1
|
Yasamineh S, Mehrabani FJ, Derafsh E, Danihiel Cosimi R, Forood AMK, Soltani S, Hadi M, Gholizadeh O. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol 2024; 61:3503-3527. [PMID: 37995080 DOI: 10.1007/s12035-023-03798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer's disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson's disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington's disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.
Collapse
Affiliation(s)
| | | | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | | | | | - Siamak Soltani
- Department of Forensic Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meead Hadi
- Department Of Microbiology, Faculty of Basic Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
2
|
Bruiners N, Dutta NK, Guerrini V, Salamon H, Yamaguchi KD, Karakousis PC, Gennaro ML. The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis. J Lipid Res 2020; 61:1617-1628. [PMID: 32848049 PMCID: PMC7707180 DOI: 10.1194/jlr.ra120000895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The rise of drug-resistant tuberculosis poses a major risk to public health. Statins, which inhibit both cholesterol biosynthesis and protein prenylation branches of the mevalonate pathway, increase anti-tubercular antibiotic efficacy in animal models. However, the underlying molecular mechanisms are unknown. In this study, we used an in vitro macrophage infection model to investigate simvastatin's anti-tubercular activity by systematically inhibiting each branch of the mevalonate pathway and evaluating the effects of the branch-specific inhibitors on mycobacterial growth. The anti-tubercular activity of simvastatin used at clinically relevant doses specifically targeted the cholesterol biosynthetic branch rather than the prenylation branches of the mevalonate pathway. Using Western blot analysis and AMP/ATP measurements, we found that simvastatin treatment blocked activation of mechanistic target of rapamycin complex 1 (mTORC1), activated AMP-activated protein kinase (AMPK) through increased intracellular AMP:ATP ratios, and favored nuclear translocation of transcription factor EB (TFEB). These mechanisms all induce autophagy, which is anti-mycobacterial. The biological effects of simvastatin on the AMPK-mTORC1-TFEB-autophagy axis were reversed by adding exogenous cholesterol to the cells. Our data demonstrate that the anti-tubercular activity of simvastatin requires inhibiting cholesterol biosynthesis, reveal novel links between cholesterol homeostasis, the AMPK-mTORC1-TFEB axis, and Mycobacterium tuberculosis infection control, and uncover new anti-tubercular therapy targets.
Collapse
Affiliation(s)
- Natalie Bruiners
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Noton K Dutta
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valentina Guerrini
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | | | | | - Petros C Karakousis
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maria L Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
3
|
Wang S, Sun H, Tanowitz M, Liang XH, Crooke ST. Intra-endosomal trafficking mediated by lysobisphosphatidic acid contributes to intracellular release of phosphorothioate-modified antisense oligonucleotides. Nucleic Acids Res 2017; 45:5309-5322. [PMID: 28379543 PMCID: PMC5605259 DOI: 10.1093/nar/gkx231] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages are broadly used as research tools and therapeutic agents. Chemically modified PS-ASOs can mediate efficient target reduction by site-specific cleavage of RNA through RNase H1. PS-ASOs are known to be internalized via a number of endocytotic pathways and are released from membrane-enclosed endocytotic organelles, mainly late endosomes (LEs). This study was focused on the details of PS-ASO trafficking through endocytic pathways. It was found that lysobisphosphatidic acid (LBPA) is required for release of PS-ASOs from LEs. PS-ASOs exited early endosomes (EEs) rapidly after internalization and became co-localized with LBPA by 2 hours in LEs. Inside LEs, PS-ASOs and LBPA were co-localized in punctate, dot-like structures, likely intraluminal vesicles (ILVs). Deactivation of LBPA using anti-LBPA antibody significantly decreased PS-ASO activities without affecting total PS-ASO uptake. Reduction of Alix also substantially decreased PS-ASO activities without affecting total PS-ASO uptake. Furthermore, Alix reduction decreased LBPA levels and limited co-localization of LBPA with PS-ASOs at ILVs inside LEs. Thus, the fusion properties of ILVs, which are supported by LBPA, contribute to PS-ASO intracellular release from LEs.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael Tanowitz
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
4
|
Desai R, Frazier AE, Durigon R, Patel H, Jones AW, Dalla Rosa I, Lake NJ, Compton AG, Mountford HS, Tucker EJ, Mitchell ALR, Jackson D, Sesay A, Di Re M, van den Heuvel LP, Burke D, Francis D, Lunke S, McGillivray G, Mandelstam S, Mochel F, Keren B, Jardel C, Turner AM, Ian Andrews P, Smeitink J, Spelbrink JN, Heales SJ, Kohda M, Ohtake A, Murayama K, Okazaki Y, Lombès A, Holt IJ, Thorburn DR, Spinazzola A. ATAD3 gene cluster deletions cause cerebellar dysfunction associated with altered mitochondrial DNA and cholesterol metabolism. Brain 2017; 140:1595-1610. [PMID: 28549128 PMCID: PMC5445257 DOI: 10.1093/brain/awx094] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/09/2017] [Indexed: 12/03/2022] Open
Abstract
Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.
