1
|
Bykowski EA, Petersson JN, Dukelow SP, Ho C, Debert CT, Montina T, Metz GAS. Blood-Derived Metabolic Signatures as Biomarkers of Injury Severity in Traumatic Brain Injury: A Pilot Study. Metabolites 2024; 14:105. [PMID: 38392997 PMCID: PMC10890255 DOI: 10.3390/metabo14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolomic biomarkers hold promise in aiding the diagnosis and prognostication of traumatic brain injury. In Canada, over 165,000 individuals annually suffer from a traumatic brain injury (TBI), making it one of the most prevalent neurological conditions. In this pilot investigation, we examined blood-derived biomarkers as proxy measures that can provide an objective approach to TBI diagnosis and monitoring. Using a 1H nuclear magnetic resonance (NMR)-based quantitative metabolic profiling approach, this study determined whether (1) blood-derived metabolites change during recovery in male participants with mild to severe TBI; (2) biological pathway analysis reflects mechanisms that mediate neural damage/repair throughout TBI recovery; and (3) changes in metabolites correlate to initial injury severity. Eight male participants with mild to severe TBI (with intracranial lesions) provided morning blood samples within 1-4 days and again 6 months post-TBI. Following NMR analysis, the samples were subjected to multivariate statistical and machine learning-based analyses. Statistical modelling displayed metabolic changes during recovery through group separation, and eight significant metabolic pathways were affected by TBI. Metabolic changes were correlated to injury severity. L-alanine (R= -0.63, p < 0.01) displayed a negative relationship with the Glasgow Coma Scale. This study provides pilot data to support the feasibility of using blood-derived metabolites to better understand changes in biochemistry following TBI.
Collapse
Affiliation(s)
- Elani A Bykowski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamie N Petersson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
2
|
Bykowski EA, Petersson JN, Dukelow S, Ho C, Debert CT, Montina T, Metz GAS. Identification of Serum Metabolites as Prognostic Biomarkers Following Spinal Cord Injury: A Pilot Study. Metabolites 2023; 13:metabo13050605. [PMID: 37233646 DOI: 10.3390/metabo13050605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The assessment, management, and prognostication of spinal cord injury (SCI) mainly rely upon observer-based ordinal scales measures. 1H nuclear magnetic resonance (NMR) spectroscopy provides an effective approach for the discovery of objective biomarkers from biofluids. These biomarkers have the potential to aid in understanding recovery following SCI. This proof-of-principle study determined: (a) If temporal changes in blood metabolites reflect the extent of recovery following SCI; (b) whether changes in blood-derived metabolites serve as prognostic indicators of patient outcomes based on the spinal cord independence measure (SCIM); and (c) whether metabolic pathways involved in recovery processes may provide insights into mechanisms that mediate neural damage and repair. Morning blood samples were collected from male complete and incomplete SCI patients (n = 7) following injury and at 6 months post-injury. Multivariate analyses were used to identify changes in serum metabolic profiles and were correlated to clinical outcomes. Specifically, acetyl phosphate, 1,3,7-trimethyluric acid, 1,9-dimethyluric acid, and acetic acid significantly related to SCIM scores. These preliminary findings suggest that specific metabolites may serve as proxy measures of the SCI phenotype and prognostic markers of recovery. Thus, serum metabolite analysis combined with machine learning holds promise in understanding the physiology of SCI and aiding in prognosticating outcomes following injury.
Collapse
Affiliation(s)
- Elani A Bykowski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Jamie N Petersson
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Chantel T Debert
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
3
|
Seino Y, Ohashi N, Kohno T. The endogenous agonist, β-alanine, activates glycine receptors in rat spinal dorsal neurons. Biochem Biophys Res Commun 2018; 500:897-901. [DOI: 10.1016/j.bbrc.2018.04.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/23/2018] [Indexed: 11/26/2022]
|
4
|
Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons. Neuroscience 2016; 330:191-204. [PMID: 27246441 DOI: 10.1016/j.neuroscience.2016.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations.
