1
|
Nuclear Receptors Are Differentially Expressed and Activated in KAIMRC1 Compared to MCF7 and MDA-MB231 Breast Cancer Cells. Molecules 2019; 24:molecules24112028. [PMID: 31141879 PMCID: PMC6600534 DOI: 10.3390/molecules24112028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 11/17/2022] Open
Abstract
We recently established a KAIMRC1 cell line that has unique features compared to the known breast cancer cell lines, MCF7 and MDA-MB231. To characterize it further, we investigated the expression profile of nuclear receptors and their respective co-factors in these cell lines. We confirm that in contrast to the triple negative cell line MDA-MB231, the MCF7 and KAIMRC1 are estrogen receptor alpha (ERa) and progesterone receptor alpha (PRa) positive, with significant lower expression of these receptors in KAIMRC1. KAIMRC1 cell is a vitamin D receptor (VDR) negative and V-ErbA-Related Protein 2 (EAR2) positive in contrast to MCF7 and MDA-MB231. Remarkably, the histone deacetylases (HDACs) are highly expressed in KAIRMC1 with HDAC6 and HDAC 7 are exclusively expressed in KAIMRC1 while thyroid hormone receptor-associated protein 80 (TRAP80), telomeric DNA binding protein 1 (TBP1) and TGF-beta receptor interacting protein (TRIP1) are absent in KAIMRC1 but present in MCF7 and MDA-MB231. In a luciferase reporter assay, the ERa coexpression is needed for estrogen receptor element (ERE)-luciferase activation by estradiol in KAIMRC1 but not in MCF7. The co-expression of exogenous Liver X receptor alpha (LXRa)/retinoid X receptor alpha (RXRa) are necessary for LXR responsive element (LXRE) activation by the GW3696 in the three cell lines. However, the activity of peroxisome proliferator-activated receptor response element (PPARE)-tk-luciferase reporter increased when peroxisome proliferator-activated receptors alpha (PPARa)/RXRa were coexpressed but the addition of PPARa agonist (GW7647) did not stimulate further the reporter. The signal of the PPARE reporter increased in a dose-dependent manner with rosiglitazone (PPARg agonist) in KAIMRC1, MCF7, and MDA-MB231 when the proliferator-activated receptors gamma (PPARg)/RXRa receptors were cotransfected. Retinoic acid-induced activation of retinoic acid receptor response element (RARE)-tk-luciferase is dependent on exogenous expression of retinoic acid receptor alpha (RARa)/RXRa heterodimer in MDA-MB 231 but not in MCF7 and KAIMRC1 cell lines. In the three cell lines, Bexarotene-induced retinoid X receptor response element (RXRE)-luciferase reporter activation was induced only if the RXRa/LXRa heterodimer were co-expressed. The vitamin D receptor response element (VDRE)-luciferase reporter activity showed another distinct feature of KAIMRC1, where only co-expression of exogenous vitamin D receptor (VDR)/RXRa heterodimer was sufficient to reach the maximum rate of activation of VDRE reporter. In the proliferation assay, nuclear receptors ligands showed a distinct effect on KAIMRC1 compared to MCF7 and MDA-MB231. Growth inhibition effects of used ligands suggest that KAIMRC1 correlate more closely to MDA-MB231 than MCF7. Vitamin D3, rosiglitazone, novel RXR compound (RXRc) and PPARa compound (GW6471) have the most profound effects. In conclusion, we showed that nuclear receptors are differentially expressed, activated and also their ligand produced distinct effects in KAIMRC1 compared to MCF7 and MDA-MB231. This finding gives us confidence that KAIMRC1 has a unique biological phenotype.