Collapse
Affiliation(s)
- Radha Desai
- MRC Laboratory, Mill Hill, London NW71AA, UK
| | - Ann E Frazier
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Romina Durigon
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aleck W Jones
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Ilaria Dalla Rosa
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Nicole J Lake
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Alison G Compton
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Hayley S Mountford
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Elena J Tucker
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia
| | - Alice L R Mitchell
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK
| | - Deborah Jackson
- Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Abdul Sesay
- Bioinformatics and Biostatistics, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Miriam Di Re
- Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY, UK
| | - Lambert P van den Heuvel
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Derek Burke
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, UK and Laboratory Medicine, Great Ormond Street Hospital, London, UK
| | - David Francis
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia.,Department of Pathology, University of Melbourne, Melbourne 3052, Australia
| | - George McGillivray
- MRC Laboratory, Mill Hill, London NW71AA, UK.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Simone Mandelstam
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.,The Florey Institute of Neuroscience and Mental Health Melbourne, Australia.,Departments of Radiology and Paediatrics, University of Melbourne, Melbourne, Australia
| | - Fanny Mochel
- AP-HP, Department of Genetics, GHU Pitié-Salpêtrière, Paris, F-75651 France.,Inserm U975; CNRS UMR 7225, ICM; F-75013, Paris, France
| | - Boris Keren
- Inserm U975; CNRS UMR 7225, ICM; F-75013, Paris, France.,AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris, F-75651 France
| | - Claude Jardel
- AP-HP, Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, GHU Pitié-Salpêtrière, Paris, F-75651 France.,Inserm U1016; CNRS UMR 8104; Université Paris-Descartes-Paris 5; Institut Cochin, 75014 Paris, France
| | - Anne M Turner
- Department of Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia.,School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia
| | - P Ian Andrews
- School of Women's and Children's Health, University of New South Wales, Kensington, NSW, Australia.,Department of Paediatric Neurology, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jan Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes N Spelbrink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Simon J Heales
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, UK and Laboratory Medicine, Great Ormond Street Hospital, London, UK.,Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London, UK
| | - Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan.,Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Anne Lombès
- MRC Laboratory, Mill Hill, London NW71AA, UK.,Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ian J Holt
- MRC Laboratory, Mill Hill, London NW71AA, UK.,Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.,Biodonostia Health Research Institute, 20014 San Sebastián, Spain. IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - David R Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Melbourne VIC 3052, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne VIC 3052, Australia
| | - Antonella Spinazzola
- Department of Clinical Neurosciences, Institute of Neurology, Royal Free Campus, University College London, NW3 2PF, UK.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
5
|
Schmitt M, Dehay B, Bezard E, Garcia-Ladona FJ. U18666A, an activator of sterol regulatory element binding protein pathway, modulates presynaptic dopaminergic phenotype of SH-SY5Y neuroblastoma cells. Synapse 2017; 71. [DOI: 10.1002/syn.21980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mathieu Schmitt
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine l'Alleud Belgium
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - Benjamin Dehay
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - Erwan Bezard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293; Bordeaux 33000 France
| | - F. Javier Garcia-Ladona
- Neuroscience Therapeutic Area, New Medicines, UCB Biopharma SPRL; 1420 Braine l'Alleud Belgium
| |
Collapse
|
6
|