Collapse
|
5
|
Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis 2013; 34:2865-72. [PMID: 23857558 DOI: 10.1002/elps.201300019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/12/2013] [Accepted: 03/31/2013] [Indexed: 11/09/2022]
Abstract
Despite increasing global prevalence, the precise pathogenesis and terms for objective diagnosis of neurodegenerative dementias remain controversial, and comprehensive understanding of the disease remains lacking. Here, we conducted metabolomic analysis of serum and saliva obtained from patients with neurodegenerative dementias (n = 10), including Alzheimer's disease, frontotemporal lobe dementia, and Lewy body disease, as well as from age-matched healthy controls (n = 9). Using CE-TOF-MS, six metabolites in serum (β-alanine, creatinine, hydroxyproline, glutamine, iso-citrate, and cytidine) and two in saliva (arginine and tyrosine) were significantly different between dementias and controls. Using multivariate analysis, serum was confirmed as a more efficient biological fluid for diagnosis compared to saliva; additionally, 45 metabolites in total were identified as candidate markers that could discriminate at least one pair of diagnostic groups from the healthy control group. These metabolites possibly provide an objective method for diagnosing dementia-type by multiphase screening. Moreover, diagnostic-type-dependent differences were observed in several tricarboxylic acid cycle compounds detected in serum, indicating that some pathways in glucose metabolism may be altered in dementia patients. This pilot study revealed novel alterations in metabolomic profiles between various neurodegenerative dementias, which would contribute to etiological investigations.
Collapse
Affiliation(s)
- Mayuko Tsuruoka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan; Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS, Oliveira CR, Moreira PI. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2013; 1832:527-41. [PMID: 23314196 DOI: 10.1016/j.bbadis.2013.01.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/18/2012] [Accepted: 01/06/2013] [Indexed: 12/14/2022]
Abstract
According to World Health Organization estimates, type 2 diabetes (T2D) is an epidemic (particularly in under development countries) and a socio-economic challenge. This is even more relevant since increasing evidence points T2D as a risk factor for Alzheimer's disease (AD), supporting the hypothesis that AD is a "type 3 diabetes" or "brain insulin resistant state". Despite the limited knowledge on the molecular mechanisms and the etiological complexity of both pathologies, evidence suggests that neurodegeneration/death underlying cognitive dysfunction (and ultimately dementia) upon long-term T2D may arise from a complex interplay between T2D and brain aging. Additionally, decreased brain insulin levels/signaling and glucose metabolism in both pathologies further suggests that an effective treatment strategy for one disorder may be also beneficial in the other. In this regard, one such promising strategy is a novel successful anti-T2D class of drugs, the glucagon-like peptide-1 (GLP-1) mimetics (e.g. exendin-4 or liraglutide), whose potential neuroprotective effects have been increasingly shown in the last years. In fact, several studies showed that, besides improving peripheral (and probably brain) insulin signaling, GLP-1 analogs minimize cell loss and possibly rescue cognitive decline in models of AD, Parkinson's (PD) or Huntington's disease. Interestingly, exendin-4 is undergoing clinical trials to test its potential as an anti-PD therapy. Herewith, we aim to integrate the available data on the metabolic and neuroprotective effects of GLP-1 mimetics in the central nervous system (CNS) with the complex crosstalk between T2D-AD, as well as their potential therapeutic value against T2D-associated cognitive dysfunction.
