miyazaki F) by double digestion with PstI and BamHI, contained an enolase gene (eno) and part of the methylenetetrahydrofolate dehydrogenase gene (folD). The nucleotide sequence of eno indicates that the protein monomer is composed of 434 amino acids. An expression system for eno under control of the T7 promoter was constructed in E. coli. The purified His-tagged enolase formed a homooctamer and was active in the formation of phosphoenolpyruvate (PEP) as well as in the reverse reaction, the formation of D-(+)-2-phosphoglyceric acid (2-PGA). The pH dependence and kinetic properties of the recombinant enolase from the sulfate-reducing bacterium were also studied. The amounts of eno mRNA when the bacterium was grown on glycerol or glucose were compared to that when D. vulgaris was grown on lactate.
Collapse
Affiliation(s)
- Masaya Kitamura
- Department of Applied and Bioapplied Chemistry, Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
da Silva Giotto MT, Hannaert V, Vertommen D, de A S Navarro MV, Rider MH, Michels PAM, Garratt RC, Rigden DJ. The crystal structure of Trypanosoma brucei enolase: visualisation of the inhibitory metal binding site III and potential as target for selective, irreversible inhibition. J Mol Biol 2003; 331:653-65. [PMID: 12899835 DOI: 10.1016/s0022-2836(03)00752-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The glycolytic enzymes of the trypanosomatids, that cause a variety of medically and agriculturally important diseases, are validated targets for drug design. Design of species-specific inhibitors is facilitated by the availability of structural data. Irreversible inhibitors, that bound covalently to the parasite enzyme alone, would be potentially particularly effective. Here we determine the crystal structure of enolase from Trypanosoma brucei and show that two cysteine residues, located in a water-filled cavity near the active-site, are modified by iodoacetamide leading to loss of catalytic activity. Since these residues are specific to the Trypanosomatidae lineage, this finding opens the way for the development of parasite-specific, irreversibly binding enolase inhibitors. In the present structure, the catalytic site is partially occupied by sulphate and two zinc ions. Surprisingly, one of these zinc ions illustrates the existence of a novel enolase-binding site for divalent metals. Evidence suggests that this is the first direct visualization of the elusive inhibitory metal site, whose existence has hitherto only been inferred from kinetic data.
Collapse
|
31
|
Hannaert V, Albert MA, Rigden DJ, da Silva Giotto MT, Thiemann O, Garratt RC, Van Roy J, Opperdoes FR, Michels PAM. Kinetic characterization, structure modelling studies and crystallization of Trypanosoma brucei enolase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3205-13. [PMID: 12869196 DOI: 10.1046/j.1432-1033.2003.03692.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this article, we report the results of an analysis of the glycolytic enzyme enolase (2-phospho-d-glycerate hydrolase) of Trypanosoma brucei. Enolase activity was detected in both bloodstream-form and procyclic insect-stage trypanosomes, although a 4.5-fold lower specific activity was found in the cultured procyclic homogenate. Subcellular localization analysis showed that the enzyme is only present in the cytosol. The T. brucei enolase was expressed in Escherichia coli and purified to homogeneity. The kinetic properties of the bacterially expressed enzyme showed strong similarity to those values found for the natural T. brucei enolase present in a cytosolic cell fraction, indicating a proper folding of the enzyme in E. coli. The kinetic properties of T. brucei enolase were also studied in comparison with enolase from rabbit muscle and Saccharomyces cerevisiae. Functionally, similarities were found to exist between the three enzymes: the Michaelis constant (Km) and KA values for the substrates and Mg2+ are very similar. Differences in pH optima for activity, inhibition by excess Mg2+ and susceptibilities to monovalent ions showed that the T. brucei enolase behaves more like the yeast enzyme. Alignment of the amino acid sequences of T. brucei enolase and other eukaryotic and prokaryotic enolases showed that most residues involved in the binding of its ligands are well conserved. Structure modelling of the T. brucei enzyme using the available S. cerevisiae structures as templates indicated that there are some atypical residues (one Lys and two Cys) close to the T. brucei active site. As these residues are absent from the human host enolase and are therefore potentially interesting for drug design, we initiated attempts to determine the three-dimensional structure. T. brucei enolase crystals diffracting at 2.3 A resolution were obtained and will permit us to pursue the determination of structure.