Collapse
|
2
|
Kogai T, Liu YY, Mody K, Shamsian DV, Brent GA. Regulation of sodium iodide symporter gene expression by Rac1/p38β mitogen-activated protein kinase signaling pathway in MCF-7 breast cancer cells. J Biol Chem 2011; 287:3292-300. [PMID: 22157753 DOI: 10.1074/jbc.m111.315523] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Activation of p38 MAPK is a key pathway for cell proliferation and differentiation in breast cancer and thyroid cells. The sodium/iodide symporter (NIS) concentrates iodide in the thyroid and lactating breast. All-trans-retinoic acid (tRA) markedly induces NIS activity in some breast cancer cell lines and promotes uptake of β-emitting radioiodide (131)I sufficient for targeted cytotoxicity. To identify a signal transduction pathway that selectively stimulates NIS expression, we investigated regulation by the Rac1-p38 signaling pathway in MCF-7 breast cancer cells and compared it with regulation in FRTL-5 rat thyroid cells. Loss of function experiments with pharmacologic inhibitors and small interfering RNA, as well as RT-PCR analysis of p38 isoforms, demonstrated the requirement of Rac1, MAPK kinase 3B, and p38β for the full expression of NIS in MCF-7 cells. In contrast, p38α was critical for NIS expression in FRTL-5 cells. Treatment with tRA or overexpression of Rac1 induced the phosphorylation of p38 isoforms, including p38β. A dominant negative mutant of Rac1 abolished tRA-induced phosphorylation in MCF-7 cells. Overexpression of p38β or Rac1 significantly enhanced (1.9- and 3.9-fold, respectively), the tRA-stimulated NIS expression in MCF-7 cells. This study demonstrates differential regulation of NIS by distinct p38 isoforms in breast cancer cells and thyroid cells. Targeting isoform-selective activation of p38 may enhance NIS induction, resulting in higher efficacy of (131)I concentration and treatment of breast cancer.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA.
| | | | | | | | | |
Collapse
|
3
|
Hingorani M, Spitzweg C, Vassaux G, Newbold K, Melcher A, Pandha H, Vile R, Harrington K. The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr Cancer Drug Targets 2010; 10:242-67. [PMID: 20201784 DOI: 10.2174/156800910791054194] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 02/16/2010] [Indexed: 12/12/2022]
Abstract
The sodium iodide symporter (NIS) is responsible for thyroidal, salivary, gastric, intestinal and mammary iodide uptake. It was first cloned from the rat in 1996 and shortly thereafter from human and mouse tissue. In the intervening years, we have learned a great deal about the biology of NIS. Detailed knowledge of its genomic structure, transcriptional and post-transcriptional regulation and pharmacological modulation has underpinned the selection of NIS as an exciting approach for targeted gene delivery. A number of in vitro and in vivo studies have demonstrated the potential of using NIS gene therapy as a means of delivering highly conformal radiation doses selectively to tumours. This strategy is particularly attractive because it can be used with both diagnostic (99mTc, 125I, 124I)) and therapeutic (131I, 186Re, 188Re, 211At) radioisotopes and it lends itself to incorporation with standard treatment modalities, such as radiotherapy or chemoradiotherapy. In this article, we review the biology of NIS and discuss its development for gene therapy.
Collapse
Affiliation(s)
- Mohan Hingorani
- The Institute of Cancer Research, 237 Fulham Road, London SW36JB, UK
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kielland A, Carlsen H. Molecular imaging of transcriptional regulation during inflammation. JOURNAL OF INFLAMMATION-LONDON 2010; 7:20. [PMID: 20420665 PMCID: PMC2883981 DOI: 10.1186/1476-9255-7-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/26/2010] [Indexed: 01/21/2023]
Abstract
Molecular imaging enables non-invasive visualization of the dynamics of molecular processes within living organisms in vivo. Different imaging modalities as MRI, SPECT, PET and optic imaging are used together with molecular probes specific for the biological process of interest. Molecular imaging of transcription factor activity is done in animal models and mostly in transgenic reporter mice, where the transgene essentially consists of a promoter that regulates a reporter gene. During inflammation, the transcription factor NF-κB is widely involved in orchestration and regulation of the immune system and almost all imaging studies in this field has revolved around the role and regulation of NF-κB. We here present a brief introduction to experimental use and design of transgenic reporter mice and a more extensive review of the various studies where molecular imaging of transcriptional regulation has been applied during inflammation.