Collapse
Affiliation(s)
- A I Duarte
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kuver A, Shen H, Smith SS. Regulation of the surface expression of α4β2δ GABAA receptors by high efficacy states. Brain Res 2012; 1463:1-20. [PMID: 22609410 PMCID: PMC3371167 DOI: 10.1016/j.brainres.2012.04.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 04/20/2012] [Accepted: 04/25/2012] [Indexed: 01/10/2023]
Abstract
α4βδ GABA(A) receptors (GABARs) have low CNS expression, but their expression is increased by 48h exposure to the neurosteroid THP (3α-OH-5α[β]-pregnan-20-one). THP also increases the efficacy of δ-containing GABARs acutely, where GABA is a partial agonist. Thus, we examined effects of THP (100 nM) and full GABA agonists at α4β2δ (gaboxadol, 10 μM, and β-alanine, 10 μM-1mM), on surface expression of α4β2δ. To this end, we used an α4 construct tagged with a 3XFLAG (F) epitope or measured expression of native α4 and δ. HEK-293 cells or cultured hippocampal neurons were transfected with α4Fβ2δ and treated 24h later with GABA agonists, THP, GABA plus THP or vehicle (0.01% DMSO) for 0.5 h-48 h. Immunocytochemistry was performed under both non-permeabilized and permeabilized conditions to detect surface and intracellular labeling, respectively, using confocal microscopy. The high efficacy agonists and GABA (1 or 10 μM) plus THP increased α4β2δ surface expression up to 3-fold after 48h, an effect first seen by 0.5h. This effect was not dependent upon the polarity of GABAergic current, although expression was increased by KCC2. Intracellular labeling was decreased while functional expression was confirmed by whole cell patch clamp recordings of responses to GABA agonists. GABA plus THP treatment did not alter the rate of receptor removal from the surface membrane, suggesting that THP-induced α4β2δ expression is likely via receptor insertion. Surface expression of α4β2δ was decreased by rottlerin (10 μM), suggesting a role for PKC-δ. These results suggest that trafficking of α4β2δ GABARs is regulated by high efficacy states.
Collapse
Affiliation(s)
- Aarti Kuver
- Dept. of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203 U.S.A
| | - Hui Shen
- Dept. of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203 U.S.A
| | - Sheryl S. Smith
- Dept. of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203 U.S.A
| |
Collapse
|
8
|
Cardoso S, Carvalho C, Santos R, Correia S, Santos MS, Seiça R, Oliveira CR, Moreira PI. Impact of STZ-induced hyperglycemia and insulin-induced hypoglycemia in plasma amino acids and cortical synaptosomal neurotransmitters. Synapse 2010; 65:457-66. [PMID: 20853444 DOI: 10.1002/syn.20863] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 08/25/2010] [Indexed: 01/21/2023]
Abstract
In this work, we evaluated the effects of streptozotocin (STZ)-induced hyperglycemia and an acute episode of insulin-induced hypoglycemia in plasma amino acids and cortical neurotransmitters. For that purpose, we used citrate (vehicle)-treated Wistar rats, STZ-treated rats [i.p., 50 mg/kg body weight], and STZ-treated rats injected with insulin [s.c., dose adjusted with blood glucose levels] 1 h prior to sacrifice to induce an acute episode of hypoglycemia. Plasma was collected for determination of amino acids levels. In addition, cortical synaptosomal preparations were obtained and the total levels of neurotransmitters, levels of aspartate, glutamate, taurine, and GABA released by the action of KCl, iodoacetic acid (IAA), ouabain, and veratridine, membrane potential and ATP levels were evaluated. Compared with control rats, plasma from hypoglycemic rats presented increased levels of aspartate, glutamate, glutamine, and taurine whereas GABA levels were decreased in STZ and hypoglycemic rats. Similarly, glutamate and taurine levels were increased in hypoglycemic synaptosomes while GABA decreased in hypoglycemic and STZ-diabetic synaptosomes. The depolarizing agent KCl promoted an increase in aspartate, glutamate, and taurine release from hypoglycemic synaptosomes. The highest release of neurotransmitters occurred in the presence of veratridine and ouabain, two other depolarizing agents, in all groups of experimental animals. However, a higher release of glutamate was observed in the diabetic and hypoglycemic synaptosomes. No alterations were observed in synaptosomal membrane potential and ATP levels. These results show that in the presence of a metabolic insult a higher release of excitatory amino acids occurs, which may underlay the neuronal injury observed in type 1 diabetic patients under insulin therapy.
