1
|
Kouadio KB, Resongles E, Ahoussi KE, Ouattara Z, Konaté I, Fayol N, Borschneck D, Baratoux D, Delpoux S, Domeau A, Marie M, Yao KA, Bruneel O. Environmental contamination by metals, metalloids, and cyanides in the historic and active ASGM area of Kokumbo in Côte d'Ivoire. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36403-6. [PMID: 40343635 DOI: 10.1007/s11356-025-36403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
In Côte d'Ivoire, despite an intense development of artisanal and small-scale gold mining (ASGM) activities in the last two decades, the environmental impacts of this activity are poorly documented. This study aimed to document the concentrations of geogenic and exogenous contaminants potentially released by ASGM (metals and cyanides) in different sources (ore, mining wastes) and environmental compartments (soils, surface and ground waters, sediments) in the Kokumbo area, part of the Au-rich Birimian greenstone belt. Alluvial ore material is enriched in various metal(oid)s (As, Co, Cu, Cr, Fe, Mn, Ni, Sb, and V) compared to the average composition of the upper continental crust while other metals (Cd, Pb, Ti, Zn) show no geochemical anomalies. High Hg concentrations were found in cyanidation residues (up to 8.32 mg/kg) and sediments (up to 20.4 mg/kg) compared to unprocessed alluvial ores (0.06 ± 0.01 mg/kg) indicating that Hg used in amalgamation is the source of Hg contamination. Cyanidation residues contain up to 100 mg/kg of total cyanides but generally less than 3% are in the form of free cyanides, the most mobile and toxic form. Arsenic concentrations in water are low (< 2.5 µg/L) despite its relatively high content in sediments and soils (76 ± 54 mg/kg), showing a low mobility of As, likely due to its adsorption on iron oxy(hydr)oxides. Apart from Mn, metals have low dissolved concentrations in water except in a stream draining a cyanidation site suggesting that the cyanidation effluent discharge may contribute to metal dispersion in rivers.
Collapse
Affiliation(s)
- Konan Bertin Kouadio
- Institut National Polytechnique Félix HOUPHOUËT-BOIGNY, Centre d'Excellence Africain Mines et Environnement Minier (CEA-MEM), Yamoussoukro, Côte d'Ivoire
- HSM, Univ Montpellier, IRD, CNRS, Montpellier, France
- Département de Biochimie et Microbiologie, UFR Agroforesterie, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | | | - Kouassi Ernest Ahoussi
- UFR des Sciences de la Terre et des Ressources Minières (UFR STRM), Université Félix Houphouët-Boigny, Cocody, Abidjan, Côte d'Ivoire
| | - Zié Ouattara
- UFR des Sciences Géologiques et Minières, Université de Man, Man, Côte d'Ivoire
| | - Ibrahim Konaté
- Département de Biochimie et Microbiologie, UFR Agroforesterie, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Noémie Fayol
- HSM, Univ Montpellier, IMT Mines Ales, CNRS, IRD, Ales, France
| | - Daniel Borschneck
- CNRS, Aix-Marseille University, INRAE, IRD, CEREGE, Aix-en-Provence, France
| | - David Baratoux
- UFR des Sciences de la Terre et des Ressources Minières (UFR STRM), Université Félix Houphouët-Boigny, Cocody, Abidjan, Côte d'Ivoire
- Géosciences Environnement Toulouse, CNRS, Université de Toulouse & IRD, 14, Avenue Edouard Belin, Toulouse, France
| | | | | | - Mylène Marie
- HSM, Univ Montpellier, IRD, CNRS, Montpellier, France
| | - Kouakou Alphonse Yao
- Institut National Polytechnique Félix HOUPHOUËT-BOIGNY, Centre d'Excellence Africain Mines et Environnement Minier (CEA-MEM), Yamoussoukro, Côte d'Ivoire
| | - Odile Bruneel
- HSM, Univ Montpellier, IRD, CNRS, Montpellier, France
- Lab Biotechnol & Microbiol Aliments, Univ Nangui Abrogoua, 02 BP 801, Abidjan, Côte d'Ivoire
| |
Collapse
|
2
|
Yakovliev V, Lev B. Impact of bacterial outer membrane and general porins on cyanide diffusion and biodegradation kinetics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136117. [PMID: 39427357 DOI: 10.1016/j.jhazmat.2024.136117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
The present study focuses on the analysis of the diffusion process of various cyanide compounds through general porins and outer membranes of gram-negative bacteria. We demonstrate the impact of the compound-to-porin radius ratio, the charge of cyanide ion, the Donnan potential, the intrinsic porin potential, the number and length of general porins, the fraction of open channels, and the size of bacteria on the effective diffusion coefficients and permeability coefficients of cyanide compounds. Moreover, we report, for the first time, the procedure for comparison of the rate of cyanide diffusion across the outer membrane with the rate of cyanide biodegradation that allows establishing the conditions for which the biodegradation is a diffusion-limited process or the diffusion is a significantly faster process than biodegradation. We apply this procedure to several experimental studies and predict the range of extracellular cyanide concentrations for which diffusion is a significantly faster process than biodegradation. We also demonstrate how these results affect the theoretical view of the cyanide biodegradation kinetics.
