1
|
Marchand T, Akinnola KE, Takeishi S, Maryanovich M, Pinho S, Saint-Vanne J, Birbrair A, Lamy T, Tarte K, Frenette PS, Gritsman K. Periosteal skeletal stem cells can migrate into the bone marrow and support hematopoiesis after injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.12.523842. [PMID: 36711927 PMCID: PMC9882153 DOI: 10.1101/2023.01.12.523842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Skeletal stem cells have been isolated from various tissues, including periosteum and bone marrow, where they exhibit key functions in bone biology and hematopoiesis, respectively. The role of periosteal skeletal stem cells in bone regeneration and healing has been extensively studied, but their ability to contribute to the bone marrow stroma is still under debate. In the present study, we characterized a whole bone transplantation model that mimics the initial bone marrow necrosis and fatty infiltration seen after injury. Using this model and a lineage tracing approach, we observed the migration of periosteal skeletal stem cells into the bone marrow after transplantation. Once in the bone marrow, periosteal skeletal stem cells are phenotypically and functionally reprogrammed into bone marrow mesenchymal stem cells that express high levels of hematopoietic stem cell niche factors such as Cxcl12 and Kitl. In addition, using in-vitro and in-vivo approaches, we found that periosteal skeletal stem cells are more resistant to acute stress than bone marrow mesenchymal stem cells. These results highlight the plasticity of periosteal skeletal stem cells and their potential role in bone marrow regeneration after bone marrow injury.
Collapse
|
2
|
Kumari A, Kashyap D, Garg VK. Osteopontin in cancer. Adv Clin Chem 2024; 118:87-110. [PMID: 38280808 DOI: 10.1016/bs.acc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Osteopontin (OPN) is a heavily post-translationally modified protein with a molecular weight of 44-70 kDa, depending on the degree of glycosylation. OPN is involved in various biological processes, including bone remodeling, immune response, cell adhesion, migration, and survival. It is essential for controlling osteoclast and osteoblast activity for maintaining bone mass and bone strength. Additionally, OPN has been linked to cardiovascular, inflammatory illnesses, as well as the onset and progression of cancer. OPN is a multifunctional protein that can interact with a variety of cell surface receptors, such as integrins, CD44, the urokinase-type plasminogen activator receptor (uPAR), as well as extracellular matrix (ECM) components (e.g. collagen and hydroxyapatite). These interactions contribute to its wide range of biological functions in general and has significant implications for bone biology, immunology and cancer, specifically. In this chapter, we summarize the structure of OPN with a focus on its molecular mechanisms of action in various cancers.
Collapse
Affiliation(s)
- Alpana Kumari
- Department of Optometry, University Institute of Allied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Dharambir Kashyap
- Department of Medicine, The Brown Centre for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Allied Health Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
3
|
He W, Wang Y, Yang R, Ma H, Qin X, Yan M, Rong Y, Xie Y, Li L, Si J, Li X, Ma K. Molecular Mechanism of Naringenin Against High-Glucose-Induced Vascular Smooth Muscle Cells Proliferation and Migration Based on Network Pharmacology and Transcriptomic Analyses. Front Pharmacol 2022; 13:862709. [PMID: 35754483 PMCID: PMC9219407 DOI: 10.3389/fphar.2022.862709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Although the protective effects of naringenin (Nar) on vascular smooth muscle cells (VSMCs) have been confirmed, whether it has anti-proliferation and anti-migration effects in high-glucose-induced VSMCs has remained unclear. This study aimed to clarify the potential targets and molecular mechanism of Nar when used to treat high-glucose-induced vasculopathy based on transcriptomics, network pharmacology, molecular docking, and in vivo and in vitro assays. We found that Nar has visible anti-proliferation and anti-migration effects both in vitro (high-glucose-induced VSMC proliferation and migration model) and in vivo (type 1 diabetes mouse model). Based on the results of network pharmacology and molecular docking, vascular endothelial growth factor A (VEGFA), the proto-oncogene tyrosine-protein kinase Src (Src) and the kinase insert domain receptor (KDR) are the core targets of Nar when used to treat diabetic angiopathies, according to the degree value and the docking score of the three core genes. Interestingly, not only the Biological Process (BP), Molecular Function (MF), and KEGG enrichment results from network pharmacology analysis but also transcriptomics showed that phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) is the most likely downstream pathway involved in the protective effects of Nar on VSMCs. Notably, according to the differentially expressed genes (DEGs) in the transcriptomic analysis, we found that cAMP-responsive element binding protein 5 (CREB5) is a downstream protein of the PI3K/Akt pathway that participates in VSMCs proliferation and migration. Furthermore, the results of molecular experiments in vitro were consistent with the bioinformatic analysis. Nar significantly inhibited the protein expression of the core targets (VEGFA, Src and KDR) and downregulated the PI3K/Akt/CREB5 pathway. Our results indicated that Nar exerted anti-proliferation and anti-migration effects on high-glucose-induced VSMCs through decreasing expression of the target protein VEGFA, and then downregulating the PI3K/Akt/CREB5 pathway, suggesting its potential for treating diabetic angiopathies.
Collapse
Affiliation(s)
- Wenjun He
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Yanming Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Rui Yang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Huihui Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xuqing Qin
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Meijuan Yan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Yi Rong
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yufang Xie
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
4
|
Amilca-Seba K, Sabbah M, Larsen AK, Denis JA. Osteopontin as a Regulator of Colorectal Cancer Progression and Its Clinical Applications. Cancers (Basel) 2021; 13:cancers13153793. [PMID: 34359694 PMCID: PMC8345080 DOI: 10.3390/cancers13153793] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary The mortality of colorectal cancer is principally related to metastatic disease at the time of diagnosis or to the growth of initially undetectable micro-metastasis. Current therapeutic strategies are efficient in patients with locally advanced cancer, but are rarely able to cure patients with metastatic disease. Therapeutic failure is mainly associated with drug resistance and an aggressive phenotype. The identification of new biomarkers for micro-metastasis and tumor progression remains an unmet clinical need that should allow for improved patient stratification for optimal treatment and may lead to the identification of novel therapeutic targets. Osteopontin (OPN), a multifunctional protein, has emerged as a potentially valuable biomarker in several cancer types. This review principally describes the molecular mechanisms of OPN that are associated with colorectal cancer (CRC) progression and metastasis, as well as the use of OPN as a clinical biomarker. This review identifies a role for OPN as a biomarker ready for extended clinical application and discusses its use as a therapeutic target. Abstract A high expression of the phosphoprotein osteopontin (OPN) has been associated with cancer progression in several tumor types, including breast cancer, hepatocarcinoma, ovarian cancer, and colorectal cancer (CRC). Interestingly, OPN is overexpressed in CRC and is associated with a poor prognosis linked to invasion and metastasis. Here, we review the regulation and functions of OPN with an emphasis on CRC. We examine how epigenetic and genetic regulators interact with the key signaling pathways involved in this disease. Then, we describe the role of OPN in cancer progression, including proliferation, survival, migration, invasion, and angiogenesis. Furthermore, we outline the interest of using OPN as a clinical biomarker, and discuss if and how osteopontin can be implemented as a routine assay in clinical laboratories for monitoring CRC patients. Finally, we discuss the use of OPN an attractive, but challenging, therapeutic target.
Collapse
Affiliation(s)
- Katyana Amilca-Seba
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Annette K. Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Jérôme A. Denis
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France; (K.A.-S.); (M.S.); (A.K.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U938, 75012 Paris, France
- Institut Universitaire de Cancérologie (IUC), Faculté de Médecine, Sorbonne Université, 75005 Paris, France
- Department of Endocrinology and Oncology Biochemistry, Pitié-Salpetrière Hospital, 75013 Paris, France
- Correspondence: ; Tel.: +33-(0)1-42-16-20-39
| |
Collapse
|
5
|
Mansour SG, Liu C, Jia Y, Reese PP, Hall IE, El-Achkar TM, LaFavers KA, Obeid W, El-Khoury JM, Rosenberg AZ, Daneshpajouhnejad P, Doshi MD, Akalin E, Bromberg JS, Harhay MN, Mohan S, Muthukumar T, Schröppel B, Singh P, Weng FL, Thiessen-Philbrook HR, Parikh CR. Uromodulin to Osteopontin Ratio in Deceased Donor Urine Is Associated With Kidney Graft Outcomes. Transplantation 2021; 105:876-885. [PMID: 32769629 PMCID: PMC8805736 DOI: 10.1097/tp.0000000000003299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Deceased-donor kidneys experience extensive injury, activating adaptive and maladaptive pathways therefore impacting graft function. We evaluated urinary donor uromodulin (UMOD) and osteopontin (OPN) in recipient graft outcomes. METHODS Primary outcomes: all-cause graft failure (GF) and death-censored GF (dcGF). Secondary outcomes: delayed graft function (DGF) and 6-month estimated glomerular filtration rate (eGFR). We randomly divided our cohort of deceased donors and recipients into training and test datasets. We internally validated associations between donor urine UMOD and OPN at time of procurement, with our primary outcomes. The direction of association between biomarkers and GF contrasted. Subsequently, we evaluated UMOD:OPN ratio with all outcomes. To understand these mechanisms, we examined the effect of UMOD on expression of major histocompatibility complex II in mouse macrophages. RESULTS Doubling of UMOD increased dcGF risk (adjusted hazard ratio [aHR], 1.1; 95% confidence interval [CI], 1.02-1.2), whereas OPN decreased dcGF risk (aHR, 0.94; 95% CI, 0.88-1). UMOD:OPN ratio ≤3 strengthened the association, with reduced dcGF risk (aHR, 0.57; 0.41-0.80) with similar associations for GF, and in the test dataset. A ratio ≤3 was also associated with lower DGF (aOR, 0.73; 95% CI, 0.60-0.89) and higher 6-month eGFR (adjusted β coefficient, 3.19; 95% CI, 1.28-5.11). UMOD increased major histocompatibility complex II expression elucidating a possible mechanism behind UMOD's association with GF. CONCLUSIONS UMOD:OPN ratio ≤3 was protective, with lower risk of DGF, higher 6-month eGFR, and improved graft survival. This ratio may supplement existing strategies for evaluating kidney quality and allocation decisions regarding deceased-donor kidney transplantation.