Collapse
Affiliation(s)
- Susana Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Murakami T, Yamane H, Tomonaga S, Furuse M. Forced swimming and imipramine modify plasma and brain amino acid concentrations in mice. Eur J Pharmacol 2009; 602:73-7. [DOI: 10.1016/j.ejphar.2008.10.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 10/07/2008] [Accepted: 10/29/2008] [Indexed: 11/30/2022]
|
10
|
Mehta AD, Seidler NW. β-Alanine suppresses heat inactivation of lactate dehydrogenase. J Enzyme Inhib Med Chem 2008; 20:199-203. [PMID: 15968825 DOI: 10.1080/14756360400020538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Beta-Alanine exhibits neurotransmitter activity and is a component of the anti-glycation agent carnosine. We propose that beta-alanine may have additional properties which may be of physiological significance. Interestingly, stress modulates the level of beta-alanine, which regulates excitotoxicity responses and prevents neuronal cell death. We hypothesize that beta-alanine's protective role may involve preservation of enzyme structure and function, suggesting that beta-alanine may act as a chemical chaperone. We used light scattering, enzyme activity and intrinsic fluorescence to monitor heat-induced changes in lactate dehydrogenase (LDH) in the presence and absence of beta-alanine. We observed that beta-alanine suppressed heat-induced LDH inactivation, prevented LDH aggregation, ameliorated the decrease in intrinsic fluorescence and reactivated thermally denatured LDH. These observations support the hypothesis that beta-alanine has chaperone-like activity and may play a cellular role in the preservation of enzyme function.
Collapse
Affiliation(s)
- Ankur D Mehta
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, 1750 Independence Avenue, Kansas City, MO 64106-1453, USA
| | | |
Collapse
|
11
|
Moreira T, Cebers G, Pickering C, Ostenson CG, Efendic S, Liljequist S. Diabetic Goto-Kakizaki rats display pronounced hyperglycemia and longer-lasting cognitive impairments following ischemia induced by cortical compression. Neuroscience 2006; 144:1169-85. [PMID: 17175109 DOI: 10.1016/j.neuroscience.2006.10.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/07/2006] [Accepted: 10/27/2006] [Indexed: 01/04/2023]
Abstract
Hyperglycemia has been shown to worsen the outcome of brain ischemia in several animal models but few experimental studies have investigated impairments in cognition induced by ischemic brain lesions in hyperglycemic animals. The Goto-Kakizaki (GK) rat naturally develops type 2 diabetes characterized by mild hyperglycemia and insulin resistance. We hypothesized that GK rats would display more severe cerebral damage due to hyperglycemia-aggravated brain injury and, accordingly, more severe cognitive impairments. In this study, recovery of motor and cognitive functions of GK and healthy Wistar rats was examined following extradural compression (EC) of the sensorimotor cortex. For this purpose, tests of vestibulomotor function (beam-walking) and combined tests of motor function and learning (locomotor activity from day (D) 1 to D5, operant lever-pressing from D14 to D25) were used. EC consistently reduced cerebral blood flow in both strains. Anesthesia-challenge and EC resulted in pronounced hyperglycemia in GK but not in Wistar rats. Lower beam-walking scores, increased locomotor activity, impairments in long-term habituation and learning of operant lever-pressing were more pronounced and observed at later time-points in GK rats. Fluoro-Jade, a marker of irreversible neuronal degeneration, revealed consistent degeneration in the ipsilateral cortex, hippocampus and thalamus at 2, 7 and 14 days post-compression. The amount of degeneration in these structures was considerably higher in GK rats. Thus, GK rats exhibited marked hyperglycemia during EC, as well as longer-lasting behavioral deficits and increased neurodegeneration during recovery. The GK rat is thus an attractive model for neuropathologic and cognitive studies after ischemic brain injury in hyperglycemic rats.