Elgner F, Ren H, Medvedev R, Ploen D, Himmelsbach K, Boller K, Hildt E. The Intracellular Cholesterol Transport Inhibitor U18666A Inhibits the Exosome-Dependent Release of Mature Hepatitis C Virus. J Virol 2016; 90:11181-11196. [PMID: 27707921 PMCID: PMC5126375 DOI: 10.1128/jvi.01053-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) particles are described as lipoviroparticles which are released similarly to very-low-density lipoproteins (VLDLs). However, the release mechanism is still poorly understood; the canonical endoplasmic reticulum-Golgi intermediate compartment (ERGIC) pathway as well as endosome-dependent release has been proposed. Recently, the role of exosomes in the transmission of HCV has been reported. Only a minor fraction of the de novo-synthesized lipoviroparticles is released by the infected cell. To investigate the relevance of multivesicular bodies (MVBs) for viral morphogenesis and release, the MVB inhibitor U18666A was used. Intracellular trafficking was analyzed by confocal microscopy and electron microscopy. Moreover, an mCherry-tagged HCV variant was used. Conditions were established that enable U18666A-dependent inhibition of MVBs without affecting viral replication. Under these conditions, significant inhibition of the HCV release was observed. The assembly of viral particles is not affected. In U18666A-treated cells, intact infectious viral particles accumulate in CD63-positive exosomal structures and large dysfunctional lysosomal structures (multilamellar bodies). These retained particles possess a lower density, reflecting a misloading with lipids. Our data indicate that at least a fraction of HCV particles leaves the cell via the endosomal pathway. Endosomes facilitate the sorting of HCV particles for release or degradation. IMPORTANCE There are still a variety of open questions regarding morphogenesis and release of hepatitis C virus. The HCV-infected cell produces significant more viral particles that are released, raising the question about the fate of the nonreleased particles. Moreover, the relevance of the endosomal pathway for the release of HCV is under debate. Use of the MVB (multivesicular body) inhibitor U18666A enabled a detailed analysis of the impact of MVBs for viral morphogenesis and release. It was revealed that infectious, fully assembled HCV particles are either MVB-dependently released or intracellularly degraded by the lysosome. Our data indicate that at least a fraction of HCV particles leaves the cell via the endosomal pathway independent from the constitutive secretory pathway. Our study describes a so-far-unprecedented cross talk between two pathways regulating on the one hand the release of infectious viral particles and on the other hand the intracellular degradation of nonreleased particles.
Collapse
Affiliation(s)
- Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Huimei Ren
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Regina Medvedev
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Daniela Ploen
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Klaus Boller
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
- Deutsches Zentrum für Infektionsforschung, Braunschweig, Germany
| |
Collapse
|
7
|
Paparelli L, Corthout N, Pavie B, Wakefield DL, Sannerud R, Jovanovic-Talisman T, Annaert W, Munck S. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane. PLoS Comput Biol 2016; 12:e1005095. [PMID: 27603951 PMCID: PMC5014321 DOI: 10.1371/journal.pcbi.1005095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/02/2016] [Indexed: 12/04/2022] Open
Abstract
Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. Plasma membrane organization is fundamental to cellular signaling, transport of molecules, and cell adhesion. To achieve this, plasma membrane proteins and lipids are spatially organized: they form clusters, aggregate in signaling platforms, distribute into gradients on polarized cells, or randomly distribute across the membrane. It is also clear that these organizations can be affected in various contexts. For example, in aging or neurodegenerative diseases, the composition of the plasma membrane is altered and, consequently, the protein and lipid distributions in the membrane fluctuate. In addition, cancer progression is characterized by changes in cellular polarity, lipid content, and the redistribution of cell surface receptors and adhesion molecules. Here we have developed a method to quantify such alterations that, unlike current tools, is compatible with diverse types of cellular organization, including polarity. Our tool can be employed to screen for changes in a straightforward manner and to elucidate distributions of cell surface components in different disciplines, ranging from neurobiology to cancer research.