Collapse
Affiliation(s)
- Sherry G. Mansour
- Program of Applied Translational Research, Yale University School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Liu
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yaqi Jia
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter P. Reese
- Department of Medicine, Renal-Electrolyte and Hypertension Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medical Ethics and Health Policy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Isaac E. Hall
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine and the Indianapolis VA Medical Center
| | - Kaice A. LaFavers
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine and the Indianapolis VA Medical Center
| | - Wassim Obeid
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joe M. El-Khoury
- Program of Applied Translational Research, Yale University School of Medicine, New Haven, CT, USA
| | - Avi Z. Rosenberg
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Mona D. Doshi
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Enver Akalin
- Department of Internal Medicine, Division of Nephrology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jonathan S. Bromberg
- Department of Surgery, Division of Transplantation, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meera N. Harhay
- Department of Internal Medicine, Division of Nephrology & Hypertension, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, Philadelphia, PA, USA
| | - Sumit Mohan
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Medicine, Division of Nephrology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Thangamani Muthukumar
- Department of Medicine, Division of Nephrology and Hypertension, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | | | - Pooja Singh
- Department of Medicine, Division of Nephrology, Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Francis L. Weng
- Saint Barnabas Medical Center, RWJBarnabas Health, Livingston, NJ, USA
| | | | - Chirag R. Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
The Roles of Osteopontin in the Pathogenesis of West Nile Encephalitis. Vaccines (Basel) 2020; 8:vaccines8040748. [PMID: 33317005 PMCID: PMC7768535 DOI: 10.3390/vaccines8040748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN), a multifunctional protein encoded by the secreted phosphoprotein-1 (Spp-1) gene in humans, plays important roles in a variety of physiological conditions, such as biomineralization, bone remodeling and immune functions. OPN also has significant roles in the pathogenesis of autoimmune, allergy and inflammatory diseases, as well as bacterial, fungal and viral infections. West Nile virus (WNV), a mosquito-transmitted flavivirus, is the leading agent for viral encephalitis in North America. Recent progress has been made in understanding both the biological functions of OPN and the pathogenesis of WNV. In this review article, we have summarized the current understanding of the biology of OPN and its vital roles in the pathogenesis of WNV encephalitis.
Collapse
|
7
|
Elbaiomy MA, Akl T, Elhelaly R, El-Beshbishi W, El Ghonemy MS, Elzehery R. Osteopontin level and promoter polymorphism in patients with metastatic breast cancer. Curr Oncol 2020; 27:e444-e450. [PMID: 33173383 PMCID: PMC7606043 DOI: 10.3747/co.27.6449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Cancer initiation typically occurs when a proto-oncogene's coding region undergoes mutation, resulting in uncontrollable cell growth and division, or when a tumour suppressor gene's coding region is affected by a mutation that inhibits activity of the resulting gene product. The pathophysiologic result is, respectively, exaggerated cell-cycle growth or deficient programmed cell death. Osteopontin (opn) is an integrin-binding phosphoprotein that is expressed on the surface of normal cells. Osteopontin has a major role in diverse tumour components, especially those implicated in invasion and metastasis. In the present study, we aimed to illustrate the value of opn as a possible contributor in breast cancer (bca). Methods This prospective study included 115 patients newly diagnosed with bca and distant metastasis who were recruited from the Oncology Center, Mansoura University, and the Department of Clinical Oncology and Nuclear Medicine, Mansoura University Hospital, Egypt. The patients recruited had been diagnosed with disseminated visceral metastasis (visceral crisis), with or without bone metastasis; patients with cranial metastasis were excluded from the study. All patients received first-line chemotherapy with docetaxel 75 mg/m2 plus cisplatin 75 mg/m2 or carboplatin 6 auc (area under the curve) on day 1 every 21 days for a maximum of 6 cycles or till development of toxicity. Trastuzumab (in cases of her2-positive disease) was given whenever possible (if government assistance or personal finances permitted). Serum levels of opn were assessed by enzyme-linked immunosorbent assay (elisa) before treatment was started. A group of 30 matched healthy women whose median serum opn level was 15 ng/dL were included, and that level was therefore defined as the cut-off value. In addition, opn gene mutation was determined by polymerase chain reaction (pcr). Correlations of pretreatment serum opn and opn gene mutation with various patient clinicopathologic variables, response to the treatment, progression-free survival (pfs), and overall survival (os) were assessed. Results Mean serum opn was highest in her2-amplified bca (64.4 ± 42.3 ng/dL), and then in triple-negative bca (55.9 ± 34.7 ng/dL), followed by the luminal B and A subtypes (38.4 ± 33.1 ng/dL and 36.3 ± 32.2 ng/dL respectively, p = 0.017). Testing by pcr revealed that opn gene mutation was highest in triple-negative bca (85% opn mutant vs. 15% non-mutant), and then in her2-overexpressed bca (80% opn mutant vs. 20% non-mutant), followed by luminal B bca (61.9% opn mutant vs. 38.1% non-mutant); the least expression was detected in luminal A bca (57.9% opn mutant vs. 42.1% non-mutant). Interestingly, patients with high serum opn and opn gene mutation experienced both poor pfs (median: 12 months vs. 14 months; p = 0.001) and poor os (median: 14 months vs. 18 months; p = 0.001). Moreover, participants with opn gene mutation experienced a poor response: of those with progressive disease, 74% had opn mutation and 26% had unmutated opn (p = 0.04). Additionally, high pretreatment serum opn was correlated with poor treatment response: 49.1 ± 33.8 ng/dL in patients with progressive disease and 35.5 ± 34.3 ng/dL in those who achieved a complete response, a partial response, or stable disease (p = 0.05). Strong concordance was found between high serum opn and opn gene mutation in 69 tumours (79.3%), and strong concordance was detected between normal or low serum opn and non-mutant opn in 28 tumours (60.8%). Conclusions The current prospective work helps to highlight opn as a valid prognostic biomarker for patients with metastatic bca and reveals that high pretreatment serum opn and opn gene mutation are both strongly linked with poor response and survival. Concordance between elisa and pcr results indicates that either method can be used for the evaluation of opn. Increased opn gene mutation in triple-negative bca could assist in tailoring the treatment response in this very aggressive tumour subtype and could be considered a targetable molecule in future studies.
Collapse
Affiliation(s)
- M A Elbaiomy
- Medical Oncology Unit, Oncology Center, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - T Akl
- Medical Oncology Unit, Oncology Center, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - R Elhelaly
- Clinical Pathology Department, Mansoura University, Mansoura, Egypt
| | - W El-Beshbishi
- Clinical Oncology and Nuclear Medicine Department, Mansoura University, Mansoura, Egypt
| | - M S El Ghonemy
- Hematology Unit, Clinical Pathology Department, Mansoura University, Mansoura, Egypt
| | - R Elzehery
- Clinical Pathology Department, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Tian J, Gao SG, Li YS, Cheng C, Deng ZH, Luo W, Zhang FJ. The β-catenin/TCF-4 pathway regulates the expression of OPN in human osteoarthritic chondrocytes. J Orthop Surg Res 2020; 15:344. [PMID: 32819387 PMCID: PMC7441722 DOI: 10.1186/s13018-020-01881-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cartilage destruction is the main characteristic of osteoarthritis (OA), and osteopontin (OPN) is elevated in OA articular cartilage; however, the reason for the increased OPN level is not determined. In addition, Wnt/β-catenin signaling participates in the progression of OA. The aim of the present study was to evaluate whether canonical Wnt signaling could regulate the expression of OPN in human chondrocytes in vitro. METHODS Human chondrocytes were cultured in vitro, and we first assayed the mRNA levels of OPN and β-catenin in chondrocytes. Next, we performed transient transfection of TCF 4 shRNA into chondrocytes to inhibit TCF 4 expression and explore changes in the OPN level. Then, the Wnt/β-catenin signaling inhibitor Dickkopf-1 (Dkk-1) was incubated with chondrocytes, and we assayed the changes in β-catenin and OPN. RESULTS Our results showed that the expression of both β-catenin and OPN was increased in OA chondrocytes, but there were no correlations between β-catenin and OPN expression. TCF4 shRNA downregulated the expression of TCF 4 and OPN in chondrocytes, while after treatment with rDKK-1 at a concentration of 400 ng/ml for 24 h, the mRNA and protein expression of both β-catenin and OPN was significantly decreased in chondrocytes. CONCLUSIONS Elevated OPN expression might be regulated by the β-catenin/TCF-4 pathway, and the Wnt/β-catenin inhibitor DKK1 could inhibit the expression of β-catenin and OPN in OA chondrocytes.
Collapse
Affiliation(s)
- Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shu-Guang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Chao Cheng
- Department of Orthopaedics, Yiyang Central Hospital, Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, No.118 North KangFu Road, Yiyang, 413000, Hunan, China
| | - Zhen-Han Deng
- Department of Sports Medicine, The First Hospital Affiliated to Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Fang-Jie Zhang
- Department of Emergency Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Si J, Wang C, Zhang D, Wang B, Hou W, Zhou Y. Osteopontin in Bone Metabolism and Bone Diseases. Med Sci Monit 2020; 26:e919159. [PMID: 31996665 PMCID: PMC7003659 DOI: 10.12659/msm.919159] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Osteopontin (OPN), a secreted phosphoprotein, is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of cell matrix proteins and participates in many biological activities. Studies have shown that OPN plays a role in bone metabolism and homeostasis. OPN not only is an important factor in neuron-mediated and endocrine-regulated bone mass, but also is involved in biological activities such as proliferation, migration, and adhesion of several bone-related cells, including bone marrow mesenchymal stem cells, hematopoietic stem cells, osteoclasts, and osteoblasts. OPN has been demonstrated to be closely related to the occurrence and development of many bone-related diseases, such as osteoporosis, rheumatoid arthritis, and osteosarcoma. As expected, the functions of OPN in the bone have become a research hotspot. In this article, we try to decipher the mechanism of OPN-regulated bone metabolism and bone diseases.
Collapse
Affiliation(s)
- Jinyan Si
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Chaowei Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Denghui Zhang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Bo Wang
- Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Weiwei Hou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
10
|
Kundu B, Bastos ARF, Brancato V, Cerqueira MT, Oliveira JM, Correlo VM, Reis RL, Kundu SC. Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14548-14559. [PMID: 30943004 DOI: 10.1021/acsami.8b22724] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osteosarcoma is one of the most common metastatic bone cancers, which results in significant morbidity and mortality. Unfolding of effectual therapeutic strategies against osteosarcoma is impeded because of the absence of adequate animal models, which can truly recapitulate disease biology of humans. Tissue engineering provides an opportunity to develop physiologically relevant, reproducible, and tunable in vitro platforms to investigate the interactions of osteosarcoma cells with its microenvironment. Adipose-derived stem cells (ASCs) are detected adjacent to osteosarcoma masses and are considered to have protumor effects. Hence, the present study focuses on investigating the role of reactive ASCs in formation of spheroids of osteosarcoma cells (Saos 2) within a three-dimensional (3D) niche, which is created using gellan gum (GG)-silk fibroin. By modifying the blending ratio of GG-silk, the optimum stiffness of the resultant hydrogels such as GG and GG75: S25 is obtained for cancer spheroid formation. This work indicates that the co-existence of cancer and stem cells can form a spheroid, the hallmark of cancer, only in particular microenvironment stiffness. The incorporation of fibrillar silk fibroin within the hydrophilic network of GG in GG75: S25 spongy-like hydrogels closely mimics the stiffness of commercially established cancer biomaterials (e.g., Matrigel, HyStem). The GG75: S25 hydrogel maintains the metabolically active construct for a longer time with elevated expression of osteopontin, osteocalcin, RUNX 2, and bone sialoprotein genes, the biomarkers of osteosarcoma, compared to GG. The GG75: S25 construct also exhibits intense alkaline phosphatase expression in immunohistochemistry compared to GG, indicating itspotentiality to serve as biomimetic niche to model osteosarcoma. Taken together, the GG-silk fibroin-blended spongy-like hydrogel is envisioned as an alternative low-cost platform for 3D cancer modeling.