Collapse
Affiliation(s)
- Vladyslav Yakovliev
- Department of Synergetics, Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b Metrolohichna Str., Kyiv 03143, Ukraine.
| | - Bohdan Lev
- Department of Synergetics, Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b Metrolohichna Str., Kyiv 03143, Ukraine; Condensed Matter Physics Department, J. Stefan Institute, 39 Jamova, Ljubljana 1000, Slovenia; Faculty of Mathematics and Physics, University of Ljubljana, 19 Jadranska, Ljubljana 1000, Slovenia.
| |
Collapse
|
3
|
Sobieh SS, Abed El-Gammal R, El-Kheir WSA, El-Sheimy AA, Said AA, El-Ayouty YM. Heterologous Expression of Cyanobacterial Cyanase Gene (CYN) in Microalga Chlamydomonas reinhardtii for Bioremediation of Cyanide Pollution. BIOLOGY 2022; 11:biology11101420. [PMID: 36290324 PMCID: PMC9599008 DOI: 10.3390/biology11101420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Cyanide is a known toxic compound produced through natural and anthropogenic activities. Water can be polluted by cyanide ions through wastewater effluents. In high concentrations, cyanide is considered a strong metabolic inhibitor and can cause inhibition in mitochondrial complex IV (cytochrome c oxidase), and its assimilation can result in chronic poisoning and/or acute poisoning to humans and animals. Bioremediation systems involving the usage of transgenic algal systems have become preferable alternatives for the detoxification of cyanide contamination due to the accumulation and the biosorbent efficiency of transgenic Chlamydomonas in the removal of KCNO from fresh water. Abstract Recombinant DNA technology offered the creation of new combinations of DNA segments that are not found together in nature. The present study aimed to produce an ecofriendly bioremediation model to remediate cyanide pollution from a polluted marine system. Cyanide is a known toxic compound produced through natural and anthropogenic activities. An Agrobacterium-tumefaciens-mediated genetic transformation technique was used to generate transformed Chlamydomonas reinhardtii using plant expression vector pTRA-K-cTp carries isolated coding sequence of the cyanobacterial cyanase gene (CYN) isolated from Synechococcus elongatus (PCC6803). qRT-PCR analysis showed the overexpression of CYN in transgenic C. reinhardtii, as compared with the respective wild type. Growth parameters and biochemical analyses were performed under cyanide stress conditions using transgenic and wild C. reinhardtii for evaluating the effect of the presence of the cyanobacterial cyanase gene in algae. The transgenic C. reinhardtii strain (TC. reinhardtii-2) showed promising results for cyanide bioremediation in polluted water samples. Cyanide depletion assays and algal growth showed a significant resistance in the transgenic type against cyanide stress, as compared to the wild type. Genetically modified alga showed the ability to phytoremediate a high level of potassium cyanide (up to150 mg/L), as compared to the wild type. The presence of the CYN gene has induced a protection response in TC. Reinhardtii-2, which was shown in the results of growth parameter analyses. Therefore, the present study affirms that transgenic C. reinhardtii by the CYN coding gene is a potential effective ecofriendly bioremediator model for the remediation of cyanide pollutants in fresh water.
Collapse
Affiliation(s)
- Shaimaa S. Sobieh
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11511, Egypt
- Correspondence: ; Tel.: +20-2010-2431-4943
| | - Rasha Abed El-Gammal
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11511, Egypt
| | - Wafaa S. Abu El-Kheir
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11511, Egypt
| | - Alia A. El-Sheimy
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo 11511, Egypt
| | - Alaa A. Said
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Sharkia 44671, Egypt
| | - Yassein M. El-Ayouty
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Sharkia 44671, Egypt
| |
Collapse
|
4
|
An Overview of Emerging Cyanide Bioremediation Methods. Processes (Basel) 2022. [DOI: 10.3390/pr10091724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Cyanide compounds are hazardous compounds which are extremely toxic to living organisms, especially free cyanide in the form of hydrogen cyanide gas (HCN) and cyanide ion (CN−). These cyanide compounds are metabolic inhibitors since they can tightly bind to the metals of metalloenzymes. Anthropogenic sources contribute significantly to CN− contamination in the environment, more specifically to surface and underground waters. The treatment processes, such as chemical and physical treatment processes, have been implemented. However, these processes have drawbacks since they generate additional contaminants which further exacerbates the environmental pollution. The biological treatment techniques are mostly overlooked as an alternative to the conventional physical and chemical methods. However, the recent research has focused substantially on this method, with different reactor configurations that were proposed. However, minimal attention was given to the emerging technologies that sought to accelerate the treatment with a subsequent resource recovery from the process. Hence, this review focuses on the recent emerging tools that can be used to accelerate cyanide biodegradation. These tools include, amongst others, electro-bioremediation, anaerobic biodegradation and the use of microbial fuel cell technology. These processes were demonstrated to have the possibility of producing value-added products, such as biogas, co-factors of neurotransmitters and electricity from the treatment process.
Collapse
|
5
|
Buonvino S, Arciero I, Melino S. Thiosulfate-Cyanide Sulfurtransferase a Mitochondrial Essential Enzyme: From Cell Metabolism to the Biotechnological Applications. Int J Mol Sci 2022; 23:ijms23158452. [PMID: 35955583 PMCID: PMC9369223 DOI: 10.3390/ijms23158452] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Thiosulfate: cyanide sulfurtransferase (TST), also named rhodanese, is an enzyme widely distributed in both prokaryotes and eukaryotes, where it plays a relevant role in mitochondrial function. TST enzyme is involved in several biochemical processes such as: cyanide detoxification, the transport of sulfur and selenium in biologically available forms, the restoration of iron–sulfur clusters, redox system maintenance and the mitochondrial import of 5S rRNA. Recently, the relevance of TST in metabolic diseases, such as diabetes, has been highlighted, opening the way for research on important aspects of sulfur metabolism in diabetes. This review underlines the structural and functional characteristics of TST, describing the physiological role and biomedical and biotechnological applications of this essential enzyme.