Collapse
Affiliation(s)
- T Moreira
- Department of Clinical Neuroscience, Division of Drug Dependence Research Building L4a:00, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Saransaari P, Oja SS. Enhanced release of adenosine under cell-damaging conditions in the developing and adult mouse hippocampus. Neurochem Res 2003; 28:1409-17. [PMID: 12938864 DOI: 10.1023/a:1024956701683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The inhibitory neuromodulator adenosine has been thought to act as an endogenous neuroprotectant against cerebral ischemia and neuronal damage. The release of preloaded [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice was characterized using a superfusion system under various cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals and metabolic poisons. The release of adenosine was greatly potentiated under the above conditions at both ages, with free radicals, metabolic poisons, and ischemia generally having the strongest stimulatory effects. Depolarization by K+ ions (50 mM) could then evoke more release of adenosine only in the immature hippocampus. Omission of Ca2+ from the superfusion media had no effect on the ischemia-induced release in the adults, indicating that it occurs by a Ca2+-independent system. In contrast, the release in the immature hippocampus was partially dependent on extracellular Ca2+. Furthermore, the ischemia-induced adenosine release was reduced in Na+-deficient media and enhanced by ouabain at both ages, pointing to the involvement of Na+-dependent transporters. The release was also reduced by Cl- channel blockers, thus indicating that a part of the evoked release occurs through anion channels. Another inhibitory neuromodulator and cell volume regulator, taurine, was seen to enhance adenosine release in ischemia at both ages. The simultaneous release of taurine and adenosine under cell-damaging conditions could constitute an important protective mechanism against excessive amounts of excitatory amino acids, counteracting their harmful effects and preventing excitation from reaching neurotoxic levels.
Collapse
Affiliation(s)
- Pirjo Saransaari
- Tampere Brain Research Center, Medical School, FIN-33014 University of Tampere, Finland.
| | | |
Collapse
|
13
|
Duarte AI, Santos MS, Seiça R, de Oliveira CR. Insulin affects synaptosomal GABA and glutamate transport under oxidative stress conditions. Brain Res 2003; 977:23-30. [PMID: 12788509 DOI: 10.1016/s0006-8993(03)02679-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the in vitro effect of exogenously administered insulin on the susceptibility to oxidative stress and on the accumulation of the amino acid neurotransmitters gamma-aminobutyric acid (GABA) and glutamate in a synaptosomal fraction isolated from male Wistar rat brain cortex. Insulin (1 microM) did not affect synaptosomal lipid peroxidation induced by the oxidant pair ascorbate/Fe(2+), although under these conditions an increase in thiobarbituric acid reactive substances (TBARS) levels was observed. Under control conditions, the presence of insulin did not change the uptake of [3H]GABA or [3H]glutamate. In contrast, under oxidizing conditions, we observed a 1.8- and a 2.2-fold decrease in [3H]GABA and [3H]glutamate accumulation, respectively, and insulin reverted the lower levels of both [3H]GABA and [3H]glutamate accumulation (to 86.74+/-6.26 and 67.01+/-6.65% of control, respectively). Insulin also increased the extrasynaptosomal levels of GABA and glutamate, determined both in control and oxidizing conditions. From this study, we can conclude that insulin is a modulator of amino acid neurotransmitter transport, either directly, as seems to occur under normal conditions, or via the decrease in ATP levels and the subsequent reversion of the amino acid transporters, as seems to occur under oxidative stress conditions. The modulation of both GABA and glutamate transport might be implicated in the neuroprotective role of insulin.