Collapse
Affiliation(s)
- B Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| | - A R F Bastos
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| | - V Brancato
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| | - M T Cerqueira
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| | - J M Oliveira
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, Guimarães 4805-017 , Portugal
| | - V M Correlo
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, Guimarães 4805-017 , Portugal
| | - R L Reis
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, Guimarães 4805-017 , Portugal
| | - S C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics , University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark, Zona Industrial da Gandra , Barco, Guimarães 4805-017 , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga, Guimarães 4805-017 , Portugal
| |
Collapse
|
11
|
Di D, Chen L, Guo Y, Wang L, Zhao C, Ju J. BCSC-1 suppresses human breast cancer metastasis by inhibiting NF-κB signaling. Int J Oncol 2018; 52:1674-1684. [PMID: 29512758 DOI: 10.3892/ijo.2018.4309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/07/2018] [Indexed: 11/06/2022] Open
Abstract
Breast cancer suppressor candidate-1 (BCSC-1; also termed von Willebrand factor A domain containing 5A and LOH11CR2A) is a newly identified candidate tumor suppressor gene that has been implicated in several types of cancer in previous studies. However, there have been few reports about the association between BCSC-1 and human breast cancer in recent years. In the present study, the expression of BCSC-1 in breast cancer was determined by immunohistochemistry (IHC) staining of tissue microarrays and clinical tissue specimens. Subsequently, BCSC-1 gene expression was evaluated in different breast cancer cell lines by quantitative polymerase chain reaction and the MDA-MB-231 cell line was selected for further use in subsequent experiments, due to its low BCSC-1 expression. An MDA-MB-231 cell line with stable overexpression of BCSC-1 was established through transfection with plasmid containing the BCSC-1 gene, and then screening for G418 resistance. Wound-healing, migration and invasion assays were conducted to detect the effect of BCSC-1 on MDA-MB-231 cells. Furthermore, changes in matrix metalloproteinases (MMPs), osteopontin (OPN) and the nuclear factor-κB (NF-κB) pathway were detected in the current study. Additionally, stable silencing of BCSC-1 expression in MCF-7 cells was performed using a lentivirus. The results of IHC indicated that BCSC-1 is expressed at low levels in breast cancer tissues compared with in normal breast tissue. Results of the wound healing, migration and invasion assays demonstrated that BCSC-1 overexpression reduced the metastasis ability of MDA-MB-231 cells in vitro. Further research confirmed that the BCSC-1 overexpression reduced the expression levels of MMP7, MMP9 and OPN, and the phosphorylation of NF-κB p65. Furthermore, inhibition of BCSC-1 via lentivirus-mediated RNA interference revealed that the downregulation of BCSC-1 increased the invasive ability of MCF-7 cells. In summary, the results demonstrated that BCSC-1 is expressed at low levels in breast cancer tissues, and that it can suppress human breast cancer cell migration and invasion, potentially altering the expression of MMP7, MMP9, OPN, and the activity of the NF-κB pathway. Therefore, BCSC-1 may be useful as a biomarker for the treatment of breast cancer in the future.
Collapse
Affiliation(s)
- Dalin Di
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Lei Chen
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yingying Guo
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Lina Wang
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chunling Zhao
- School of Biological Science, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jiyu Ju
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
12
|
Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia 2018; 66:1542-1565. [DOI: 10.1002/glia.23309] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Rolf Mentlein
- Department of Anatomy; University of Kiel; Kiel Germany
| |
Collapse
|
13
|
Wang W, Li P, Li W, Jiang J, Cui Y, Li S, Wang Z. Osteopontin activates mesenchymal stem cells to repair skin wound. PLoS One 2017; 12:e0185346. [PMID: 28957406 PMCID: PMC5619734 DOI: 10.1371/journal.pone.0185346] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/11/2017] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for skin wound repair due to their capabilities of accumulating at wounds and differentiating into multiple types of skin cells. However, the underlying mechanisms responsible for these processes remain unclear. In this study, we found that osteopontin (OPN) stimulated the migration of MSCs in vitro, and observed the recruitment of endogenous MSCs to a skin wound and their differentiation into keratinocytes and endothelial cells. In OPN knock-out mice, the recruitment of MSCs to the skin wound was significantly inhibited, and wound closure was hampered after an intradermal injection of exogenous MSCs compared to wild-type mice. Consistent with these observations, the expressions of adhesion molecule CD44 and its receptor E-selectin were significantly decreased in the lesions of OPN knock-out mice compared with wild-type mice suggesting that OPN may regulate the migration of MSCs through its interactions with CD44 during skin wound recovery. In summary, our data demonstrated that OPN played a critical role in activating the migration of MSCs to injured sites and their differentiation into specific skin cell types during skin wound healing.
Collapse
Affiliation(s)
- Wenping Wang
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pei Li
- Department of Orthopedics, No.89 Hospital of People’s Liberation Army, Weifang, Shandong, China
| | - Wei Li
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junzi Jiang
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanyan Cui
- Department of Genetics and Cell Biology, Chongqing Medical University, Chongqing, China
| | - Shirong Li
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (ZW); (SL)
| | - Zhenxiang Wang
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail: (ZW); (SL)
| |
Collapse
|
14
|
The Association of Serum Osteopontin Levels with Insulin Resistance in Obese, Dyslipidemic Children. IRANIAN JOURNAL OF PEDIATRICS 2016. [DOI: 10.5812/ijp.7483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Shi L, Wang X. Role of osteopontin in lung cancer evolution and heterogeneity. Semin Cell Dev Biol 2016; 64:40-47. [PMID: 27578008 DOI: 10.1016/j.semcdb.2016.08.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Patients with lung cancer still have high mortality, recurrence rate after adjuvant treatment, and poor five-year survival rates, despite of advances in multidisciplinary anti-cancer therapies, e.g. chemotherapy, radiotherapy and targeted therapies, It depends upon the presence of intratumoral heterogeneity and complexity of lung cancer. There is growing evidence to suggest that osteopontin (OPN) may play a critical role in tumor progression and metastasis. The present review briefly describes the structure and molecular biology of OPN, highlights the role of OPN in the development and metastasis of lung cancer, and summarizes potential mechanisms of OPN heterogeneity in tumor to underline some of these inconsistencies. The article will emphasize the importance to understand the role of OPN in cancer evolution and heterogeneity and explore the potential of OPN as a therapeutic target.
Collapse
Affiliation(s)
- Lin Shi
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|
16
|
Babarović E, Valković T, Budisavljević I, Balen I, Štifter S, Duletić-Načinović A, Lučin K, Jonjić N. The expression of osteopontin and vascular endothelial growth factor in correlation with angiogenesis in monoclonal gammopathy of undetermined significance and multiple myeloma. Pathol Res Pract 2016; 212:509-16. [DOI: 10.1016/j.prp.2015.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/24/2015] [Accepted: 11/23/2015] [Indexed: 01/24/2023]
|
17
|
Ferreira LB, Eloy C, Pestana A, Lyra J, Moura M, Prazeres H, Tavares C, Sobrinho-Simões M, Gimba E, Soares P. Osteopontin expression is correlated with differentiation and good prognosis in medullary thyroid carcinoma. Eur J Endocrinol 2016; 174:551-61. [PMID: 26811408 DOI: 10.1530/eje-15-0577] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 01/25/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteopontin (OPN) or secreted phosphoprotein 1 (SPP1) is a matricellular glycoprotein whose expression is elevated in various types of cancer and has been shown to be involved in tumourigenesis and metastasis in many malignancies, including follicular cell-derived thyroid carcinomas. Its role in C-cell-derived thyroid lesions and tumours remains to be established. OBJECTIVE The objective of this study is to clarify the role of OPN expression in the development of medullary thyroid carcinoma (MTC). METHODS OPN expression was analysed in a series of 116 MTCs by immunohistochemistry and by qPCR mRNA quantification of the 3 OPN isoforms (OPNa, OPNb and OPNc) in six cases from which fresh frozen tissue was available. Statistical tests were used to evaluate the relationship of OPN expression and the clinicopathological and molecular characteristics of patients and tumours. RESULTS OPN expression was detected in 91 of 116 (78.4%) of the MTC. We also observed high OPN expression in C-cell hyperplasia as well as in C-cells scattered in the thyroid parenchyma adjacent to the tumours. OPN expression was significantly associated with smaller tumour size, PTEN nuclear expression and RAS status, and suggestively associated with non-invasive tumours. OPNa isoform was expressed significantly at higher levels in tumours than in non-tumour samples. OPNb and OPNc presented similar levels of expression in all samples. Furthermore, OPNa isoform overexpression was significantly associated with reduced growth and viability in the MTC-derived cell line (TT). CONCLUSION The expression of OPN in normal C-cells and C-cell hyperplasia suggests that OPN is a differentiation marker of C-cells, rather than a marker of biological aggressiveness in this setting. At variance with other cancers, OPN expression is associated with good prognostic features in MTC.