Collapse
Affiliation(s)
- Laura Paparelli
- VIB Bio Imaging Core, Herestraat, Leuven, Belgium
- Laboratory of Membrane Trafficking, Department of Human Genetics, KU Leuven, Herestraat, Leuven, Belgium
- VIB Center for the Biology of Disease, KU Leuven, Herestraat, Leuven, Belgium
| | - Nikky Corthout
- VIB Bio Imaging Core, Herestraat, Leuven, Belgium
- VIB Center for the Biology of Disease, KU Leuven, Herestraat, Leuven, Belgium
- VIB, LiMoNe, Herestraat, Leuven, Belgium
| | - Benjamin Pavie
- VIB Bio Imaging Core, Herestraat, Leuven, Belgium
- VIB Center for the Biology of Disease, KU Leuven, Herestraat, Leuven, Belgium
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Ragna Sannerud
- Laboratory of Membrane Trafficking, Department of Human Genetics, KU Leuven, Herestraat, Leuven, Belgium
- VIB Center for the Biology of Disease, KU Leuven, Herestraat, Leuven, Belgium
| | - Tijana Jovanovic-Talisman
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Wim Annaert
- Laboratory of Membrane Trafficking, Department of Human Genetics, KU Leuven, Herestraat, Leuven, Belgium
- VIB Center for the Biology of Disease, KU Leuven, Herestraat, Leuven, Belgium
- * E-mail: (WA); Sebastian@ (SM)
| | - Sebastian Munck
- VIB Bio Imaging Core, Herestraat, Leuven, Belgium
- VIB Center for the Biology of Disease, KU Leuven, Herestraat, Leuven, Belgium
- VIB, LiMoNe, Herestraat, Leuven, Belgium
- * E-mail: (WA); Sebastian@ (SM)
| |
Collapse
|
8
|
Wang S, Sun H, Tanowitz M, Liang XH, Crooke ST. Annexin A2 facilitates endocytic trafficking of antisense oligonucleotides. Nucleic Acids Res 2016; 44:7314-30. [PMID: 27378781 PMCID: PMC5009748 DOI: 10.1093/nar/gkw595] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/16/2016] [Indexed: 02/01/2023] Open
Abstract
Chemically modified antisense oligonucleotides (ASOs) designed to mediate site-specific cleavage of RNA by RNase H1 are used as research tools and as therapeutics. ASOs modified with phosphorothioate (PS) linkages enter cells via endocytotic pathways. The mechanisms by which PS-ASOs are released from membrane-enclosed endocytotic organelles to reach target RNAs remain largely unknown. We recently found that annexin A2 (ANXA2) co-localizes with PS-ASOs in late endosomes (LEs) and enhances ASO activity. Here, we show that co-localization of ANXA2 with PS-ASO is not dependent on their direct interactions or mediated by ANXA2 partner protein S100A10. Instead, ANXA2 accompanies the transport of PS-ASOs to LEs, as ANXA2/PS-ASO co-localization was observed inside LEs. Although ANXA2 appears not to affect levels of PS-ASO internalization, ANXA2 reduction caused significant accumulation of ASOs in early endosomes (EEs) and reduced localization in LEs and decreased PS-ASO activity. Importantly, the kinetics of PS-ASO activity upon free uptake show that target mRNA reduction occurs at least 4 hrs after PS-ASOs exit from EEs and is coincident with release from LEs. Taken together, our results indicate that ANXA2 facilitates PS-ASO trafficking from early to late endosomes where it may also contribute to PS-ASO release.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Michael Tanowitz
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
9
|
Zhu M, Zhao X, Chen J, Xu J, Hu G, Guo D, Li Q, Zhang X, Chang CCY, Song B, Xiong Y, Chang T, Li B. ACAT1 regulates the dynamics of free cholesterols in plasma membrane which leads to the APP-α-processing alteration. Acta Biochim Biophys Sin (Shanghai) 2015; 47:951-9. [PMID: 26474739 DOI: 10.1093/abbs/gmv101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a key enzyme exclusively using free cholesterols as the substrates in cell and is involved in the cellular cholesterol homeostasis. In this study, we used human neuroblastoma cell line SK-N-SH as a model and first observed that inhibiting ACAT1 can decrease the amyloid precursor protein (APP)-α-processing. Meanwhile, the transfection experiments using the small interfering RNA and expression plasmid of ACAT1 indicated that ACAT1 can dependently affect the APP-α-processing. Furthermore, inhibiting ACAT1 was found to increase the free cholesterols in plasma membrane (PM-FC), and the increased PM-FC caused by inhibiting ACAT1 can lead to the decrease of the APP-α-processing, indicating that ACAT1 regulates the dynamics of PM-FC, which leads to the alteration of the APP-α-processing. More importantly, further results showed that under the ACAT1 inhibition, the alterations of the PM-FC and the subsequent APP-α-processing are not dependent on the cellular total cholesterol level, confirming that ACAT1 regulates the dynamics of PM-FC. Finally, we revealed that even when the Niemann-Pick-Type C-dependent pathway is blocked, the ACAT1 inhibition still obviously results in the PM-FC increase, suggesting that the ACAT1-dependent pathway is responsible for the shuttling of PM-FC to the intracellular pool. Our data provide a novel insight that ACAT1 which enzymatically regulates the dynamics of PM-FC may play important roles in the human neuronal cells.