Collapse
|
6
|
Biodegradation of cyanide using a Bacillus subtilis strain isolated from artisanal gold mining tailings. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00228-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Ismaiel MMS, El-Ayouty YM, Al-Badwy AH. Biosorption of cyanate by two strains of Chlamydomonas reinhardtii: evaluation of the removal efficiency and antioxidants activity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1030-1040. [PMID: 33474973 DOI: 10.1080/15226514.2021.1872486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two strains of the chlorophyte Chlamydomonas reinhardtii, a wild type (WT) and a transgenic strain (C.CYN) contained an exogenous cyanase gene (CYN), were used to investigate the growth and cyanate biosorption capability through the analysis of the adsorption equilibrium isotherm. The potential antioxidants activity of the algal strains was also investigated under cyanate concentration. The antioxidants activity of both C.CYN and WT were enhanced by the application of cyanate.Two adsorption isotherm models and the sorption kinetics were used to check the efficiency of the cyanate removal process. The results showed the biosorbent efficiency of Chlamydomonas in the removal of KCNO from aqueous solution. The C.CYN strain has great efficiency to remove cyanate as compared to the WT. The maximum percentage of cyanate removal was 83.75% for the C.CYN and 50% for the WT as treated with 0.8 mg.ml-1 KCNO. The data were adapted to the nonlinear Langmuir model on the basis of the coefficient of determination. The calculated qmax was 0.54 and 0.42 µg.mg-1 for C.CYN and WT which correlated to the experimental one (0.67 and 0.4 µg.mg-1, respectively). Our data highlight the application of the transgenic algal strain toward the removal of highly toxic materials as cyanate.Novelty statement The main objective of this work is to find out an efficient genetically-modified Chlamydomonas strain to remove the highly toxic cyanate compound from contaminated area. Moreover, to evaluate the biosorption ability of this transgenic strain with its wild one via two adsorption isotherm (the Langmuir and Freundlich) models. Also, to estimate the antioxidants activity of these strains under the cyanate toxicity through four different assays.
Collapse
Affiliation(s)
- Mostafa M S Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Plant Biotechnology Laboratory (PBL), Zagazig University, Zagazig, Sharkia, Egypt
| | - Yassin M El-Ayouty
- Department of Botany and Microbiology, Faculty of Science, Plant Biotechnology Laboratory (PBL), Zagazig University, Zagazig, Sharkia, Egypt
| | - Asmaa H Al-Badwy
- Department of Botany and Microbiology, Faculty of Science, Plant Biotechnology Laboratory (PBL), Zagazig University, Zagazig, Sharkia, Egypt
| |
Collapse
|
8
|
Terada A, Komatsu D, Ogawa T, Flamandita D, Sahlan M, Nishimura M, Yohda M. Isolation of cyanide-degrading bacteria and molecular characterization of its cyanide-degrading nitrilase. Biotechnol Appl Biochem 2020; 69:183-189. [PMID: 33377552 DOI: 10.1002/bab.2095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/25/2020] [Indexed: 11/07/2022]
Abstract
Hydrogen cyanide is an industrially important chemical, and its annual production is more than 1.5 million tons. Because of its toxicity, the cyanide-containing effluents from industries have caused many environmental problems. Among various methods to treat the contaminated soils or water, the biological degradation is regarded to be promising. We isolated two cyanide-degrading microorganisms, Pedobacter sp. EBE-1 and Bacillus sp. EBE-2, from soil contaminated with cyanide. Among these bacteria, Bacillus sp. EBE-2 exhibited significantly a high cyanide-degrading ability. Bacillus sp. EBE-2 might be used for the remediation of cyanide contaminated water or soil. A nitrilase gene was cloned from Bacillus sp. EBE-2. Bacillus nitrilase was expressed in Escherichia coli and purified. Bacillus nitrilase exhibited cyanide-degrading activity as a large oligomer. Since formic acid formation from cyanide was observed, Bacillus nitrilase is likely to be a cyanide hydrolase. Although there exist various homologous enzymes annotated as carbon-nitrogen family hydrolases, this is the first report on the cyanide degrading activity. The structure and catalytic site of Bacillus nitrilase were studied by homology modeling and molecular docking simulation.
Collapse
Affiliation(s)
- Ayane Terada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Daisuke Komatsu
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
- EnBio Engineering, Chiyoda, Tokyo, Japan
| | - Takahiro Ogawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Darin Flamandita
- Department of Chemical Engineering, Universitas Indonesia, Depok, Indonesia
| | - Muhamad Sahlan
- Department of Chemical Engineering, Universitas Indonesia, Depok, Indonesia
| | | | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| |
Collapse
|
9
|
Shafiei F, Watts MP, Pajank L, Moreau JW. The effect of heavy metals on thiocyanate biodegradation by an autotrophic microbial consortium enriched from mine tailings. Appl Microbiol Biotechnol 2020; 105:417-427. [PMID: 33263791 PMCID: PMC7778618 DOI: 10.1007/s00253-020-10983-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022]
Abstract
Abstract Bioremediation systems represent an environmentally sustainable approach to degrading industrially generated thiocyanate (SCN−), with low energy demand and operational costs and high efficiency and substrate specificity. However, heavy metals present in mine tailings effluent may hamper process efficiency by poisoning thiocyanate-degrading microbial consortia. Here, we experimentally tested the tolerance of an autotrophic SCN−-degrading bacterial consortium enriched from gold mine tailings for Zn, Cu, Ni, Cr, and As. All of the selected metals inhibited SCN− biodegradation to different extents, depending on concentration. At pH of 7.8 and 30 °C, complete inhibition of SCN− biodegradation by Zn, Cu, Ni, and Cr occurred at 20, 5, 10, and 6 mg L−1, respectively. Lower concentrations of these metals decreased the rate of SCN− biodegradation, with relatively long lag times. Interestingly, the microbial consortium tolerated As even at 500 mg L−1, although both the rate and extent of SCN− biodegradation were affected. Potentially, the observed As tolerance could be explained by the origin of our microbial consortium in tailings derived from As-enriched gold ore (arsenopyrite). This study highlights the importance of considering metal co-contamination in bioreactor design and operation for SCN− bioremediation at mine sites. Key points • Both the efficiency and rate of SCN−biodegradation were inhibited by heavy metals, to different degrees depending on type and concentration of metal. • The autotrophic microbial consortium was capable of tolerating high concentrations of As, potential having adapted to higher As levels derived from the tailings source. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-020-10983-4.