Collapse
Affiliation(s)
- Anders Kielland
- Dept, of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1046 Blindern, 0316 Oslo, Norway.
| | | |
Collapse
|
5
|
Shifera AS, Hardin JA. Factors modulating expression of Renilla luciferase from control plasmids used in luciferase reporter gene assays. Anal Biochem 2009; 396:167-72. [PMID: 19788887 DOI: 10.1016/j.ab.2009.09.043] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/31/2009] [Accepted: 09/22/2009] [Indexed: 11/19/2022]
Affiliation(s)
- Amde Selassie Shifera
- Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
6
|
Liu YY, Brent GA. Stealth sequences in reporter gene vectors confound studies of T3-regulated negative gene expression. Thyroid 2008; 18:593-5. [PMID: 18578606 DOI: 10.1089/thy.2008.0138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Kogai T, Ohashi E, Jacobs MS, Sajid-Crockett S, Fisher ML, Kanamoto Y, Brent GA. Retinoic acid stimulation of the sodium/iodide symporter in MCF-7 breast cancer cells is mediated by the insulin growth factor-I/phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase signaling pathways. J Clin Endocrinol Metab 2008; 93:1884-92. [PMID: 18319322 PMCID: PMC2386284 DOI: 10.1210/jc.2007-1627] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT All-trans retinoic acid (tRA) induces differentiation in MCF-7 breast cancer cells, stimulates sodium/iodide symporter (NIS) gene expression, and inhibits cell proliferation. Radioiodine administration after systemic tRA treatment has been proposed as an approach to image and treat some differentiated breast cancer. OBJECTIVE The objective of this work was to study the relative role of genomic and nongenomic pathways in tRA stimulation of NIS expression in MCF-7 cells. DESIGN We inspected the human NIS gene locus for retinoic acid-responsive elements and tested them for function. The effects of signal transduction pathway inhibitors were also tested in tRA-treated MCF-7 cells and TSH-stimulated FRTL-5 rat thyroid cells, followed by iodide uptake assay, quantitative RT-PCR of NIS, and cell cycle phase analysis. RESULTS Multiple retinoic acid response elements around the NIS locus were identified by sequence inspection, but none of them was a functional tRA-induced element in MCF-7 cells. Inhibitors of the IGF-I receptor, Janus kinase, and phosphatidylinositol 3-kinase (PI3K), significantly reduced NIS mRNA expression and iodide uptake in tRA-stimulated MCF-7 cells but not FRTL-5 cells. An inhibitor of p38 MAPK significantly reduced iodide uptake in both tRA-stimulated MCF-7 cells and TSH-stimulated FRTL-5 cells. IGF-I and PI3K inhibitors did not significantly reduce the basal NIS mRNA expression in MCF-7 cells. Despite the chronic inhibitory effects on cell proliferation, tRA did not reduce the S-phase distribution of MCF-7 cells during the period of NIS induction. CONCLUSION The IGF-I receptor/PI3K pathway mediates tRA-stimulated NIS expression in MCF-7 but not FRTL-5 thyroid cells.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Kiningham KK, Cardozo ZA, Cook C, Cole MP, Stewart JC, Tassone M, Coleman MC, Spitz DR. All-trans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma through NF-kappaB. Free Radic Biol Med 2008; 44:1610-6. [PMID: 18280257 PMCID: PMC2399892 DOI: 10.1016/j.freeradbiomed.2008.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/10/2008] [Accepted: 01/13/2008] [Indexed: 01/01/2023]
Abstract
Retinoids are signaling molecules that are involved in proliferation, differentiation, and apoptosis during development. Retinoids exert their effects, in part, by binding to nuclear receptors, thereby altering gene expression. Clinical use of retinoids in the treatment of neuroblastoma is of interest due to their success in management of acute promyelocytic leukemia. Using the SK-N-SH human neuroblastoma cell line we investigated the effects of the differentiation agent all-trans-retinoic acid (ATRA) on the expression of manganese superoxide dismutase (MnSOD), an enzyme previously shown to enhance differentiation in vitro. Manganese superoxide dismutase mRNA, protein, and activity levels increased in a time-dependent manner upon treatment with ATRA. Nuclear levels of the NF-kappaB proteins p50 and p65 increased within 24 h of ATRA administration. This increase paralleled the degradation of the cytoplasmic inhibitor IkappaB-beta. Furthermore an increase in DNA binding to a NF-kappaB element occurred within a 342-bp enhancer (I2E) of the SOD2 gene with 10 microM ATRA treatment. Reporter analysis showed that ATRA-mediated I2E-dependent luciferase expression was attenuated upon mutation of the NF-kappaB element, suggesting a contribution of this transcription factor to retinoid-mediated upregulation of MnSOD. This study identifies SOD2 as a retinoid-responsive gene and demonstrates activation of the NF-kappaB pathway in response to ATRA treatment of SK-N-SH cells. These results suggest that signaling events involving NF-kappaB and SOD2 may contribute to the effects of retinoids used in cancer therapy.