Collapse
Affiliation(s)
- Ming Zhu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaonan Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Chen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajia Xu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangjing Hu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongqing Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowei Zhang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Baoliang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tayuan Chang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Boliang Li
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
10
|
Vitamin E dietary supplementation improves neurological symptoms and decreases c-Abl/p73 activation in Niemann-Pick C mice. Nutrients 2014; 6:3000-17. [PMID: 25079853 PMCID: PMC4145291 DOI: 10.3390/nu6083000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/04/2023] Open
Abstract
Niemann-Pick C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. We have previously reported that oxidative stress is the main upstream stimulus activating the proapoptotic c-Abl/p73 pathway in NPC neurons. We have also observed accumulation of vitamin E in NPC lysosomes, which could lead to a potential decrease of its bioavailability. Our aim was to determine if dietary vitamin E supplementation could improve NPC disease in mice. NPC mice received an alpha-tocopherol (α-TOH) supplemented diet and neurological symptoms, survival, Purkinje cell loss, α-TOH and nitrotyrosine levels, astrogliosis, and the c-Abl/p73 pathway functions were evaluated. In addition, the effect of α-TOH on the c-Abl/p73 pathway was evaluated in an in vitro NPC neuron model. The α-TOH rich diet delayed loss of weight, improved coordination and locomotor function and increased the survival of NPC mice. We found increased Purkinje neurons and α-TOH levels and reduced astrogliosis, nitrotyrosine and phosphorylated p73 in cerebellum. A decrease of c-Abl/p73 activation was also observed in the in vitro NPC neurons treated with α-TOH. In conclusion, our results show that vitamin E can delay neurodegeneration in NPC mice and suggest that its supplementation in the diet could be useful for the treatment of NPC patients.
Collapse
|
11
|
Vance JE, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 2014; 55:1609-21. [PMID: 24664998 DOI: 10.1194/jlr.r047837] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease in which endocytosed cholesterol becomes sequestered in late endosomes/lysosomes (LEs/Ls) because of mutations in either the NPC1 or NPC2 gene. Mutations in either of these genes can lead to impaired functions of the NPC1 or NPC2 proteins and progressive neurodegeneration as well as liver and lung disease. NPC1 is a polytopic protein of the LE/L limiting membrane, whereas NPC2 is a soluble protein in the LE/L lumen. These two proteins act in tandem and promote the export of cholesterol from LEs/Ls. Consequently, a defect in either NPC1 or NPC2 causes cholesterol accumulation in LEs/Ls. In this review, we summarize the molecular mechanisms leading to NPC disease, particularly in the CNS. Recent exciting data on the mechanism by which the cholesterol-sequestering agent cyclodextrin can bypass the functions of NPC1 and NPC2 in the LEs/Ls, and mobilize cholesterol from LEs/Ls, will be highlighted. Moreover, the possible use of cyclodextrin as a valuable therapeutic agent for treatment of NPC patients will be considered.
Collapse
Affiliation(s)
- Jean E Vance
- The Group on Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
12
|
Yanes RE, Tarn D, Hwang AA, Ferris DP, Sherman SP, Thomas CR, Lu J, Pyle AD, Zink JI, Tamanoi F. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:697-704. [PMID: 23152124 PMCID: PMC3767416 DOI: 10.1002/smll.201201811] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Indexed: 05/22/2023]
Abstract
The exocytosis of phosphonate modified mesoporous silica nanoparticles (P-MSNs) is demonstrated and lysosomal exocytosis is identified as the mechanism responsible for this event. Regulation of P-MSN exocytosis can be achieved by inhibiting or accelerating lysosomal exocytosis. Slowing down P-MSN exocytosis enhances the drug delivery effect of CPT-loaded P-MSNs by improving cell killing.
Collapse
Affiliation(s)
- Rolando E Yanes
- Department of Microbiology, California NanoSystems Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Oxidative stress: a pathogenic mechanism for Niemann-Pick type C disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:205713. [PMID: 22720116 PMCID: PMC3374944 DOI: 10.1155/2012/205713] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 01/01/2023]
Abstract
Niemann-Pick type C (NPC) disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.