Collapse
Affiliation(s)
- Farhad Shafiei
- School of Earth Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Mathew P Watts
- School of Earth Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lukas Pajank
- School of Earth Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - John W Moreau
- School of Earth Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia. .,School of Geographical & Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
10
|
Shahrivar J, Gharabaghi M. Separation of AuCN2- by activated carbon and functionalized graphene/activated carbon composite. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Ademakinwa AN, Agunbiade MO, Fagbohun O. Biodegradation of cyanide in cassava wastewater using a novel thermodynamically-stable immobilized rhodanese. Prep Biochem Biotechnol 2020; 51:607-617. [PMID: 33206023 DOI: 10.1080/10826068.2020.1846053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Extracellular rhodanese obtained from Aureobasidium pullulans was employed in both free and immobilized forms for the biodegradation of cyanide present in cassava processing mill effluent (CPME). Crosslinking with glutaraldehyde (at an optimum concentration of 5% v/v) before entrapment in alginate beads resulted in the highest immobilization yield of 94.5% and reduced enzyme leakage of 1.8%. Rhodanese immobilized by cross-linking before entrapment (cbe) retained about 46% of its initial activity after eight cycles of catalysis compared to the entrapment in alginate alone (eaa) which lost more than 79% after the fifth catalytic cycle. A cross-examination of thermodynamic (ΔGd*, ΔSd*, ΔHd*) kinetic (kd, t1/2, D and z-values) parameters at 30-70 °C showed that cbe displayed a higher resistance to thermal inactivation when compared to the free enzyme (fe) and (eaa). The efficiency of cyanide biodegradation from the CPME by the fe, eaa and cbe were 55, 62, and 74% respectively after 6 h. Rhodanese immobilized via cbe had a higher resistance to thermal denaturation over other enzyme forms. Hence, this makes cbe adaptable for large-scale detoxification of cyanide from CPME.
Collapse
Affiliation(s)
| | - Mayowa Oladele Agunbiade
- Applied Microbiology and Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Oladapo Fagbohun
- Department of Biomedical Engineering, First Technical University, Ibadan, Nigeria
| |
Collapse
|
12
|
Chu JH, Kang JK, Park SJ, Lee CG. Application of the anion-exchange resin as a complementary technique to remove residual cyanide complexes in industrial plating wastewater after conventional treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41688-41701. [PMID: 32696404 DOI: 10.1007/s11356-020-10162-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Cyanide is highly toxic and must be destroyed or removed before discharge into the environment. This study examined the ability of commercial anion-exchange resins to remove residual cyanide complexes from industrial plating wastewater as a complement to conventional treatment. Cyanide removal experiments were conducted with various initial concentrations, reaction times, and temperatures, and the presence of co-existing anions. The maximum cyanide removal capacity (Qm) of the Bonlite BAMB140 resin is 31.82 mg/g and effectively removes cyanide from aqueous solution within 30 min. The cyanide removal by the resin is an endothermic process and is affected by the presence of anions in industrial plating wastewater. The relative competitiveness observed in this study was sulfate > nitrate > chloride. A mixture of 0.05 M NaCl and NaOH regenerates resin for continuous reuse for 5 cycles. The Bonlite BAMB140 resin was able to remove residual cyanide complexes from industrial plating wastewater, but the removal capacity of the resin was reduced by more than three times in batch (9.94 mg/g) and column (6349.12 mg/L) systems. Based on the results, the anion-exchange resins are expected to be used as a complementary technique to remove residual cyanide complexes in industrial plating wastewater after conventional treatment.
Collapse
Affiliation(s)
- Jae-Hun Chu
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Jin-Kyu Kang
- Environmental Functional Materials and Water Treatment Laboratory, Seoul National University, Seoul, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
13
|
Dong K, Xie F, Chang Y, Chen C, Wang W, Lu D, Gu X. A novel strategy for the efficient decomposition of toxic sodium cyanate by hematite. CHEMOSPHERE 2020; 256:127047. [PMID: 32446000 DOI: 10.1016/j.chemosphere.2020.127047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/24/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Toxic sodium cyanate is always present in cyanide-contaminated waste. A new technology for the efficient decomposition of toxic sodium cyanate by hematite was first proposed in this study. The decomposition of sodium cyanate under various atmospheres has been studied. Studies show that sodium cyanate decomposes above 782 °C in Ar and above 627 °C in air. Sodium cyanate does not decompose even roasted at 400 °C for 120 min in air. Hematite does not promote the decomposition of sodium cyanate in Ar. However, almost all sodium cyanate decomposes efficiently at 400 °C and the mass ration of hematite to sodium cyanate of 1:1 for 30 min in air or oxygen atmosphere. The increased mass ratio of hematite to sodium cyanate and roasting temperature can both favor the efficient decomposition of sodium cyanate. The efficient decomposition of sodium cyanate occurs within 30 min, and it is almost stagnant with the prolongation of roasting time. When roasted in air or oxygen in the presence of hematite, sodium cyanate decomposes to Na2CO3, CO2 and N2 and a small amount of NaNO3 and NOx. The optimal efficient decomposition of sodium cyanate is to roast above 400 °C for 30 min in air or O2 at a mass ration of hematite to sodium cyanate greater than 1:1.
Collapse
Affiliation(s)
- Kaiwei Dong
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Feng Xie
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China.
| | - Yongfeng Chang
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Chunlin Chen
- CSIRO Minerals Resources, Clayton, Victoria, 3168, Australia
| | - Wei Wang
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China.
| | - Diankun Lu
- School of Metallurgy, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| | - Xiaowei Gu
- Science and Technology Innovation Center of Smart Water and Resource Environment, Northeastern University, 3-11 Wenhua Road, Shenyang, 110004, China
| |
Collapse
|
14
|
Burneo BS, Juárez AS, Nieto-Monteros DA. Un-steady state modeling for free cyanide removal and biofilm growth in a RBC batch process. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:120647. [PMID: 32029309 DOI: 10.1016/j.jhazmat.2019.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 06/10/2023]
Abstract
Biofilm growth and free cyanide biological removal from gold mine wastewater were modeled and simulated using a bench-scale rotating biological contactor (RBC). Eight batch cultures were run in three independent compartments (1.7 L, each) of the RBC. The system worked under the following conditions: [CNi-] = 0.3 g/L, pH = 10.5 ± 0.5, T = 20 ± 5 °C, ω =5 rpm, and 40.5 % of disc submersion. During each culture, biofilm thickness, biomass, and free cyanide concentration in the liquid were quantified. Subsequently, μmax, [Formula: see text] , [Formula: see text] were determined using experimental data to later model and simulate the biofilm thickness and free cyanide biological removal with Wolfram Mathematica software. After the experiments, free cyanide biological removal was 96.33 % after three days, and maximum biofilm thickness was 0.0292 cm in the 16th day. Moreover, biofilm growth and free cyanide consumption models were adjusted to the experimental data with r2 = 0.90 and r2 = 0.99. Also, there was an equivalent error of 7.89 and 7.38 and a standard deviation of 10.89 % and 10.17 %, between the models and their experimental data, respectively. Finally, the proposed models will allow improvement of reactor operation and its design.