Collapse
Affiliation(s)
- Kinsley K Kiningham
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lagido C, Pettitt J, Flett A, Glover LA. Bridging the phenotypic gap: real-time assessment of mitochondrial function and metabolism of the nematode Caenorhabditis elegans. BMC PHYSIOLOGY 2008; 8:7. [PMID: 18384668 PMCID: PMC2364618 DOI: 10.1186/1472-6793-8-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/02/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ATP levels of an organism are an important physiological parameter that is affected by genetic make up, ageing, stress and disease. RESULTS We have generated luminescent C. elegans through ubiquitous, constitutive expression of firefly luciferase, widely used for in vitro ATP determination. We hypothesise that whole animal luminescence reflects its intracellular ATP levels in vivo. To test this, we characterised the bioluminescence response of C. elegans during sublethal exposure to, and recovery from azide, a treatment that inhibits mitochondrial respiration reversibly, and causes ATP depletion. Consistent with our expectations, in vivo luminescence decreased with increasing sublethal azide levels, and recovered fully when worms were removed from azide. Firefly luciferase expression levels, stability and activity did not influence the final luminescence. Bioluminescence also reflected the lowered activity of the electron transport chain achieved with RNA interference (RNAi) of genes encoding respiratory chain components. CONCLUSION Results indicated that C. elegans luminescence reports on ATP levels in real-time. For the first time, we are able to directly assess the metabolism of a whole, living, multicellular organism by determination of the relative ATP levels. This will enable genetic analysis based on a readily quantifiable metabolic phenotype and will provide novel insights into mechanisms of fitness and disease that are likely to be of relevance for other organisms, as well as the worm.
Collapse
Affiliation(s)
- Cristina Lagido
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jonathan Pettitt
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Aileen Flett
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - L Anne Glover
- Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
10
|
Kogai T, Kanamoto Y, Li AI, Che LH, Ohashi E, Taki K, Chandraratna RA, Saito T, Brent GA. Differential regulation of sodium/iodide symporter gene expression by nuclear receptor ligands in MCF-7 breast cancer cells. Endocrinology 2005; 146:3059-69. [PMID: 15817668 DOI: 10.1210/en.2004-1334] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sodium/iodide symporter (NIS) mediates iodide uptake in lactating breast tissue and is expressed in some breast cancers. We have previously demonstrated that all-trans retinoic acid (tRA) stimulates NIS gene expression and the selective cytotoxic effect of beta-emitting radioiodide-131 ((131)I) in both in vitro and in vivo MCF-7 breast cancer cell systems. We studied the ability of natural and synthetic retinoids, in combination with other nuclear receptor ligands, to achieve greater and more sustained induction of NIS in MCF-7 cells and enhance (131)I-mediated cytotoxicity. Selective stimulation of retinoic acid receptor (RAR) beta/gamma produced marked NIS induction; and selective stimulation of RARalpha, RARgamma, or retinoid X receptor produced more modest induction. Maximal NIS induction was seen with 9-cis retinoic acid and AGN190168, a RAR beta/gamma-agonist. Dexamethasone (Dex), but not the other nuclear receptor ligands, in combination with tRA synergistically induced iodide uptake and NIS mRNA expression, predominantly by prolonging NIS mRNA half-life. The addition of Dex reduced the EC(50) of tRA for NIS stimulation to approximately 7%, such that 10(-7) m tRA with addition of Dex enhanced iodide uptake and selective cytotoxicity of (131)I greater than 10(-6) m tRA alone. AGN190168 combined with Dex synergistically increased iodide uptake and significantly prolonged induction (5 d) of iodide uptake compared with that induced by the combination of tRA/Dex or 9-cis retinoic acid/Dex. The addition of Dex reduced the effective dose of retinoid and prolonged the induction of NIS, especially with AGN190168, suggesting higher efficacy of (131)I after combination treatment.