Collapse
|
14
|
Vázquez MC, Martínez P, Alvarez AR, González M, Zanlungo S. Increased copper levels in in vitro and in vivo models of Niemann-Pick C disease. Biometals 2012; 25:777-86. [DOI: 10.1007/s10534-012-9546-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/30/2012] [Indexed: 11/29/2022]
|
15
|
Avchalumov Y, Kirschstein T, Lukas J, Luo J, Wree A, Rolfs A, Köhling R. Increased excitability and compromised long-term potentiation in the neocortex of NPC1(-/-) mice. Brain Res 2012; 1444:20-6. [PMID: 22325094 DOI: 10.1016/j.brainres.2012.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 01/08/2012] [Indexed: 11/30/2022]
Abstract
Niemann-Pick type C1 (NPC1) disease is a neurodegenerative lysosomal storage disorder caused by mutations in the NPC1 gene which encodes a transmembrane protein of the acidic compartment. Albeit the NPC1(-/-) mouse is available serving as an appropriate animal model of the human disease, the precise function of this protein remains obscure. Here, we investigated the synaptic consequences of this disease and explored long-term potentiation (LTP) in slices taken from the hippocampal CA1 region, the dorsomedial striatum as well as the somatosensory neocortex in NPC1(-/-) mice using extracellular field potential recordings. We did not observe significant changes in synaptic excitability as well as LTP in the hippocampal CA1 region and the dorsomedial striatum of NPC1(-/-) mice when compared to wildtype littermates. However, neocortical excitability was significantly enhanced while LTP was abolished. These results suggest that at least in the somatosensory neocortex NPC1 protein is instrumental in synaptic function.
Collapse
Affiliation(s)
- Yosef Avchalumov
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu HP, Wu CC, Kao HY, Huang YC, Liang Y, Chen CC, Yu JS, Chang YS. Proteome-wide dysregulation by PRA1 depletion delineates a role of PRA1 in lipid transport and cell migration. Mol Cell Proteomics 2010; 10:M900641MCP200. [PMID: 20592422 DOI: 10.1074/mcp.m900641-mcp200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously identified prenylated Rab acceptor 1 (PRA1) as a novel cellular interacting partner for Epstein-Barr virus-encoded oncoprotein, latent membrane protein 1 (LMP1). The intracellular trafficking and full signaling of LMP1 requires its interaction with PRA1. To further explore the role of PRA1 in Epstein-Barr virus-associated nasopharyngeal carcinoma (NPC) cells, we generated several PRA1-knockdown cell clones, which exhibited altered cell morphology and increased cell motility. We identified proteins differentially expressed in the knockdown clones by means of isobaric mass tags labeling coupled with multidimensional liquid chromatography-mass spectrometry. We validated a panel of proteins, which showed consistent up-regulation in PRA1-knockdown clones and participated in regulating lipid homeostasis and cell migration. Immunofluorescence staining further revealed altered localization of these proteins and accumulation of intracellular cholesterol in PRA1-knockdown clones. These effects were phenocopied by treatment with a cholesterol transport inhibitor, U18666A. Moreover, overexpressed PRA1 was able to alleviate the dysregulation of these affected proteins either from PRA1 knockdown or U18666A treatment, implying a role for PRA1 in regulating the levels of these affected proteins in response to altered cholesterol homeostasis. We further demonstrated that LMP1 expression caused PRA1 sequestration in NPC cells, leading to a consequence reminiscent of PRA1 knockdown. Finally, the immunohistochemistry showed a physiological relevance of the PRA1-associated proteome-wide changes in NPC biopsy tissues. In sum, our findings delineated novel roles of PRA1 in lipid transport and cell migration, and provided additional insights into the molecular basis of NPC morphogenesis, namely a consequence of LMP1-PRA1 interaction.