Collapse
Affiliation(s)
- Luciana Bueno Ferreira
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| | - Catarina Eloy
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Ana Pestana
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Joana Lyra
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Margarida Moura
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Hugo Prazeres
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| | - Catarina Tavares
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| | - Etel Gimba
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil
| | - Paula Soares
- Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e Inovacão em SaúdeUniversidade do Porto, 4200-135 Porto, PortugalInstitute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) - Cancer BiologyRua Dr Roberto Frias, s/n, 4200-465 Porto, PortugalMedical FacultyUniversity of Porto, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalUnidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Professor Lima Basto, 1099-023 Lisboa, PortugalMolecular Pathology Service of the Portuguese Institute of Oncology of Coimbra FGEPE, Avenue. Bissaya Barreto, 98, 3000-075 Coimbra, PortugalDepartment of PathologyHospital de S. João, Al. Professor Hernâni Monteiro, P-4200 Porto, PortugalResearch CoordinationNational Institute of Cancer, Rio de Janeiro 22743-051, BrazilNatural Sciences DepartmentHealth and Humanities Institute, Fluminense Federal University, Rio das Ostras, Rio de Janeiro 28895-532, Brazil Instituto de Investigação e In
| |
Collapse
|
18
|
Down-regulation of osteopontin mediates a novel mechanism underlying the cytostatic activity of TGF-β. Cell Oncol (Dordr) 2015; 39:119-28. [PMID: 26584547 DOI: 10.1007/s13402-015-0257-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Loss of a cytostatic response to TGF-β has been implicated in multiple hyper-proliferative disorders, including cancer. Although several key genes involved in the cytostatic activity of TGF-β have in the past been identified, its exact mode of action is yet to be elucidated. A comprehensive understanding of the mechanisms underlying the cytostatic activity of TGF-β may open up new avenues for the development of therapeutic strategies. METHODS Quantitative real-time RT-PCR was used to assess osteopontin (OPN) gene expression in human hepatoma-derived Huh-7 and lung adenocarcinoma-derived A549 cells. Reporter assays using an OPN promoter-luciferase construct and its mutated counterparts were performed to assess its transcriptional activity. Binding of Smad4 to the OPN gene promoter was investigated using chromatin immunoprecipitation (CHIP). The putative role of Smad4 in OPN gene expression down-regulation was also assessed using a shRNA-mediated knockdown strategy. The anti-proliferative effect of TGF-β on different cancer-derived cell lines was determined using the cell proliferation reagent WST-1. RESULTS We found that the OPN expression levels dose-dependently decreased in TGF-β-treated Huh-7 and A549 cells. Our reporter assays indicated that this TGF-β-induced repression occurred at the transcriptional level, and could largely be abrogated by disruption of an element (TIE2) similar to the TGF-β inhibitory element found in other TGF-β-repressed genes. Our CHIP assay revealed that the Smad protein complex specifically binds to the OPN gene promoter, and that the TGF-β-mediated inhibition of OPN was lost upon shRNA-mediated knockdown of Smad4. Moreover, we found that the deregulation of OPN gene expression by TGF-β occurred concomitantly with loss of the TGF-β anti-proliferative response, whereas a neutralizing anti-OPN antibody partially restored this response. CONCLUSIONS Our results indicate that the OPN gene is a direct target of Smad-mediated TGF-β signaling, implying that OPN expression inhibition serves as a novel mechanism underlying the cytostatic activity of TGF-β.
Collapse
|
19
|
Higher Matrix Stiffness Upregulates Osteopontin Expression in Hepatocellular Carcinoma Cells Mediated by Integrin β1/GSK3β/β-Catenin Signaling Pathway. PLoS One 2015; 10:e0134243. [PMID: 26280346 PMCID: PMC4539226 DOI: 10.1371/journal.pone.0134243] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Increased stromal stiffness is associated with hepatocellular carcinoma (HCC) development and progression. However, the molecular mechanism by which matrix stiffness stimuli modulate HCC progress is largely unknown. In this study, we explored whether matrix stiffness-mediated effects on osteopontin (OPN) expression occur in HCC cells. We used a previously reported in vitro culture system with tunable matrix stiffness and found that OPN expression was remarkably upregulated in HCC cells with increasing matrix stiffness. Furthermore, the phosphorylation level of GSK3β and the expression of nuclear β-catenin were also elevated, indicating that GSK3β/β-catenin pathway might be involved in OPN regulation. Knock-down analysis of integrin β1 showed that OPN expression and p-GSK3β level were downregulated in HCC cells grown on high stiffness substrate compared with controls. Simultaneously, inhibition of GSK-3β led to accumulation of β-catenin in the cytoplasm and its enhanced nuclear translocation, further triggered the rescue of OPN expression, suggesting that the integrin β1/GSK-3β/β-catenin pathway is specifically activated for matrix stiffness-mediated OPN upregulation in HCC cells. Tissue microarray analysis confirmed that OPN expression was positively correlated with the expression of LOX and COL1. Taken together, high matrix stiffness upregulated OPN expression in HCC cells via the integrin β1/GSK-3β/β-catenin signaling pathway. It highlights a new insight into a pathway involving physical mechanical signal and biochemical signal molecules which contributes to OPN expression in HCC cells.
Collapse
|
20
|
Elanagai R, Veeravarmal V, Nirmal RM. Osteopontin expression in reactive lesions of gingiva. J Appl Oral Sci 2015; 23:26-32. [PMID: 25760265 PMCID: PMC4349116 DOI: 10.1590/1678-775720140122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/30/2014] [Indexed: 12/24/2022] Open
Abstract
Reactive proliferations of the gingiva comprise lesions such as pyogenic granuloma (PG), inflammatory fibroepithelial hyperplasia (IFH), peripheral ossifying fibroma (POF), and peripheral giant cell lesion. Osteopontin (OPN) has a dual role, it promotes mineralization when it is bound to solid substrate, and on the other hand, it inhibits mineralization when it is seen in association with solution. Objectives The study aimed to evaluate the expression of osteopontin in normal gingival tissue and different types of focal reactive proliferations of gingival tissue, and its role in the development of calcification within it. Material and Methods The presence and distribution of osteopontin was assessed using immunohistochemistry in five cases of normal gingival tissue and 30 cases of focal reactive proliferations of gingiva. Results There was no expression of osteopontin in normal subjects. Few cases of pyogenic granuloma, inflammatory fibroepithelial hyperplasia, and all the cases of peripheral ossifying fibroma showed positivity for osteopontin in the inflammatory cells, stromal cells, extracellular matrix, and in the calcifications. Conclusion The expression of osteopontin in all the cases of peripheral ossifying fibroma speculates that the majority of the cases of peripheral ossifying fibroma originate from the periodontal ligament cells. The treatment modalities for peripheral ossifying fibroma should differ from other focal reactive proliferations of gingiva.
Collapse
Affiliation(s)
- Rathinam Elanagai
- Division of Oral and Maxillofacial Pathology, Rajah Muthaiah Dental College and Hospital, Annamalai University, Annamalai Nagar, India
| | - Veeran Veeravarmal
- Division of Oral and Maxillofacial Pathology, Rajah Muthaiah Dental College and Hospital, Annamalai University, Annamalai Nagar, India
| | - Ramdas Madhavan Nirmal
- Division of Oral and Maxillofacial Pathology, Rajah Muthaiah Dental College and Hospital, Annamalai University, Annamalai Nagar, India
| |
Collapse
|
21
|
Etiz D, Ataizi FC, Bayman E, Akcay M, Acikalin MF, Colak E, Ciftci E. Prognostic value of osteopontin in patients treated with primary radiotherapy for head and neck cancer. Asian Pac J Cancer Prev 2014; 14:5175-8. [PMID: 24175796 DOI: 10.7314/apjcp.2013.14.9.5175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The prognostic value of tumor osteopontin (OPN) in patients with squamous-cell head and neck cancer (SCHNC) was investigated. MATERIALS AND METHODS OPN expression was assessed by immunohistochemical methods in 50 patients, who were treated with primary radiotherapy (RT) for locally advanced SCHNC. The effects of OPN on clinical parameters, local-regional control after RT and metastasis-free survival, was assessed. RESULTS The rate of OPN expression in tumor tissue was 76%. OPN positive cases had lower Hb levels (p=0.088). Mean time to local recurrence was 53.8 months (SE 3.9) in OPN-negative cases and 39.1 months (SE 4.7) in OPN-positive cases (p=0.047). OPN increased the risk of local recurrence 5.9 times (p=0.085). It had no effect on metastasis-free (p=0.116) or overall survival (p=0.123). OPN was positive in 12 of 19 cases that developed grade 3-4 acute radiation dermatitis (p=0.096). CONCLUSIONS OPN expression is associated with an increase in local recurrence in patients who were treated with primary RT for locally advanced SCHNC.
Collapse
Affiliation(s)
- Durmus Etiz
- Department of Radiation Oncology, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkey E-mail :
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The primary bone malignancy osteosarcoma (OS) is a painful health burden, of which treatment remains a challenging problem. Identification of specific tumor biomarkers may help to investigate and develop the novel effective therapeutic approaches that have specific molecular target for the treatment of patients with OS. Osteopontin (OPN), a phosphorylated glycoprotein, is involved in many biological processes, such as biomineralization, bone remodeling and immune responses and has recently been reported to be associated with OS pathogenesis. Interestingly, both of the up- and down-regulation of OPN are involved in OS. During OS development, genetic or epigenetic disruption causes reduced expression of RUNX2 and OPN through the up-regulation of notch signaling pathway, leading to the development of OS. On the other hand, during hypoxic condition, upregulation of OPN induces the glucose uptake into hypoxic OS cells which is responsible for the OS cell proliferation and drug resistance. Recent evidences show that targeting OPN might be an important tool in OS therapeutics. This review has focused on the association of abnormal OPN expression with the pathogenesis of OS, the efficiency of OPN as a diagnostic tool for OS and the therapeutic aspects of OS by targeting OPN.
Collapse
|
23
|
Shevde LA, Samant RS. Role of osteopontin in the pathophysiology of cancer. Matrix Biol 2014; 37:131-41. [PMID: 24657887 PMCID: PMC5916777 DOI: 10.1016/j.matbio.2014.03.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a multifunctional cytokine that impacts cell proliferation, survival, drug resistance, invasion, and stem like behavior. Due to its critical involvement in regulating cellular functions, its aberrant expression and/or splicing is functionally responsible for undesirable alterations in disease pathologies, specifically cancer. It is implicated in promoting invasive and metastatic progression of many carcinomas. Due to its autocrine and paracrine activities OPN has been shown to be a crucial mediator of cellular cross talk and an influential factor in the tumor microenvironment. OPN has been implicated as a prognostic and diagnostic marker for several cancer types. It has also been explored as a possible target for treatment. In this article we hope to provide a broad perspective on the importance of OPN in the pathophysiology of cancer.
Collapse
Affiliation(s)
- Lalita A Shevde
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| | - Rajeev S Samant
- Department of Pathology and Comprehensive Cancer Center, The University of Alabama at Birmingham, United States.
| |
Collapse
|
24
|
Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab 2014; 3:384-93. [PMID: 24944898 PMCID: PMC4060362 DOI: 10.1016/j.molmet.2014.03.004] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
Since its first description more than 20 years ago osteopontin has emerged as an active player in many physiological and pathological processes, including biomineralization, tissue remodeling and inflammation. As an extracellular matrix protein and proinflammatory cytokine osteopontin is thought to facilitate the recruitment of monocytes/macrophages and to mediate cytokine secretion in leukocytes. Modulation of immune cell response by osteopontin has been associated with various inflammatory diseases and may play a pivotal role in the development of adipose tissue inflammation and insulin resistance. Here we summarize recent findings on the role of osteopontin in metabolic disorders, particularly focusing on diabetes and obesity.