Collapse
Affiliation(s)
- Belén Sotomayor Burneo
- Bioprocesses Engineering Laboratory, Environmental Engineering Section, Chemical and Exact Sciences Department, Universidad Técnica Particular de Loja, San Cayetano alto s/n, P.C.: 1101608, Loja, Ecuador.
| | - A Sánchez Juárez
- Physical Chemistry and Mathematics Section, Chemical and Exact Sciences Department, Universidad Técnica Particular de Loja, San Cayetano alto s/n, P.C.: 1101608, Loja, Ecuador.
| | - Diego Alejandro Nieto-Monteros
- Bioprocesses Engineering Laboratory, Environmental Engineering Section, Chemical and Exact Sciences Department, Universidad Técnica Particular de Loja, San Cayetano alto s/n, P.C.: 1101608, Loja, Ecuador.
| |
Collapse
|
15
|
Dobrosz-Gómez I, Gómez García MÁ, Gaviria GH, GilPavas E. Mineralization of cyanide originating from gold leaching effluent using electro-oxidation: multi-objective optimization and kinetic study. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-019-01392-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Cabello P, Luque-Almagro VM, Olaya-Abril A, Sáez LP, Moreno-Vivián C, Roldán MD. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications. FEMS Microbiol Lett 2019; 365:4847882. [PMID: 29438505 PMCID: PMC5939895 DOI: 10.1093/femsle/fny032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed.
Collapse
Affiliation(s)
- Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Lara P Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - M Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
17
|
Igeño MI, Macias D, Blasco R. A Case of Adaptive Laboratory Evolution (ALE): Biodegradation of Furfural by Pseudomonas pseudoalcaligenes CECT 5344. Genes (Basel) 2019; 10:genes10070499. [PMID: 31261932 PMCID: PMC6678421 DOI: 10.3390/genes10070499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas pseudoalcaligenes CECT 5344 is a bacterium able to assimilate cyanide as a nitrogen source at alkaline pH. Genome sequencing of this strain allowed the detection of genes related to the utilization of furfurals as a carbon and energy source. Furfural and 5-(hydroxymethyl) furfural (HMF) are byproducts of sugars production during the hydrolysis of lignocellulosic biomass. Since they inhibit the yeast fermentation to obtain bioethanol from sugars, the biodegradation of these compounds has attracted certain scientific interest. P. pseudoalcaligenes was able to use furfuryl alcohol, furfural and furoic acid as carbon sources, but after a lag period of several days. Once adapted, the evolved strain (R1D) did not show any more prolonged lag phases. The transcriptomic analysis (RNA-seq) of R1D revealed a non-conservative punctual mutation (L261R) in BN5_2307, a member of the AraC family of activators, modifying the charge of the HTH region of the protein. The inactivation of the mutated gene in the evolved strain by double recombination reverted to the original phenotype. Although the bacterium did not assimilate HMF, it transformed it into value-added building blocks for the chemical industry. These results could be used to improve the production of cost-effective second-generation biofuels from agricultural wastes.
Collapse
Affiliation(s)
- M Isabel Igeño
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, 10003 Caceres, Spain
- Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, 10003 Caceres, Spain
| | - Daniel Macias
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, 10003 Caceres, Spain
| | - Rafael Blasco
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, 10003 Caceres, Spain.
- Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
18
|
Sáez LP, Cabello P, Ibáñez MI, Luque-Almagro VM, Roldán MD, Moreno-Vivián C. Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium Pseudomonas pseudoalcaligenes CECT5344: Mutational Analysis of the cyn Gene Cluster. Int J Mol Sci 2019; 20:ijms20123008. [PMID: 31226739 PMCID: PMC6627978 DOI: 10.3390/ijms20123008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/07/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 can grow with cyanate, cyanide, or cyanide-containing industrial residues as the sole nitrogen source, but the assimilation of cyanide and cyanate takes place through independent pathways. Therefore, cyanide degradation involves a chemical reaction between cyanide and oxaloacetate to form a nitrile that is hydrolyzed to ammonium by the nitrilase NitC, whereas cyanate assimilation requires a cyanase that catalyzes cyanate decomposition to ammonium and carbon dioxide. The P. pseudoalcaligenes CECT5344 cynFABDS gene cluster codes for the putative transcriptional regulator CynF, the ABC-type cyanate transporter CynABD, and the cyanase CynS. In this study, transcriptional analysis revealed that the structural cynABDS genes constitute a single transcriptional unit, which was induced by cyanate and repressed by ammonium. Mutational characterization of the cyn genes indicated that CynF was essential for cynABDS gene expression and that nitrate/nitrite transporters may be involved in cyanate uptake, in addition to the CynABD transport system. Biodegradation of hazardous jewelry wastewater containing high amounts of cyanide and metals was achieved in a batch reactor operating at an alkaline pH after chemical treatment with hydrogen peroxide to oxidize cyanide to cyanate.