Collapse
Affiliation(s)
- Hao-Ping Liu
- Molecular Medicine Research Center, Department of Medical Biotechnology and Laboratory Science, Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nakamitsu S, Kurokawa A, Yamasaki T, Uryu M, Hasebe R, Horiuchi M. Cell density-dependent increase in the level of protease-resistant prion protein in prion-infected Neuro2a mouse neuroblastoma cells. J Gen Virol 2009; 91:563-9. [DOI: 10.1099/vir.0.016287-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 2009; 44:477-87. [PMID: 19440746 DOI: 10.1007/s11745-009-3305-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/16/2023]
Abstract
The multiple actions of U18666A have enabled major discoveries in lipid research and contributed to understanding the pathophysiology of multiple diseases. This review describes these advances and the utility of U18666A as a tool in lipid research. Harry Rudney's recognition that U18666A inhibited oxidosqualene cyclase led him to discover a pathway for formation of polar sterols that he proved to be important regulators of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Laura Liscum's recognition that U18666A inhibited the egress of cholesterol from late endosomes and lysosomes led to greatly improved perspective on the major pathways of intracellular cholesterol trafficking. The inhibition of cholesterol trafficking by U18666A mimicked the loss of functional Niemann-Pick type C protein responsible for NPC disease and thus provided a model for this disorder. U18666A subsequently became a tool for assessing the importance of molecular trafficking through the lysosomal pathway in other conditions such as atherosclerosis, Alzheimer's disease, and prion infections. U18666A also provided animal models for two important disorders: petite mal (absence) epilepsy and cataracts. This was the first chronic model of absence epilepsy. U18666A is also being used to address the role of oxidative stress in apoptosis. How can one molecule have so many effects? Perhaps because of its structure as an amphipathic cationic amine it can interact and inhibit diverse proteins. Restricting the availability of cholesterol for membrane formation through inhibition of cholesterol synthesis and intracellular trafficking could also be a mechanism for broadly affecting many processes. Another possibility is that through intercalation into membrane U18666A can alter membrane order and therefore the function of resident proteins. The similarity of the effects of natural and enantiomeric U18666A on cells and the capacity of intercalated U18666A to increase membrane order are arguments in favor of this possibility.
Collapse
|
19
|
Zampieri S, Mellon SH, Butters TD, Nevyjel M, Covey DF, Bembi B, Dardis A. Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med 2008; 13:3786-96. [PMID: 18774957 PMCID: PMC2832077 DOI: 10.1111/j.1582-4934.2008.00493.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Niemann-Pick C disease (NPC) is an autosomal recessive neurodegenerative disorder caused by the abnormal function of NPC1 or NPC2 proteins, leading to an accumulation of unesterified cholesterol and glycosphingolipids (GSLs) in the lysosomes. The mechanisms underlying the pathophysiology in NPC disease are not clear. Oxidative damage is implicated in the pathophysiology of different neurological disorders and the effect of GSL accumulation on the intracellular redox state has been documented. Therefore, we determined whether the intracellular redox state might contribute to the NPC disease pathophysiology. Because the treatment of NPC mice with allopregnanolone (ALLO) increases their lifespan and delays the onset of neurological impairment, we analysed the effect of ALLO on the oxidative damage in human NPC fibroblasts. Concentrations of reactive oxygen species (ROS) and lipid peroxidation were higher in fibroblasts from NPC patients than in fibroblasts from normal subjects. Fibroblasts from NPC patients were more susceptible to cell death through apoptosis after an acute oxidative insult. This process is mediated by activation of the NF-κB signalling pathway. Knockdown of NPC1 mRNA both in normal fibroblasts and in human SH-SY5Y neuroblastoma cells caused increased ROS concentrations. ALLO treatment of fibroblasts from NPC patients or NPC1 knockdown cells reduced the levels of ROS and lipid peroxidation and prevented peroxide-induced apoptosis and NF-kB activation. Thus, these findings suggest that oxidative stress might contribute to the NPC disease and ALLO might be beneficial in the treatment of the disease, at least in part, due to its ability to restore the intracellular redox state.
Collapse
|
20
|
Subbaiah PV, Sowa JM, Singh DK. Sphingolipids and cellular cholesterol homeostasis. Effect of ceramide on cholesterol trafficking and HMG CoA reductase activity. Arch Biochem Biophys 2008; 474:32-8. [PMID: 18395507 PMCID: PMC2464457 DOI: 10.1016/j.abb.2008.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/18/2008] [Accepted: 03/20/2008] [Indexed: 01/19/2023]
Abstract
We previously showed that degradation of cellular sphingomyelin (SM) by SMase C results in a greater stimulation of cholesterol translocation to endoplasmic reticulum, compared to its degradation by SMase D. Here we investigated the hypothesis that the effect of SMase C is partly due to the generation of ceramide, rather than due to depletion of SM alone. Inhibition of hydroxymethylglutaryl CoA reductase (HMGCR) activity was used as a measure of cholesterol translocation. Treatment of fibroblasts with SMase C resulted in a 90% inhibition of HMGCR, whereas SMase D treatment inhibited it by 29%. Treatment with exogenous ceramides, or increasing the endogenous ceramide levels also inhibited HMGCR by 60-80%. Phosphorylation of HMGCR was stimulated by SMase C or exogenous ceramide. The effects of ceramide and SMase D were additive, indicating the independent effects of SM depletion and ceramide generation. These results show that ceramide regulates sterol trafficking independent of cellular SM levels.