Collapse
|
25
|
Urtasun R, Lopategi A, George J, Leung TM, Lu Y, Wang X, Ge X, Fiel MI, Nieto N. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin α(V)β(3) engagement and PI3K/pAkt/NFκB signaling. Hepatology 2012; 55:594-608. [PMID: 21953216 PMCID: PMC3561739 DOI: 10.1002/hep.24701] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED A key feature in the pathogenesis of liver fibrosis is fibrillar Collagen-I deposition; yet, mediators that could be key therapeutic targets remain elusive. We hypothesized that osteopontin (OPN), an extracellular matrix (ECM) cytokine expressed in hepatic stellate cells (HSCs), could drive fibrogenesis by modulating the HSC pro-fibrogenic phenotype and Collagen-I expression. Recombinant OPN (rOPN) up-regulated Collagen-I protein in primary HSCs in a transforming growth factor beta (TGFβ)-independent fashion, whereas it down-regulated matrix metalloprotease-13 (MMP13), thus favoring scarring. rOPN activated primary HSCs, confirmed by increased α-smooth muscle actin (αSMA) expression and enhanced their invasive and wound-healing potential. HSCs isolated from wild-type (WT) mice were more profibrogenic than those from OPN knockout (Opn(-/-)) mice and infection of primary HSCs with an Ad-OPN increased Collagen-I, indicating correlation between both proteins. OPN induction of Collagen-I occurred via integrin α(v)β(3) engagement and activation of the phosphoinositide 3-kinase/phosphorylated Akt/nuclear factor kappa B (PI3K/pAkt/NFκB)-signaling pathway, whereas cluster of differentiation 44 (CD44) binding and mammalian target of rapamycin/70-kDa ribosomal protein S6 kinase (mTOR/p70S6K) were not involved. Neutralization of integrin α(v) β(3) prevented the OPN-mediated activation of the PI3K/pAkt/NFκB-signaling cascade and Collagen-I up-regulation. Likewise, inhibition of PI3K and NFκB blocked the OPN-mediated Collagen-I increase. Hepatitis C Virus (HCV) cirrhotic patients showed coinduction of Collagen-I and cleaved OPN compared to healthy individuals. Acute and chronic liver injury by CCl(4) injection or thioacetamide (TAA) treatment elevated OPN expression. Reactive oxygen species up-regulated OPN in vitro and in vivo and antioxidants prevented this effect. Transgenic mice overexpressing OPN in hepatocytes (Opn(HEP) Tg) mice developed spontaneous liver fibrosis compared to WT mice. Last, chronic CCl(4) injection and TAA treatment caused more liver fibrosis to WT than to Opn(-/-) mice and the reverse occurred in Opn(HEP) Tg mice. CONCLUSION OPN emerges as a key cytokine within the ECM protein network driving the increase in Collagen-I protein contributing to scarring and liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Isabel Fiel
- Division of Liver Diseases, Departments of Medicine and Pathology, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue, Room 11-76, New York, NY 10029, USA
| | | |
Collapse
|
26
|
Lim AM, Rischin D, Fisher R, Cao H, Kwok K, Truong D, McArthur GA, Young RJ, Giaccia A, Peters L, Le QT. Prognostic significance of plasma osteopontin in patients with locoregionally advanced head and neck squamous cell carcinoma treated on TROG 02.02 phase III trial. Clin Cancer Res 2011; 18:301-7. [PMID: 22096023 DOI: 10.1158/1078-0432.ccr-11-2295] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE High plasma osteopontin (OPN) levels have been reported to be an adverse prognostic factor in head and neck squamous cell carcinomas (HNSCC), correlate with tumor hypoxia, and be predictive of benefit from hypoxia-targeted therapy. We sought to confirm the prognostic and predictive significance of OPN in patients treated on a large international trial. EXPERIMENTAL DESIGN Patients with stage III/IV HNSCC were randomized to receive definitive radiotherapy concurrently with cisplatin or cisplatin plus the hypoxic cell cytotoxin, tirapazamine (TPZ). Eligibility criteria for this prospective substudy included plasma sample availability for OPN assay by ELISA and absence of major radiation therapy deviations (N = 578). OPN concentrations were analyzed for overall survival (OS) and time to locoregional failure (TTLRF), adjusting for known prognostic factors. Additional analysis was carried out in patients with available tumor p16(INK4A) staining status. RESULTS The median OPN level was 544 ng/mL (range: 7-2,640). High OPN levels were not associated with worse OS (relative HR, 1.03 for highest tertile) or TTLRF (relative HR 0.91 for highest tertile). There was no interaction between OPN and treatment arm for OS or TTLRF (P = 0.93 for OS; P = 0.87 for TTLRF). For the highest tertile the 2-year OS was 66% on control arm and 67% on TPZ arm (HR = 1.11, P = 0.67). Similarly for p16(INK4A) negative patients in the highest tertile, the 2-year OS was 61% on control arm and 63% on TPZ arm (HR = 1.05, P = 0.86). CONCLUSIONS We found no evidence that high plasma OPN levels were associated with an adverse prognosis in HNSCC, or were predictive of benefit with hypoxia targeting therapy.
Collapse
Affiliation(s)
- Annette M Lim
- Department of Medical Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tsoi LC, Qin T, Slate EH, Zheng WJ. Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior. BMC Bioinformatics 2011; 12:438. [PMID: 22078224 PMCID: PMC3251006 DOI: 10.1186/1471-2105-12-438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 11/11/2011] [Indexed: 01/03/2023] Open
Abstract
Background To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets. Results We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may play roles in, metastasis. Conclusions CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray experiments. Availability: CDEP is implemented in R and freely available at: http://genomebioinfo.musc.edu/CDEP/ Contact: zhengw@musc.edu
Collapse
Affiliation(s)
- Lam C Tsoi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 135 Cannon St, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
28
|
Fan K, Zhang B, Yang H, Wang H, Tan M, Hou S, Qian W, Li B, Wang H, Dai J, Guo Y. A humanized anti-osteopontin antibody protects from Concanavalin A induced-liver injury in mice. Eur J Pharmacol 2011; 657:144-51. [PMID: 21300057 DOI: 10.1016/j.ejphar.2011.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/29/2010] [Accepted: 01/17/2011] [Indexed: 12/22/2022]
Abstract
Osteopontin has been implicated in various inflammatory diseases including rheumatoid arthritis, multiple sclerosis, Crohn's disease, and fulminant hepatitis. Increased expression of osteopontin has been detected in pathological foci of these diseases. RA and fulminant hepatitis have been successfully treated by administration of neutralizing anti-osteopontin antibody in mice. However, rodent antibodies are highly immunogenic in humans and therefore limited in their clinical application. Here, a murine monoclonal antibody 23C3 against human osteopontin, was humanized by complementarity-determining region grafting method based on computer-assisted molecular modeling. The humanized version of 23C3, denoted as Hu23C3, was shown to possess affinity comparable to that of its parental antibody. Hu23C3 could also inhibit monocyte migration in response to osteopontin in vitro. Furthermore, in vivo data showed that Hu23C3 significantly protects mice from Concanavalin A (Con A) induced-liver injury in association with the reduction of transaminase activities and improvement of liver injury. Mechanistic studies demonstrated that Hu23C3 inhibited T and NKT cell infiltration, and activation of nuclear factor κB (NF-κB) in the liver, resulting in reduction of TNF-α and IFN-γ production. Thus, our data strongly support that the humanized anti-osteopontin antibody, Hu23C3, may have a potential for the treatment of T cell mediated-hepatitis in human.
Collapse
Affiliation(s)
- Kexing Fan
- International Joint Cancer Institute, The Second Military Medical University, 800 Xiang Yin Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao W, Wang L, Zhang M, Wang P, Zhang L, Yuan C, Qi J, Qiao Y, Kuo PC, Gao C. NF-κB- and AP-1-mediated DNA looping regulates osteopontin transcription in endotoxin-stimulated murine macrophages. THE JOURNAL OF IMMUNOLOGY 2011; 186:3173-9. [PMID: 21257959 DOI: 10.4049/jimmunol.1003626] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Osteopontin (OPN) is expressed by various immune cells and modulates both innate and adaptive immune responses. However, the molecular mechanisms that control opn gene expression, especially at the chromatin level, remain largely unknown. We have previously demonstrated many specific cis- and trans-regulatory elements that determine the extent of endotoxin (LPS)-mediated induction of OPN synthesis in murine macrophages. In the present study, we confirm that NF-κB also plays an important role in the setting of LPS-stimulated OPN expression through binding to a distal regulatory element. Importantly, we demonstrate that LPS stimulates chromosomal loops in the OPN promoter between NF-κB binding site and AP-1 binding site using chromosome conformation capture technology. The crucial role of NF-κB and AP-1 in LPS-stimulated DNA looping was confirmed, as small interfering RNA knock-down of NF-κB p65 and AP-1 c-Jun exhibited decreased levels of DNA looping. Furthermore, we demonstrate that p300 can form a complex with NF-κB and AP-1 and is involved in DNA looping and LPS-induced OPN expression. Therefore, we have identified an essential mechanism to remodel the local chromatin structures and spatial conformations to regulate LPS-induced OPN expression.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University Medical School, Jinan, Shandong 250012, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Matušan-Ilijaš K, Damante G, Fabbro D, Dorđević G, Hadžisejdić I, Grahovac M, Marić I, Spanjol J, Grahovac B, Jonjić N, Lučin K. Osteopontin expression correlates with nuclear factor-κB activation and apoptosis downregulation in clear cell renal cell carcinoma. Pathol Res Pract 2010; 207:104-10. [PMID: 21167650 DOI: 10.1016/j.prp.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/11/2010] [Accepted: 11/11/2010] [Indexed: 01/13/2023]
Abstract
Osteopontin (OPN) is a phosphoglycoprotein implicated in tumorigenesis and tumor cell metastasis. Apoptosis inhibition is one of the mechanisms that contribute to development and progression of cancer, and might be initiated by OPN interaction with tumor cells. The aim of this study was to analyze the relation between OPN and nuclear factor-kappa B (NF-κB) expression in clear cell renal cell carcinoma (CCRCC), as well as their relation to apoptotic activity of tumor cells. Expression of OPN protein and p65 NF-κB subunit was analyzed immunohistochemically in 87 CCRCC samples, and compared mutually and with apoptotic index. Expression of OPN mRNA was analyzed using quantitative real-time PCR and compared with OPN and NF-κB protein expression in 22 CCRCC samples. Statistical analysis showed an association of p65 NF-κB with OPN mRNA (p=0.015) and protein (p<0.001). Also, we found an inverse relationship of OPN with NF-κB protein expression and apoptotic activity of tumor cells (p=0.006 and p=0.022, respectively). Our results indicate that p65 NF-κB signaling pathway may be involved in OPN-mediated CCRCC progression, partly by protecting tumor cells from apoptosis. Therefore, both molecules can constitute potential targets for therapeutic intervention in CCRCC.
Collapse
|
31
|
Shevde LA, Das S, Clark DW, Samant RS. Osteopontin: an effector and an effect of tumor metastasis. Curr Mol Med 2010; 10:71-81. [PMID: 20205680 DOI: 10.2174/156652410791065381] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 05/11/2008] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is a matricellular protein that is produced by multiple tissues in our body and is most abundant in bone. It is also produced by cancer cells and plays a determinative role in the growth, progression and metastasis of cancer. Clinically, OPN has been reported to be upregulated in tumor cells per se; this is also reflected by increased levels of OPN in the circulation. Thus, increased OPN levels the plasma are an effect of tumor growth and progression. Functionally, high OPN levels are determinative of higher incidence of bone metastases in mouse models and are clinically correlated with metastatic bone disease and bone resorption in advanced breast cancer patients. Several research efforts have been made to therapeutically target and inhibit the activities of OPN. In this article we have reviewed OPN in its role as an effector of critical steps in tumor progression and metastasis, with a particular emphasis on its role in facilitating bone metastasis of breast cancer. We have also addressed the role of the host-derived OPN in influencing the malignant behavior of the tumor cells.