Collapse
Affiliation(s)
- Lara Paloma Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - María Isabel Ibáñez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Víctor Manuel Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
19
|
Sharma M, Akhter Y, Chatterjee S. A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation. World J Microbiol Biotechnol 2019; 35:70. [DOI: 10.1007/s11274-019-2643-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/08/2019] [Indexed: 11/24/2022]
|
20
|
Olaya-Abril A, Luque-Almagro VM, Pérez MD, López CM, Amil F, Cabello P, Sáez LP, Moreno-Vivián C, Roldán MD. Putative small RNAs controlling detoxification of industrial cyanide-containing wastewaters by Pseudomonas pseudoalcaligenes CECT5344. PLoS One 2019; 14:e0212032. [PMID: 30735537 PMCID: PMC6368324 DOI: 10.1371/journal.pone.0212032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/26/2019] [Indexed: 11/21/2022] Open
Abstract
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 uses free cyanide and several metal−cyanide complexes as the sole nitrogen source and tolerates high concentrations of metals like copper, zinc and iron, which are present in the jewelry wastewaters. To understand deeply the regulatory mechanisms involved in the transcriptional regulation of cyanide-containing wastewaters detoxification by P. pseudoalcaligenes CECT5344, RNA-Seq has been performed from cells cultured with a cyanide-containing jewelry wastewater, sodium cyanide or ammonium chloride as the sole nitrogen source. Small RNAs (sRNAs) that may have potential regulatory functions under cyanotrophic conditions were identified. In total 20 sRNAs were identified to be differentially expressed when compared the jewelry residue versus ammonium as nitrogen source, 16 of which could be amplified successfully by RT-PCR. As predicted targets of these 16 sRNAs were several components of the nit1C gene cluster encoding the nitrilase NitC essential for cyanide assimilation, the cioAB gene cluster that codes for the cyanide-insensitive cytochrome bd-type terminal oxidase, the medium length-polyhydroxyalkanoates (ml-PHAs) gene cluster, and gene clusters related with a global nitrogen limitation response like those coding for glutamine synthase and urease. Other targets were non-clustered genes (or their products) involved in metal resistance and iron acquisition, such as metal extrusion systems and the ferric uptake regulatory (Fur) protein, and a GntR-like regulatory family member probably involved in the regulation of the cyanide assimilation process in the strain CECT5344. Induction of genes targeted by sRNAs in the jewelry residue was demonstrated by qRT-PCR.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Víctor Manuel Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Pérez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Cristina María López
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Amil
- Servicio Central de Apoyo a la Investigación (SCAI), Unidad de Proteómica, Campus de Rabanales, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Lara Paloma Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- * E-mail:
| |
Collapse
|
21
|
Cyanotrophic and arsenic oxidizing activities of Pseudomonas mendocina P6115 isolated from mine tailings containing high cyanide concentration. Arch Microbiol 2018; 200:1037-1048. [DOI: 10.1007/s00203-018-1514-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/25/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
22
|
Liu Q, Zhang G, Ding J, Zou H, Shi H, Huang C. Evaluation of the Removal of Potassium Cyanide and its Toxicity in Green Algae (Chlorella vulgaris). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:228-233. [PMID: 29159542 DOI: 10.1007/s00128-017-2208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
To evaluate the removal of potassium cyanide (KCN) and its toxicity in algae, an initial comprehensive analysis was performed with Chlorella vulgaris. The algae showed potential removal capability for KCN, with the maximal removal rate of 61%. Moreover, effects of KCN on growth, cellular morphology and antioxidant defense system of C. vulgaris were evaluated. Cell number and chlorophyll a content decreased in most cases, with the maximal inhibition rates of 48% and 99%, respectively. The 100 mg L- 1 KCN seriously damaged the algal cell membrane. Additionally, activity of superoxide dismutase (SOD) was promoted by KCN exposure among 0.1-50 mg L- 1 and inhibited by 100 mg L- 1 KCN, while the malondialdehyde (MDA) content gradually decreased in C. vulgaris with increasing exposure concentration compared to the control. The present study reveals that C. vulgaris is useful in bio-treatment of cyanide-contaminated aquatic ecosystem, except in high concentrations which would cause overwhelming effects.
Collapse
Affiliation(s)
- Qingqing Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Guangsheng Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, People's Republic of China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, People's Republic of China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, People's Republic of China.
| | - Hongxing Shi
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| | - Chaoqun Huang
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defence, Beijing, 102205, People's Republic of China
| |
Collapse
|
23
|
Mekuto L, Ntwampe SKO, Mudumbi JBN. Microbial communities associated with the co-metabolism of free cyanide and thiocyanate under alkaline conditions. 3 Biotech 2018; 8:93. [PMID: 29430355 PMCID: PMC5796949 DOI: 10.1007/s13205-018-1124-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/16/2018] [Indexed: 11/26/2022] Open
Abstract
This study focused on the identification of free cyanide (CDO) and thiocyanate (TDO) degrading microbial communities using a culture-dependent and independent approach. Culturable microbial species were isolated from the CDOs (n = 13) and TDOs (n = 18). The CDOs were largely dominated by Bacillus sp. while the TDOs were dominated by Bacillus sp., Klebsiella oxytoca, Providencia sp. and Pseudomonas sp. However, 16S rRNA amplicon gene-sequencing revealed the complexity and diversity of the microbial communities in contrast to the organisms that were detected using culture-dependent technique. Overall, the organisms were mainly dominated by Myroides odoratimimus and Proteus sp. at 37.82 and 30.5% for CDOs, and 35.26 and 17.58% for TDOs, respectively. The co-culturing of the CDOs and TDOs resulted in biochemical changes of key metabolic enzymes, and this resulted in the complete degradation of CN- and SCN- simultaneously; a phenomenon which has not been witnessed, especially under alkaline conditions. Current ongoing studies are focused on the application of these organisms for the biodegradation of CN- and SCN- in a continuous system, under changing operational parameters, to assess their effectiveness in the biodegradation of CN- and SCN-.