Collapse
Affiliation(s)
- Ana Isabel Duarte
- Department of Zoology, Center for Neuroscience of Coimbra, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
14
|
Kölker S, Okun JG, Hörster F, Assmann B, Ahlemeyer B, Kohlmüller D, Exner-Camps S, Mayatepek E, Krieglstein J, Hoffmann GF. 3-Ureidopropionate contributes to the neuropathology of 3-ureidopropionase deficiency and severe propionic aciduria: a hypothesis. J Neurosci Res 2001; 66:666-73. [PMID: 11746386 DOI: 10.1002/jnr.10012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
3-Ureidopropionate (3-UPA) is a physiologic metabolite in pyrimidine degradation. Pathological accumulation of 3-UPA in body fluids is found in 3-ureidopropionase deficiency and severe forms of propionic aciduria. Both diseases clinically present with a severe neuropathology involving gray and white matter as well as with a dystonic dyskinetic movement disorder. To date nothing is known about the toxic nature of this metabolite. The aim of the present study was to elucidate whether 3-UPA may act as endogenous neurotoxin. Exposure of cultured chick neurons to 3-UPA induced a concentration- and time-dependent neurodegeneration. Neuronal damage was reduced by the antioxidant alpha-tocopherol and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801. In contrast, the non-NMDA receptor antagonist CNQX, the metabotropic glutamate receptor antagonist L-AP3, and succinate showed no protective effect. Furthermore, 3-UPA elicited an increased production of reactive oxygen species followed by a delayed increase in intracellular calcium concentrations. Activity measurement of single respiratory chain complexes I-V revealed an inhibition of complex V activity, but not of the electron-transferring complexes I-IV by 3-UPA. In contrast, 3-UPA did not affect the mitochondrial beta-oxidation of fatty acids. In conclusion, our results provide strong evidence that 3-UPA acts as endogenous neurotoxin via inhibition of mitochondrial energy metabolism, resulting in the initiation of secondary, energy-dependent excitotoxic mechanisms.
Collapse
Affiliation(s)
- S Kölker
- Division of Metabolic and Endocrine Diseases, University Children's Hospital, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chesnoy-Marchais D, Cathala L. Modulation of glycine responses by dihydropyridines and verapamil in rat spinal neurons. Eur J Neurosci 2001; 13:2195-204. [PMID: 11454022 DOI: 10.1046/j.0953-816x.2001.01599.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although glycine receptors (GlyRs) are responsible for the main spinal inhibitory responses in adult vertebrates, in the embryo they have been reported to mediate depolarizing responses, which can sometimes activate dihydropyridine-sensitive L-type calcium channels. However, these channels are not the only targets of dihydropyridines (DHPs), and we questioned whether GlyRs might be directly modulated by DHPs. By whole-cell recording of cultured spinal neurons, we investigated modulation of glycine responses by the calcium channel antagonists, nifedipine, nitrendipine, nicardipine and (R)-Bay K 8644, and by the calcium channel, agonist (S)-Bay K 8644. At concentrations between 1 and 10 microM, all these DHPs could block glycine responses, even in the absence of extracellular Ca2+. The block was stronger at higher glycine concentrations, and increased with time during each glycine application. Nicardipine blocked GABAA responses from the same neurons in a similar manner. In addition to their blocking effects, nitrendipine and nicardipine potentiated the peak responses to low glycine concentrations. Both effects of extracellular nitrendipine on glycine responses persisted when the drug was present in the intracellular solution. Thus, these modulations are related neither to calcium channel modulation nor to possible intracellular effects of DHPs. Another type of calcium antagonist, verapamil (10-50 microM), also blocked glycine responses. Our results suggest that some of the effects of calcium antagonists, including the neuroprotective and anticonvulsant effects of DHPs, might result partly from their interactions with ligand-gated chloride channels.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Chloride Channels/drug effects
- Chloride Channels/metabolism
- Dihydropyridines/pharmacology
- Drug Interactions/physiology
- Glycine/metabolism
- Glycine/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Nicardipine/pharmacology
- Nifedipine/pharmacology
- Nitrendipine/pharmacology
- Rats
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/metabolism
- Receptors, Glycine/drug effects
- Receptors, Glycine/physiology
- Spinal Cord/cytology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Verapamil/pharmacology
Collapse
Affiliation(s)
- D Chesnoy-Marchais
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, CNRS UMR-8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005, Paris, France.
| | | |
Collapse
|