Collapse
Affiliation(s)
- L A Shevde
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | | | | | | |
Collapse
|
32
|
Xu H, Posner GH, Stevenson M, Campbell FC. Apc(MIN) modulation of vitamin D secosteroid growth control. Carcinogenesis 2010; 31:1434-41. [PMID: 20488884 DOI: 10.1093/carcin/bgq098] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central paradox of vitamin D biology is that 1alpha,25-(OH)(2) D(3) exposure inversely relates to colorectal cancer (CRC) risk despite a capacity for activation of both pro- and anti-oncogenic mediators including osteopontin (OPN)/CD44 and E-cadherin, respectively. Most sporadic CRCs arise from adenomatous polyposis coli (APC) gene mutation but understanding of its effects on vitamin D growth control is limited. Here we investigate effects of the Apc(Min/+) genotype on 1alpha,25-(OH)(2) D(3) regulation of OPN/CD44/E-cadherin signalling and intestinal tumourigenesis, in vivo. In untreated Apc(Min/+) versus Apc(+/+) intestines, expression levels of OPN and its CD44 receptor were increased, whereas E-cadherin tumour suppressor signalling was attenuated. Treatment by 1alpha,25-(OH)(2) D(3) or rationally designed analogues (QW or BTW) enhanced OPN but inhibited expression of CD44, the OPN receptor implicated in cell growth. These treatments also enhanced E-cadherin tumour suppressor activity, characterized by inhibition of beta-catenin nuclear localization, T-cell factor 1 and c-myelocytomatosis protein expression in Apc(Min/+) intestine. All secosteroids suppressed Apc(Min/+)-driven tumourigenesis although QW and BTW had lower calcium-related toxicity. Taken together, these data indicate that the Apc(Min/+) genotype modulates vitamin D secosteroid actions to promote functional predominance of E-cadherin tumour suppressor activity within antagonistic molecular networks. APC heterozygosity may promote favourable tissue- or tumour-specific conditions for growth control by vitamin D secosteroid treatment.
Collapse
Affiliation(s)
- Haibo Xu
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Northern Ireland, UK
| | | | | | | |
Collapse
|
33
|
Mlakar V, Strazisar M, Sok M, Glavac D. Oligonucleotide DNA microarray profiling of lung adenocarcinoma revealed significant downregulation and deletions of vasoactive intestinal peptide receptor 1. Cancer Invest 2010; 28:487-94. [PMID: 20014941 DOI: 10.3109/07357900903476752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to find novel gene(s) involved in the development of lung adenocarcinoma (AD). Using DNA microarrays, we identified 31 up-regulated and 8 downregulated genes in 12 AD. Real time PCR was used to measure expression of VIPR1 and SPP1 mRNA and possible losses or gains of genes in 32 AD. We describe significant upregulation of the SPP1 gene, downregulation of VIPR1, and losses of the VIPR1 gene. Our findings complement a proposed VIPR1 tumor suppressor role, in which deletions in the 3p22 chromosome region are an important mechanism leading to loss of the VIPR1 gene.
Collapse
Affiliation(s)
- Vid Mlakar
- Department of Molecular Genetics, Institute of Pathology, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
34
|
Camalier CE, Young MR, Bobe G, Perella CM, Colburn NH, Beck GR. Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev Res (Phila) 2010; 3:359-70. [PMID: 20145188 DOI: 10.1158/1940-6207.capr-09-0068] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent results suggest a paradigm shift from viewing inorganic phosphate as a passive requirement for basic cell functions to an active regulator of cell behavior. We have previously shown that elevated concentrations of phosphate increased cell proliferation and expression of protumorigenic genes such as Fra-1 and osteopontin in a preosteoblast cell line. Therefore, we hypothesized that elevated phosphate concentrations would promote cell transformation in vitro and tumorigenesis in vivo. Supplementation of medium with phosphate increased anchorage-independent transformation and proliferation of BALB/c mouse JB6 epidermal cells, activation of N-ras, ERK1/2, and activator protein-1, and increased gene expression of Fra-1, COX-2, and osteopontin in a dose-dependent manner. These in vitro results led to the hypothesis that varying the levels of dietary inorganic phosphate would alter tumorigenesis in the mouse model of skin carcinogenesis. Female FVB/N mice were treated with 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate and fed high- or low-phosphate diets (1.2% versus 0.2% of the diet) for 19 weeks. The high-phosphate diet increased skin papilloma number by approximately 50% without changing feed intake and body weights. High dietary phosphate increased serum concentrations of phosphate, parathyroid hormone, and osteopontin and decreased serum concentrations of calcium. Thus, we conclude that elevated phosphate promotes cell transformation and skin tumorigenesis partly by increasing the availability of phosphate for activation of N-ras and its downstream targets, which defines reducing dietary phosphate as a novel target for chemoprevention.
Collapse
Affiliation(s)
- Corinne E Camalier
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
35
|
Jan HJ, Lee CC, Shih YL, Hueng DY, Ma HI, Lai JH, Wei HW, Lee HM. Osteopontin regulates human glioma cell invasiveness and tumor growth in mice. Neuro Oncol 2009; 12:58-70. [PMID: 20150368 PMCID: PMC2940564 DOI: 10.1093/neuonc/nop013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human malignant glioma cells are characterized by local invasion. In the present study, we investigated the role of osteopontin (OPN) in the invasiveness of human glioma cells isolated from grade IV tumors. We found that the expression levels of OPN in these cell lines paralleled matrix metalloproteinase-2 (MMP-2) expression and cell invasiveness potential. When U87MG glioma cells (with a high-OPN expression level) were stably transformed with specific small hairpin RNA to knock down OPN expression, MMP-2 secretion, cell invasiveness, and tumor growth in implanted brains were dramatically reduced. Conversely, forced expression of OPN in GBM-SKH glioma cells (which expressed OPN at a low level) increased MMP-2 secretion, enhanced cell invasiveness, and increased tumor growth in a rodent xenograft model. Expression of OPN was associated with increased expression of vimentin and decreased expression of glial fibrillary acidic protein. Treatment of glioma cells with 5-aza-2′-deoxycytidine (5-aza-dC) suppressed OPN expression in a concentration-dependent manner. Suppression of OPN expression by 5-aza-dC was associated with reductions in MMP-2 secretion, vimentin expression, cell invasion, intravasation, and tumor growth. These data suggest that OPN may play important roles in regulating cell invasion in glioma cells and that 5-aza-dC may serve as a therapeutic agent for human gliomas.
Collapse
Affiliation(s)
- Hsun-Jin Jan
- Graduate Institute of Medical Sciences, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts. Mol Cell Biochem 2009; 335:263-72. [PMID: 19798549 DOI: 10.1007/s11010-009-0276-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 09/16/2009] [Indexed: 12/28/2022]
Abstract
The precise mechanism by which Rho kinase translates the mechanical signals into OPN up-regulation in force-exposed fibroblasts has not been elucidated. Human periodontal ligament fibroblasts (hPLFs) were exposed to mechanical force by centrifuging the culture plates at a magnitude of 50 g/cm(2) for 60 min. At various times of the force application, they were processed for analyzing cell viability, trypan blue exclusion, and OPN expression at protein and RNA levels. Cellular mechanism(s) of the force-induced OPN up-regulation was also examined using various kinase inhibitors or antisense oligonucleotides specific to mechanosensitive factors. Centrifugal force up-regulated OPN expression and induced a rapid and transient increase in the phosphorylation of focal adhesion kinase (FAK), extracellular signal-regulated kinase (ERK), and Elk1. Pharmacological blockade of RhoA/Rho-associated coiled coil-containing kinase (ROCK) signaling markedly reduced force-induced FAK and ERK1/2 phosphorylation. Transfecting hPLFs with FAK antisense oligonucleotide diminished ERK1/2 activation and force-induced OPN expression. Further, ERK inhibitor inhibited significantly OPN expression, Elk1 phosphorylation, and activator protein-1 (AP-1)-DNA binding activation, but not FAK phosphorylation, in the force-applied cells. These results demonstrate that FAK signaling plays critical roles in force-induced OPN expression in hPLFs through interaction with Rho/ROCK as upstream effectors and ERK-Elk1/ERK-c-Fos as downstream effectors.
Collapse
|
37
|
Wu Y, Jiang P, Lin Y, Chen S, Lin N, Li J. Expression of phosphorylated-STAT3 and osteopontin and their correlation in melanoma. ACTA ACUST UNITED AC 2009; 29:246-50. [DOI: 10.1007/s11596-009-0223-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Indexed: 01/02/2023]
|
38
|
Lou Y, Javed A, Hussain S, Colby J, Frederick D, Pratap J, Xie R, Gaur T, van Wijnen AJ, Jones SN, Stein GS, Lian JB, Stein JL. A Runx2 threshold for the cleidocranial dysplasia phenotype. Hum Mol Genet 2008; 18:556-68. [PMID: 19028669 DOI: 10.1093/hmg/ddn383] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cleidocranial dysplasia (CCD) in humans is an autosomal-dominant skeletal disease that results from mutations in the bone-specific transcription factor RUNX2 (CBFA1/AML3). However, distinct RUNX2 mutations in CCD do not correlate with the severity of the disease. Here we generated a new mouse model with a hypomorphic Runx2 mutant allele (Runx2(neo7)), in which only part of the transcript is processed to full-length (wild-type) Runx2 mRNA. Homozygous Runx2(neo7/neo7) mice express a reduced level of wild-type Runx2 mRNA (55-70%) and protein. This mouse model allowed us to establish the minimal requirement of functional Runx2 for normal bone development. Runx2(neo7/neo7) mice have grossly normal skeletons with no abnormalities observed in the growth plate, but do exhibit developmental defects in calvaria and clavicles that persist through post-natal growth. Clavicle defects are caused by disrupted endochondral bone formation during embryogenesis. These hypomorphic mice have altered calvarial bone volume, as observed by histology and microCT imaging, and decreased expression of osteoblast marker genes. The bone phenotype of the heterozygous mice, which have 79-84% of wild-type Runx2 mRNA, is normal. These results show there is a critical gene dosage requirement of functional Runx2 for the formation of intramembranous bone tissues during embryogenesis. A decrease to 70% of wild-type Runx2 levels results in the CCD syndrome, whereas levels >79% produce a normal skeleton. Our findings suggest that the range of bone phenotypes in CCD patients is attributable to quantitative reduction in the functional activity of RUNX2.