Collapse
Affiliation(s)
- Papasani V Subbaiah
- Departments of Medicine and Biochemistry & Molecular Genetics, University of Illinois at Chicago, 1819 West Polk Street, M/C 797, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
21
|
Koh CHV, Cheung NS. Cellular mechanism of U18666A-mediated apoptosis in cultured murine cortical neurons: bridging Niemann-Pick disease type C and Alzheimer's disease. Cell Signal 2006; 18:1844-53. [PMID: 16797161 DOI: 10.1016/j.cellsig.2006.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
Neuronal cell death can occur by means of either necrosis or apoptosis. Both necrosis and apoptosis are generally believed to be distinct mechanisms of cell death with different characteristic features distinguished on the basis of their morphological and biochemical properties. The brain is the most cholesterol-rich organ in the body but not much is known about the mechanisms that regulate cholesterol homeostasis in the brain. Recently, several clinical and biochemical studies suggest that cholesterol imbalance in the brain may be a risk factor related to the development of neurological disorders such as Niemann-Pick disease type C (NPC) and Alzheimer's disease (AD). NPC is a fatal juvenile neurodegenerative disorder characterized by premature neuronal death and somatically altered cholesterol metabolism. The main biochemical manifestation in NPC is elevated intracellular accumulation of free cholesterol caused by a genetic deficit in cholesterol trafficking. The pharmacological agent, U18666A (3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one), is a well-known class-2 amphiphile which inhibits cholesterol transport. Cells treated with this agent accumulate intracellular cholesterol to massive levels, similar to that observed in cells from NPC patients. NPC and AD have some pathological similarities which may share a common underlying cause. AD is one of the most common types of dementia affecting the elderly. However, the molecular mechanisms of neurodegeneration in NPC and AD are largely unknown. This review provides a consolidation of work done using U18666A in the past half century and focuses on the implications of our research findings on the mechanism of U18666A-mediated neuronal apoptosis in primary cortical neurons, which may provide an insight to elucidate the mechanisms of neurodegenerative diseases, particularly NPC and AD, where apoptosis might occur through a similar mechanism.
Collapse
Affiliation(s)
- Chor Hui Vivien Koh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
22
|
Deisz RA, Meske V, Treiber-Held S, Albert F, Ohm TG. Pathological cholesterol metabolism fails to modify electrophysiological properties of afflicted neurones in Niemann-Pick disease type C. Neuroscience 2005; 130:867-73. [PMID: 15652985 DOI: 10.1016/j.neuroscience.2004.09.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2004] [Indexed: 11/22/2022]
Abstract
Niemann-Pick disease type C (NPC) is a recessive inherited neurovisceral lipid storage disease characterized by progressive motor impairment and a loss of neurones including those integrated into the motor system. One of the key neuropathological findings is the intracellular accumulation of lysosomes enriched with free cholesterol. This accumulation is due to impaired transport proteins named NPC1 (approx. 95% of the cases) or NPC2 (approx. 5%) responsible for the transport of endocytosed cholesterol from lysomes to plasma membranes. The perturbed lipid-transport in NPC cells leads to an altered lipid composition of the plasma membrane. Available evidence suggests that the lipid matrix influences the electrophysical properties of ion channels in membranes. We therefore evaluated whether electrophysiological properties of NPC neurones differ from healthy neurones. Both, acute brain slices and primary neuronal cell cultures from wildtype and NPC mice, a well-established mouse model for the Niemann-Pick type C disease, were used for a comparison of electrophysiological properties like resting membrane potential, input resistance, action potential amplitudes and synaptic properties of the neurones. In addition we optically recorded the changes of intraneuronal calcium levels elicited by depolarization. Our results show that the characteristics of ion channels in NPC neurones do not differ significantly from wildtype neurones. We therefore conclude that gross alterations of the electrophysiological properties of neurones will probably not initiate or substantially contribute to the development of the motor impairment or other neurological signs of NPC.
Collapse
Affiliation(s)
- R A Deisz
- Center of Anatomy, Charité, Institute of Integrative Neuroanatomy, Department of Clinical Cell and Neurobiology, Schumann Strasse 20-21, 10098 Berlin, Germany
| | | | | | | | | |
Collapse
|