Collapse
Affiliation(s)
- Lukhanyo Mekuto
- Department of Biotechnology, Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000 South Africa
| | - Seteno Karabo Obed Ntwampe
- Department of Biotechnology, Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000 South Africa
| | - John Baptist N. Mudumbi
- Department of Biotechnology, Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000 South Africa
| |
Collapse
|
24
|
Luque-Almagro VM, Cabello P, Sáez LP, Olaya-Abril A, Moreno-Vivián C, Roldán MD. Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. Appl Microbiol Biotechnol 2017; 102:1067-1074. [PMID: 29209795 PMCID: PMC5778177 DOI: 10.1007/s00253-017-8678-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/25/2022]
Abstract
Cyanide is one of the most toxic chemicals for living organisms described so far. Its toxicity is mainly based on the high affinity that cyanide presents toward metals, provoking inhibition of essential metalloenzymes. Cyanide and its cyano-derivatives are produced in a large scale by many industrial activities related to recovering of precious metals in mining and jewelry, coke production, steel hardening, synthesis of organic chemicals, and food processing industries. As consequence, cyanide-containing wastes are accumulated in the environment becoming a risk to human health and ecosystems. Cyanide and related compounds, like nitriles and thiocyanate, are degraded aerobically by numerous bacteria, and therefore, biodegradation has been offered as a clean and cheap strategy to deal with these industrial wastes. Anaerobic biological treatments are often preferred options for wastewater biodegradation. However, at present very little is known about anaerobic degradation of these hazardous compounds. This review is focused on microbial degradation of cyanide and related compounds under anaerobiosis, exploring their potential application in bioremediation of industrial cyanide-containing wastes.
Collapse
Affiliation(s)
- Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de Córdoba, Edificio Celestino Mutis, Campus de Rabanales, 14071, Córdoba, Spain
| | - Lara P Sáez
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Edificio Severo Ochoa, 1ª planta, Campus de Rabanales, 14071, Córdoba, Spain.
| |
Collapse
|
25
|
Watts MP, Gan HM, Peng LY, Lê Cao KA, Moreau JW. In Situ Stimulation of Thiocyanate Biodegradation through Phosphate Amendment in Gold Mine Tailings Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13353-13362. [PMID: 29064247 DOI: 10.1021/acs.est.7b04152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thiocyanate (SCN-) is a contaminant requiring remediation in gold mine tailings and wastewaters globally. Seepage of SCN--contaminated waters into aquifers can occur from unlined or structurally compromised mine tailings storage facilities. A wide variety of microorganisms are known to be capable of biodegrading SCN-; however, little is known regarding the potential of native microbes for in situ SCN- biodegradation, a remediation option that is less costly than engineered approaches. Here we experimentally characterize the principal biogeochemical barrier to SCN- biodegradation for an autotrophic microbial consortium enriched from mine tailings, to arrive at an environmentally realistic assessment of in situ SCN- biodegradation potential. Upon amendment with phosphate, the consortium completely degraded up to ∼10 mM SCN- to ammonium and sulfate, with some evidence of nitrification of the ammonium to nitrate. Although similarly enriched in known SCN--degrading strains of thiobacilli, this consortium differed in its source (mine tailings) and metabolism (autotrophy) from those of previous studies. Our results provide a proof of concept that phosphate limitation may be the principal barrier to in situ SCN- biodegradation in mine tailing waters and also yield new insights into the microbial ecology of in situ SCN- bioremediation involving autotrophic sulfur-oxidizing bacteria.
Collapse
Affiliation(s)
- Mathew P Watts
- School of Earth Sciences, The University of Melbourne , Parkville, Victoria, Australia
| | - Han M Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University , Geelong, Victoria, Australia
- School of Science, Monash University Malaysia , Bandar Sunway, Petaling Jaya, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia , Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Lee Y Peng
- School of Science, Monash University Malaysia , Bandar Sunway, Petaling Jaya, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia , Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and the School of Mathematics and Statistics, The University of Melbourne , Parkville, Victoria, Australia
| | - John W Moreau
- School of Earth Sciences, The University of Melbourne , Parkville, Victoria, Australia
| |
Collapse
|
26
|
He J, Kappler A. Recovery of precious metals from waste streams. Microb Biotechnol 2017; 10:1194-1198. [PMID: 28703887 PMCID: PMC5609314 DOI: 10.1111/1751-7915.12759] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 02/01/2023] Open
Abstract
As there is a high potential for microbe‐based technologies to bring the recovery of metals from waste streams to an ecologically friendly and financially reasonable level, it is worth to invest efforts into the advancement of these biotechnologies in the future.
![]()
Collapse
Affiliation(s)
- Jing He
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
27
|
Potivichayanon S, Supromin N, Toensakes R. Development of a mixed microbial culture for thiocyanate and metal cyanide degradation. 3 Biotech 2017; 7:191. [PMID: 28664381 PMCID: PMC5491436 DOI: 10.1007/s13205-017-0814-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/20/2017] [Indexed: 10/19/2022] Open
Abstract
The degradation capacity of a mixed culture of Agrobacterium tumefaciens SUTS 1 and Pseudomonas monteilii SUTS 2 for thiocyanate and metal cyanide, in the form of zinc and cadmium, has been determined. The growth of a mixed culture of SUTS 1 and SUTS 2 in cyanide complexes and the cyanide removal efficiency of a fixed-film bio-column system were studied. The results showed that the mixed culture of bacteria can survive and grow in broth media containing thiocyanate and metal cyanide complexes with a maximum cell of 1.03 × 108 CFU/mL on day 3. In addition, the optimal conditions of the fixed-film bio-column system were continuously tested for 24 h, and it was found that this system had the highest removal efficiency at a flow rate of 10 mL/min and 21 min of empty bed retention time, with decreasing thiocyanate, zinc, and cadmium from 85, 0.44, and 0.044 to 65, 0.21, and 0.038 mg/L, respectively; this is in contrast to cyanide, which was not found within 12 h. Next, the conditions were maintained for 30 days, and it was found that the system had removed more than 50% of cyanide complexes, except cadmium. The complex residues were 29.96, 0.16, 0.204, and 0.085 mg/L of thiocyanate, cyanide, zinc, and cadmium, respectively. In addition, the growth of the SUTS 1 and SUTS 2 mixed culture increased. The by-product compounds sulfate and nitrate were found throughout the experiment, whereas bicarbonate and ammonia were found only on certain days.