Collapse
Affiliation(s)
- Yang Lou
- Department of Cell Biology, Cancer Center, University of Massachusetts Medical School, Worcester, MA 01655-0106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang KX, Denhardt DT. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 2008; 19:333-45. [PMID: 18952487 DOI: 10.1016/j.cytogfr.2008.08.001] [Citation(s) in RCA: 521] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent research has led to a better but as yet incomplete understanding of the complex roles osteopontin plays in mammalian physiology. A soluble protein found in all body fluids, it stimulates signal transduction pathways (via integrins and CD44 variants) similar to those stimulated by components of the extracellular matrix. This appears to promote the survival of cells exposed to potentially lethal insults such as ischemia/reperfusion or physical/chemical trauma. OPN is chemotactic for many cell types including macrophages, dendritic cells, and T cells; it enhances B lymphocyte immunoglobulin production and proliferation. In inflammatory situations it stimulates both pro- and anti-inflammatory processes, which on balance can be either beneficial or harmful depending on what other inputs the cell is receiving. OPN influences cell-mediated immunity and has been shown to have Th1-cytokine functions. OPN deficiency is linked to a reduced Th1 immune response in infectious diseases, autoimmunity and delayed type hypersensitivity. OPN's role in the central nervous system and in stress responses has also emerged as an important aspect related to its cytoprotective and immune functions. Evidence suggests that either OPN or anti-OPN monoclonal antibodies (depending on the circumstances) might be clinically useful in modulating OPN function. Manipulation of plasma OPN levels may be useful in the treatment of autoimmune disease, cancer metastasis, osteoporosis and some forms of stress.
Collapse
Affiliation(s)
- Kathryn X Wang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States.
| | | |
Collapse
|
40
|
Lee JH, Banerjee A, Ueno Y, Ramaiah SK. Potential relationship between hepatobiliary osteopontin and peroxisome proliferator-activated receptor alpha expression following ethanol-associated hepatic injury in vivo and in vitro. Toxicol Sci 2008; 106:290-9. [PMID: 18703563 DOI: 10.1093/toxsci/kfn165] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteopontin (OPN) up-regulation is known to mediate hepatic inflammation in a rodent model of alcoholic liver disease (ALD) and alcohol ingestion is reported to inhibit hepatic peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activity leading to hepatic steatosis and inflammation. Therefore, the objective of this study was to investigate the potential relationship between the anti-inflammatory PPAR-alpha and proinflammatory OPN in rats and mice livers, and cell cultures of hepatocytes and biliary epithelium. Experiments were designed to evaluate the influence of ethanol (EtOH), lipopolysaccharide (LPS), and acetaldehyde (ACA) on OPN and PPAR-alpha expression levels in vivo (rats and mice) and in vitro (hepatocytes and biliary epithelium). Adult Sprague-Dawley rats and C57BL6 mice were fed EtOH-containing Lieber-DeCarli liquid diet for 6 weeks and injected with a single dose of LPS. A combination of EtOH and LPS treated rats and mice showed significant induction of hepatic OPN expression compared with the controls. Similarly, cells exposed to physiological doses of EtOH, LPS, a combination of EtOH and LPS, and ACA resulted in increased OPN protein and mRNA expression. Rats and mice in ALD model and cells treated with EtOH and ACA showed downregulation of PPAR-alpha mRNA. Also, DNA binding activity of PPAR-alpha to PPAR response element was significantly reduced following treatment. Overexpression of PPAR-alpha rescued the reduced PPAR-alpha activity and PPAR-alpha agonist, bezafibrate, elevated PPAR-alpha activity after treatment of EtOH, LPS, and ACA when cells were exposed by bezafibrate. To further delineate the potential relationship between OPN and PPAR-alpha, OPN(-/-) mice showed no change of PPAR-alpha mRNA level although wild-type mice showed downregulation of PPAR-alpha mRNA after EtOH treatment. In conclusion, the current study suggests that OPN is induced by EtOH and its metabolite ACA and opposite relationship likely exist between PPAR-alpha and OPN expression within the liver during ALD.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Gliomas are the most common primary intracranial tumors. Their distinct ability to infiltrate into the extracellular matrix (ECM) of the brain makes it impossible to treat these tumors using surgery and radiation therapy. A number of different studies have suggested that hyaluronan (HA), the principal glycosaminoglycan (GAG) in the ECM of the brain, is the critical factor for glioma invasion. HA-induced glioma invasion was driven by two important molecular events: matrix metalloproteinase (MMP) secretion and up-regulation of cell migration. MMP secretion was triggered by HA-induced focal adhesion kinase (FAK) activation, which transmits its signal through ERK activation and nuclear factor kappa B (NF-kappaB) translocation. Another important molecular event is osteopontin (OPN) expression. OPN expression by AKT activation triggers cell migration. These results suggest that HA-induced glioma invasion is tightly regulated by signaling mechanisms, and a detailed understanding of this molecular mechanism will provide important clues for glioma treatment.
Collapse
Affiliation(s)
- Jong Bae Park
- Research Institute and Hospital, National Cancer Center, Goyang Gyeonggi, Korea
| | | | | |
Collapse
|
42
|
Zhao J, Lu B, Xu H, Tong X, Wu G, Zhang X, Liang A, Cong W, Dai J, Wang H, Wu M, Guo Y. Thirty-kilodalton Tat-interacting protein suppresses tumor metastasis by inhibition of osteopontin transcription in human hepatocellular carcinoma. Hepatology 2008; 48:265-75. [PMID: 18537194 DOI: 10.1002/hep.22280] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
UNLABELLED It has been previously demonstrated that the 30-kDa Tat-interacting protein (TIP30) plays an important role in the suppression of hepatocarcinogenesis by acting as a tumor suppressor. Here we report that TIP30 suppresses metastasis of hepatocellular carcinoma (HCC) through inhibiting the transcription of osteopontin (OPN), a key molecule in the development of tumor metastasis. The expression of TIP30 messenger RNA was reverse to that of OPN messenger RNA in HCC cell lines. Ectopic expression of TIP30 greatly suppressed OPN expression, inhibited invasion of HCC cells through extracellular matrix (ECM) and adhesion with fibronectin in vitro, whereas down-regulation of TIP30 by RNA-mediated interference enhanced OPN expression and promoted metastatic abilities of HCC cells in vitro. Moreover, overexpression of TIP30 significantly inhibited the growth and lung metastases of HCC cells in nude mice. In contrast, down-regulation of TIP30 greatly promoted tumor cell growth and metastases in vivo. TIP30 repressed OPN transcription through interaction with Ets-1 and suppressed the transcriptional activity of Ets-1 and synergistic actions of Ets-1 and alkaline phosphatase-1. Thus, TIP30 may act as an Ets-1 modulator and inhibit tumor metastasis through abrogating Ets-1-dependent transcription. Moreover, expression of TIP30 was inversely associated with OPN expression in HCC tissue samples as detected by immunohistochemistry assay. CONCLUSION Our results reveal a novel pathway by which OPN and possibly other Ets-1 target genes involved in tumor metastasis are regulated by TIP30 and elucidate a mechanism for metastasis promoted by TIP30 deficiency.
Collapse
Affiliation(s)
- Jian Zhao
- International Joint Cancer Institute and Eastern Hospital of Hepatobiliary Surgery, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Osteopontin is a secreted phosphoprotein that has been implicated as an important mediator of tumor metastasis and has been investigated for use as a biomarker for advanced disease and as a potential therapeutic target in the regulation of cancer metastasis. The OPN DNA sequence is highly conserved and the protein contains several important functional domains including alpha(v)beta integrin and CD44 binding sites. High levels of OPN expression correlate with tumor invasion, progression or metastasis in multiple cancer. Studies demonstrate that osteopontin mediates the molecular mechanisms which determine metastatic spread, such as prevention of apoptosis, extracellular matrix proteolysis and remodeling, cell migration, evasion of host-immune cells and neovascularization. Transcriptional regulation of OPN is complex and involves multiple pathways, including AP-1, Myc, v-Src, Runx/CBF, TGF-B/BMPs/Smad/Hox, and Wnt/ss-catenin/APC/GSK-3ss/Tcf-4. The current state of knowledge of OPN biology suggests that it is an attractive target for therapeutic modulation of metastatic disease.
Collapse
|
44
|
Kajiya M, Shiba H, Fujita T, Ouhara K, Takeda K, Mizuno N, Kawaguchi H, Kitagawa M, Takata T, Tsuji K, Kurihara H. Brain-derived neurotrophic factor stimulates bone/cementum-related protein gene expression in cementoblasts. J Biol Chem 2008; 283:16259-67. [PMID: 18390540 DOI: 10.1074/jbc.m800668200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), recognized as essential in the developing nervous system, is involved in differentiation and proliferation in non-neuronal cells, such as endothelial cells, osteoblasts, and periodontal ligament cells. We have focused on the application of BDNF to the regeneration of periodontal tissue and indicated that BDNF promotes the regeneration of experimentally created periodontal defects. Cementoblasts form cementum, mineralized tissue, which is key to establishing a functional periodontium. The application of BDNF to the regeneration of periodontal tissue requires elucidation of the mechanism by which BDNF regulates the functions of cementoblasts. In this study, we examined how BDNF regulates the mRNA expression of bone/cementum-related proteins (alkaline phosphatase (ALP), osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2)) in cultures of immortalized human cementoblast-like (HCEM) cells. BDNF elevated the mRNA levels of ALP, OPN, and BMP-2 in HCEM cells. Small interfering RNA (siRNA) for TRKB, a high affinity receptor of BDNF, siRNA for ELK-1, which is a downstream target of ERK1/2, and PD98059, an ERK inhibitor, obviated the increase in the mRNA levels. BDNF increased the levels of phosphorylated ERK1/2 and Elk-1, and the blocking of BDNF signaling by treatment with siRNA for TRKB and PD98059 suppressed the phosphorylation of ERK1/2 and Elk-1. Furthermore, BDNF increased the levels of phosphorylated c-Raf, which activates the ERK signaling pathway. These findings provide the first evidence that the TrkB-c-Raf-ERK1/2-Elk-1 signaling pathway is required for the BDNF-induced mRNA expression of ALP, OPN, and BMP-2 in HCEM cells.