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine at the University of California, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ghazawi I, Cutler SJ, Low P, Mellick AS, Ralph SJ. Inhibitory effects associated with use of modified Photinus pyralis and Renilla reniformis luciferase vectors in dual reporter assays and implications for analysis of ISGs. J Interferon Cytokine Res 2005; 25:92-102. [PMID: 15695930 DOI: 10.1089/jir.2005.25.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Luciferase reporter constructs are widely used for analysis of gene regulation when characterizing promoter and enhancer elements. We report that the recently developed codon-modified Renilla luciferase construct included as an internal standard for cotransfection must be used with great caution with respect to the amount of DNA transfected. Also, the dual-luciferase reporter vectors encoding Photinus pyralis firefly or Renilla reniformis luciferase showed a linear increase in dose-response with increasing amounts of transfected DNA, but at higher levels of transfected DNA, a reduction in expressed levels of luciferase activity resulted. In addition, treatment with type I interferon (IFN) was found to significantly reduce levels of P. pyralis firefly and Renilla luciferase activity. In contrast, cells transfected with a green fluorescent protein (GFP) reporter construct showed no significant IFN-associated change. The reduction in luciferase activity resulting from IFN treatment was not due to IFN-mediated cytotoxicity, as no change in cellular propidium iodide (PI) staining was observed by flow cytometry. IFN treatment did not alter the levels of firefly luciferase activity in cell culture supernatants or the luciferase mRNA levels determined by quantitative real-time RT-PCR analysis. Based on these results, it is probable that the IFN-induced reduction in levels of luciferase activity detected in reporter assays occurs via a posttranscriptional mechanism. Thus, it is important to be aware of these complications when using luciferase reporter systems in general or for analyzing cytokine-mediated responsive regulation of target genes, particularly by the type I IFNs.
Collapse
Affiliation(s)
- Ibtisam Ghazawi
- Genomics Research Centre, School of Health Science, Griffith University Gold Coast Campus, Gold Coast Mail Centre, PMB50, Queensland, 9726, Australia
| | | | | | | | | |
Collapse
|
12
|
Madziar B, Lopez-Coviella I, Zemelko V, Berse B. Regulation of cholinergic gene expression by nerve growth factor depends on the phosphatidylinositol-3'-kinase pathway. J Neurochem 2005; 92:767-79. [PMID: 15686478 DOI: 10.1111/j.1471-4159.2004.02908.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nerve growth factor (NGF) exerts anti-apoptotic, trophic and differentiating actions on sympathetic neurons and cholinergic cells of the basal forebrain and activates the expression of genes regulating the synthesis and storage of the neurotransmitter acetylcholine (ACh). We have been studying the intracellular signaling pathways involved in this process. Although, in the rat pheochromocytoma cell line PC12, NGF strongly activates the mitogen-activated protein kinase (MAPK) pathway, prolonged inhibition of MAPK kinase (MEK) activity by PD98059 or U0126 did not affect the ability of NGF to up-regulate choline acetyltransferase (ChAT) or to increase intracellular ACh levels. In contrast, the treatment with the phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002, but not with its inactive analogue LY303511, completely abolished the NGF-induced production of ACh. Inhibition of PI3K also eliminated the NGF effect on the intracellular ACh level in primary cultures of septal neurons from E18 mouse embryos. Blocking the PI3K pathway prevented the activation of cholinergic gene expression, as demonstrated in RT/PCR assays and in transient transfections of PC12 cells with cholinergic locus promoter-luciferase reporter constructs. These results indicate that the PI3K pathway, but not the MEK/MAPK pathway, is the mediator of NGF-induced cholinergic differentiation.
Collapse
Affiliation(s)
- Beata Madziar
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
13
|
Ubels JL. A retrospective on topical retinoids occasioned by observation of unexpected interactions of retinoic acid with androgens and glucocorticoids in immortalized lacrimal acinar cells. Exp Eye Res 2005; 80:281-4. [PMID: 15670806 DOI: 10.1016/j.exer.2004.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 09/02/2004] [Indexed: 11/30/2022]
Affiliation(s)
- John L Ubels
- Department of Biology, Calvin College, 3201 Burton Street SE, Grand Rapids, MI 49546, USA.
| |
Collapse
|