Collapse
Affiliation(s)
- Véronique Hannaert
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kornblatt MJ, Zheng SX, Lamandé N, Lazar M. Cloning, expression and mutagenesis of a subunit contact of rabbit muscle-specific (betabeta) enolase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:311-9. [PMID: 12044909 DOI: 10.1016/s0167-4838(02)00319-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cDNA for rabbit muscle-specific (betabeta) enolase was cloned, sequenced and expressed in Escherichia coli. This betabeta-enolase differs at eight positions from that sequenced by Chin (17). Site-directed mutagenesis was used to change residue 414 from glutamate to leucine, thereby abolishing a salt bridge involved in subunit contacts. Recombinant wild-type and mutant enolase were purified from E. coli and compared to enolase isolated from rabbit muscle. Molecular weights were determined by mass spectrometry. All three betabeta-enolases had similar kinetics, and UV and circular dichroism (CD) spectra. The mutant enolase was far more sensitive to inactivation by pressure, by KCl or EDTA, and by sodium perchlorate. We confirmed, by analytical ultracentrifugation, that the sodium perchlorate inactivation was due to dissociation. DeltaG(o) for dissociation of enolase was decreased from 49.7 kJ/mol for the wild-type enzyme to 42.3 kJ/mol for the mutant. In contrast to the wild-type enzyme, perchlorate inactivation of E414L was accompanied by a small loss of secondary structure.
Collapse
Affiliation(s)
- Mary Judith Kornblatt
- Enzyme Research Group, Department of Chemistry and Biochemistry, Concordia University, 1455 de Maisonneuve Boulevard W., Montreal, Quebec, Canada H3G 1M8.
| | | | | | | |
Collapse
|
33
|
Hannaert V, Brinkmann H, Nowitzki U, Lee JA, Albert MA, Sensen CW, Gaasterland T, Müller M, Michels P, Martin W. Enolase from Trypanosoma brucei, from the amitochondriate protist Mastigamoeba balamuthi, and from the chloroplast and cytosol of Euglena gracilis: pieces in the evolutionary puzzle of the eukaryotic glycolytic pathway. Mol Biol Evol 2000; 17:989-1000. [PMID: 10889212 DOI: 10.1093/oxfordjournals.molbev.a026395] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic or cDNA clones for the glycolytic enzyme enolase were isolated from the amitochondriate pelobiont Mastigamoeba balamuthi, from the kinetoplastid Trypanosoma brucei, and from the euglenid Euglena gracilis. Clones for the cytosolic enzyme were found in all three organisms, whereas Euglena was found to also express mRNA for a second isoenzyme that possesses a putative N-terminal plastid-targeting peptide and is probably targeted to the chloroplast. Database searching revealed that Arabidopsis also possesses a second enolase gene that encodes an N-terminal extension and is likely targeted to the chloroplast. A phylogeny of enolase amino acid sequences from 6 archaebacteria, 24 eubacteria, and 32 eukaryotes showed that the Mastigamoeba enolase tended to branch with its homologs from Trypanosoma and from the amitochondriate protist Entamoeba histolytica. The compartment-specific isoenzymes in Euglena arose through a gene duplication independent of that which gave rise to the compartment-specific isoenzymes in Arabidopsis, as evidenced by the finding that the Euglena enolases are more similar to the homolog from the eubacterium Treponema pallidum than they are to homologs from any other organism sampled. In marked contrast to all other glycolytic enzymes studied to date, enolases from all eukaryotes surveyed here (except Euglena) are not markedly more similar to eubacterial than to archaebacterial homologs. An intriguing indel shared by enolase from eukaryotes, from the archaebacterium Methanococcus jannaschii, and from the eubacterium Campylobacter jejuni maps to the surface of the three-dimensional structure of the enzyme and appears to have occurred at the same position in parallel in independent lineages.
Collapse
Affiliation(s)
- V Hannaert
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology, Department of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|