Collapse
Affiliation(s)
- Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima 34-8553, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chakraborty G, Jain S, Patil TV, Kundu GC. Down-regulation of osteopontin attenuates breast tumour progression in vivo. J Cell Mol Med 2008; 12:2305-18. [PMID: 18266970 PMCID: PMC4514110 DOI: 10.1111/j.1582-4934.2008.00263.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Development of breast tumour malignancies results in enhanced expression of various oncogenic molecules. Elevated expression of osteopontin (OPN) in higher grades of breast carcinoma correlates with enhanced expressions of several oncogenic molecules (urokinase-type plasminogen activator [uPA], matrix metalloproteinase-2/-9 [MMP-2 and -9]) and increased angiogenic potential of breast carcinoma. In this study, using in vitro and multiple in vivo models, we have demonstrated that silencing of OPN by its specific small interfering RNA (siRNA) down-regulates the expressions of oncogenic molecules such as uPA, MMP-2 and -9 resulting in inhibition of in vitro cell motility and in vivo tumourigenicity in mice. Moreover our results demonstrated that OPN−/− mice showed slower progression of tumour growth in breast cancer model as compared to wild-type mice. Furthermore, the data showed that injection of carcinogenic compound, pristane (2, 6,10,14-tetramethylpen-tadecane) induces breast tumour progression leading to enhanced expression of OPN and other oncogenic molecules in mammary fat pad of nude- and wild-type mice but not in OPN−/ mice. However, intratumoural injection of OPN siRNA to pristane-induced tumour significantly suppressed these effects. Our data revealed that knocking down of OPN effectively curb breast cancer progression and further suggested that developing of OPN-based therapeutics might be an emerging approach for the next generation of breast cancer management.
Collapse
Affiliation(s)
- Goutam Chakraborty
- National Center for Cell Science, Department of Histopathology, YCM Hospital, Pune, India
| | | | | | | |
Collapse
|
46
|
Chakraborty G, Jain S, Kundu GC. Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 2008; 68:152-61. [PMID: 18172307 DOI: 10.1158/0008-5472.can-07-2126] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is the hallmark of cancer, and development of aggressiveness of primary tumor depends on de novo angiogenesis. Here, using multiple in vitro and in vivo models, we report that osteopontin (OPN) triggers vascular endothelial growth factor (VEGF)-dependent tumor progression and angiogenesis by activating breast tumor kinase (Brk)/nuclear factor-inducing kinase/nuclear factor-kappaB (NF-kappaB)/activating transcription factor-4 (ATF-4) signaling cascades through autocrine and paracrine mechanisms in breast cancer system. Our results revealed that both exogenous and tumor-derived OPN play significant roles in VEGF-dependent tumor angiogenesis. Clinical specimen analysis showed that OPN and VEGF expressions correlate with levels of neuropilin-1, Brk, NF-kappaB, and ATF-4 in different grades of breast cancer. Consequently, OPN plays essential role in two key aspects of tumor progression: VEGF expression by tumor cells and VEGF-stimulated neovascularization. Thus, targeting OPN and its regulated signaling network could be a novel strategy to block tumor angiogenesis and may develop an effective therapeutic approach for the management of breast cancer.
Collapse
|
47
|
Rohde F, Rimkus C, Friederichs J, Rosenberg R, Marthen C, Doll D, Holzmann B, Siewert JR, Janssen KP. Expression of osteopontin, a target gene of de-regulated Wnt signaling, predicts survival in colon cancer. Int J Cancer 2007; 121:1717-23. [PMID: 17565744 DOI: 10.1002/ijc.22868] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteopontin (OPN) is a secreted phosphoprotein, which has been reported to be associated with tumor progression in numerous solid tumors. In a previous transcriptome study on colorectal cancer, we identified the gene OPN among the most strongly up-regulated transcripts. OPN has been suggested as a putative target of Wnt signaling, but the molecular mechanism responsible for its aberrant transcription is not fully understood. We analyzed 13 normal colon tissues, 9 adenomas, 120 primary colon tumors, and 10 liver metastases by quantitative reverse-transcription PCR. OPN expression was strongly elevated in primary colon cancer and liver metastasis, but not in pre-cancerous lesions and UICC stage I tumors. Multivariate analysis established OPN expression as an independent prognostic parameter for overall survival. Moreover, high OPN expression identified a subgroup of patients with bad prognosis. Next, we determined immunohistochemically a correlation of OPN expression with aberrant beta-catenin staining, which is indicative of Wnt activation. Elevated expression of OPN was significantly correlated with increased cytoplasmic and nuclear beta-catenin staining. The in vivo role of Wnt signaling for the expression of OPN was tested in genetically defined mouse models with (Apc(1638N)) or without (pvillin-KRAS(V12G)) Wnt activating mutations. Mutation of the tumor suppressor APC was necessary for upregulation of OPN expression in the murine tumors on transcript and on protein levels. Thus, OPN is a transcriptional target of aberrant Wnt signaling, and OPN expression alone predicts survival in human colon cancer.
Collapse
Affiliation(s)
- Franziska Rohde
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chang PL, Harkins L, Hsieh YH, Hicks P, Sappayatosok K, Yodsanga S, Swasdison S, Chambers AF, Elmets CA, Ho KJ. Osteopontin expression in normal skin and non-melanoma skin tumors. J Histochem Cytochem 2007; 56:57-66. [PMID: 17938278 DOI: 10.1369/jhc.7a7325.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Osteopontin (OPN) is an adhesive, matricellular glycoprotein, whose expression is elevated in many types of cancer and has been shown to facilitate tumorigenesis in vivo. To understand the role of OPN in human skin cancer, this study is designed to determine whether OPN is expressed in premalignant [solar/actinic keratosis (AK)] and in malignant skin lesions such as squamous cell carcinomas (SCC) and basal cell carcinomas (BCC), as well as in normal skin exposed or not exposed to sunlight. Immunohistochemical analyses showed that OPN is expressed in SCC (20/20 cases) and in AK (16/16 cases), which are precursors to SCC, but is absent or minimally expressed in solid BCC (17 cases). However, positive staining for OPN was observed in those BCC that manifest differentiation toward epidermal appendages such as keratotic BCC. In sunlight-exposed normal skin, OPN is minimally expressed in the basal cell layer, but in contrast to those not exposed to sunlight, OPN is more prominent in the spinous cell layer with increasing intensity toward the granular cell layer. Additionally, OPN is expressed in the hair follicles, sebaceous glands, and sweat glands of normal skin. In conclusion, these data suggest that OPN is associated with keratinocyte differentiation and that it is expressed in AK and SCC, which have metastatic potential, but minimally expressed in solid BCC.
Collapse
Affiliation(s)
- Pi-Ling Chang
- Department of Nutrition Sciences, 311 Susan Mott Webb Nutrition Sciences Building, 1675 University Boulevard, University of Alabama at Birmingham, Birmingham, Alabama 35295-3360, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Emdad L, Sarkar D, Su ZZ, Lee SG, Kang DC, Bruce JN, Volsky DJ, Fisher PB. Astrocyte elevated gene-1: recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration. Pharmacol Ther 2007; 114:155-70. [PMID: 17397930 PMCID: PMC2039930 DOI: 10.1016/j.pharmthera.2007.01.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 01/01/2023]
Abstract
Tumor progression and metastasis are complex processes involving intricate interplay among multiple gene products. Astrocyte elevated gene (AEG)-1 was cloned as an human immunodeficiency virus (HIV)-1-inducible and tumor necrosis factor-alpha (TNF-alpha)-inducible transcript in primary human fetal astrocytes (PHFA) by a rapid subtraction hybridization approach. AEG-1 down-regulates the expression of the glutamate transporter EAAT2; thus, it is implicated in glutamate-induced excitotoxic damage to neurons as evident in HIV-associated neurodegeneration. Interestingly, AEG-1 expression is elevated in subsets of breast cancer, glioblastoma multiforme and melanoma cells, and AEG-1 cooperates with Ha-ras to augment the transformed phenotype of normal immortal cells. Moreover, AEG-1 is overexpressed in >95% of human malignant glioma samples when compared with normal human brain. Overexpression of AEG-1 increases and siRNA inhibition of AEG-1 decreases migration and invasion of human glioma cells, respectively. AEG-1 contains a lung-homing domain facilitating breast tumor metastasis to lungs. These findings indicate that AEG-1 might play a pivotal role in the pathogenesis, progression and metastasis of diverse cancers. Our recent observations indicate that AEG-1 exerts its effects by activating the nuclear factor kappa B (NF-kappaB) pathway and AEG-1 is a downstream target of Ha-ras and plays an important role in Ha-ras-mediated tumorigenesis. These provocative findings are intensifying interest in AEG-1 as a crucial regulator of tumor progression and metastasis and as a potential mediator of neurodegeneration. In this review, we discuss the cloning, structure and function(s) of AEG-1 and provide recent insights into the diverse actions and intriguing properties of this molecule.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Devanand Sarkar
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Zao-Zhong Su
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Seok-Geun Lee
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Dong-chul Kang
- Ilsong Institute of Life Science, Hallym University, Republic of Korea
| | - Jeffrey N. Bruce
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - David J. Volsky
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- St. Luke's Roosevelt Medical Center, New York, NY
| | - Paul B. Fisher
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| |
Collapse
|
50
|
Bache M, Reddemann R, Said HM, Holzhausen HJ, Taubert H, Becker A, Kuhnt T, Hänsgen G, Dunst J, Vordermark D. Immunohistochemical detection of osteopontin in advanced head-and-neck cancer: Prognostic role and correlation with oxygen electrode measurements, hypoxia-inducible-factor-1α-related markers, and hemoglobin levels. Int J Radiat Oncol Biol Phys 2006; 66:1481-7. [PMID: 17056190 DOI: 10.1016/j.ijrobp.2006.07.1376] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 07/26/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The tumor-associated glycoprotein osteopontin (OPN) is discussed as a plasma marker of tumor hypoxia. However, the association of immunohistochemical OPN expression in tumor sections with tumor oxygenation parameters (HF5, median pO(2)), the hypoxia-related markers hypoxia-inducible factor-1alpha (HIF-1alpha) and carbonic anhydrase IX (CAIX), or hemoglobin and systemic vascular endothelial growth factor (VEGF) levels has not been investigated. METHODS AND MATERIALS Tumor tissue sections of 34 patients with advanced head-and-neck cancer treated with radiotherapy were assessed by immunochemistry for the expression of OPN, HIF-1alpha, and CA IX. Relationship of OPN expression with tumor oxygenation parameters (HF5, median pO(2)), HIF-1alpha and CA IX expression, hemoglobin and serum VEGF level, and clinical parameters was studied. RESULTS Bivariate analysis showed a significant correlation of positive OPN staining with low hemoglobin level (p = 0.02), high HIF-1alpha expression (p = 0.02), and high serum vascular endothelial growth factor level (p = 0.02) for advanced head-and-neck cancer. Furthermore, considering the 31 Stage IV patients, the median pO(2) correlated significantly with the OPN expression (p = 0.02). OPN expression alone had only a small impact on prognosis. However, in a univariate Cox proportional hazard regression model, the expression of either OPN or HIF-1alpha or CA IX was associated with a 4.1-fold increased risk of death (p = 0.02) compared with negativity of all three markers. CONCLUSION Osteopontin expression detected immunohistochemically is associated with oxygenation parameters in advanced head-and-neck cancer. When the results of OPN, HIF-1alpha, and CA IX immunohistochemistry are combined into a hypoxic profile, a strong and statistically significant impact on overall survival is found.
Collapse
Affiliation(s)
- Matthias Bache
- Department of Radiotherapy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|