Collapse
Affiliation(s)
- Siraporn Potivichayanon
- School of Environmental Health, Institute of Medicine, Suranaree University of Technology, 111 University Avenue, Sub District Suranaree, Muang District, Nakhon Ratchasima, 30000, Thailand.
| | - Nootjalee Supromin
- School of Environmental Health, Institute of Medicine, Suranaree University of Technology, 111 University Avenue, Sub District Suranaree, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Rattana Toensakes
- School of Environmental Health, Institute of Medicine, Suranaree University of Technology, 111 University Avenue, Sub District Suranaree, Muang District, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
28
|
Lovasoa CR, Hela K, Harinaivo AA, Hamma Y. Bioremediation of soil and water polluted by cyanide: A review. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajest2016.2264] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
29
|
Kebeish R, Al-Zoubi O. Expression of the cyanobacterial enzyme cyanase increases cyanate metabolism and cyanate tolerance in Arabidopsis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11825-11835. [PMID: 28343358 DOI: 10.1007/s11356-017-8866-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
Cyanate and its derivatives are considered as environmental hazardous materials. Cyanate is released to the environment through many chemical industries and mining wastewater. Cyanase enzyme converts cyanate into CO2 and NH3 in a bicarbonate-dependent reaction. At low cyanate concentrations, the endogenous plant cyanases play a vital role in cyanate detoxification. However, such cyanate biodegradation system is probably insufficient due to the excess cyanate concentrations at contaminated sites. In this study, we have transferred the activity of the cyanobacterial cyanase into Arabidopsis thaliana plants in order to enhance plant resistance against cyanate toxicity. The enzyme was shown to be active in planta. Transgenic plants exposed to cyanate, either applied by foliar spray or supplemented in growth medium, showed less reduction in pigment contents, antioxidant enzymes, carbohydrate contents, and reduced levels of plant growth retardation. Plant growth assays under cyanate stress showed enhanced growth and biomass accumulation in cyanase overexpressors compared to control plants. Results of this study provide evidence for developing novel eco-friendly phytoremediation systems for cyanate detoxification.
Collapse
Affiliation(s)
- Rashad Kebeish
- Biology Department, Faculty of Science Yanbu, Taibah University, KSA, King Khalid Rd, Al amoedi, Yanbu El-Bahr, 46423, Saudi Arabia.
- Plant Biotechnology Laboratory (PBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, El-Gamaa Street 1, Zagazig, Sharkia, 44519, Egypt.
| | - Omar Al-Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, KSA, King Khalid Rd, Al amoedi, Yanbu El-Bahr, 46423, Saudi Arabia
| |
Collapse
|
30
|
Ibáñez MI, Cabello P, Luque-Almagro VM, Sáez LP, Olaya A, Sánchez de Medina V, Luque de Castro MD, Moreno-Vivián C, Roldán MD. Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS). PLoS One 2017; 12:e0172908. [PMID: 28253357 PMCID: PMC5333837 DOI: 10.1371/journal.pone.0172908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal−cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal−cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source.
Collapse
Affiliation(s)
- María Isabel Ibáñez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Víctor Manuel Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Lara P. Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Olaya
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Verónica Sánchez de Medina
- Departamento de Química Analítica, Edificio Marie Curie, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Luque de Castro
- Departamento de Química Analítica, Edificio Marie Curie, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
- * E-mail:
| |
Collapse
|
31
|
Mekuto L, Alegbeleye OO, Ntwampe SKO, Ngongang MM, Mudumbi JB, Akinpelu EA. Co-metabolism of thiocyanate and free cyanide by Exiguobacterium acetylicum and Bacillus marisflavi under alkaline conditions. 3 Biotech 2016; 6:173. [PMID: 28330245 PMCID: PMC4990519 DOI: 10.1007/s13205-016-0491-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/05/2016] [Indexed: 12/01/2022] Open
Abstract
The continuous discharge of cyanide-containing effluents to the environment has necessitated for the development of environmentally benign treatment processes that would result in complete detoxification of the cyanide-containing wastewaters, without producing additional environmental toxicants. Since biological detoxification of hazardous chemical compounds has been renowned for its robustness and environmental-friendliness, the ability of the Exiguobacterium acetylicum (GenBank accession number KT282229) and Bacillus marisflavi (GenBank accession number KR016603) to co-metabolise thiocyanate (SCN−) and free cyanide (CN−) under alkaline conditions was evaluated. E. acetylicum had an SCN− degradation efficiency of 99.9 % from an initial SCN− concentration of 150 mg SCN−/L, but the organism was unable to degrade CN−. Consequently, B. marisflavi had a CN− degradation efficiency of 99 % from an initial concentration of 200 mg CN−/L. Similarly, the organism was unable to degrade SCN−; hence, this resulted in the evaluation of co-metabolism of SCN− and CN− by the two microbial species. Optimisation of operational conditions was evaluated using response surface methodology (RSM). A numeric optimisation technique was used to evaluate the optimisation of the input variables i.e. pH, temperature, SCN− and CN− concentrations. The optimum conditions were found to be as follows: pH 9.0, temperature 34 °C, 140 mg SCN−/L and 205 mg CN−/L under which complete SCN− and CN− degradation would be achieved over a 168-h period. Using the optimised data, co-metabolism of SCN− and CN− by both E. acetylicum and B. marisflavi was evaluated, achieving a combined degradation efficiency of ≥99.9 %. The high degradative capacity of these organisms has resulted in their supplementation on an active continuous biological degradation system that is treating both SCN− and CN−.
Collapse
Affiliation(s)
- Lukhanyo Mekuto
- Bioresource Engineering Research Group, Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa.
| | - Oluwadara Oluwaseun Alegbeleye
- Bioresource Engineering Research Group, Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group, Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Maxwell Mewa Ngongang
- Bioresource Engineering Research Group, Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
- Department of Microbiology, Agricultural Research Council, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - John Baptist Mudumbi
- Bioresource Engineering Research Group, Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | - Enoch A Akinpelu
- Bioresource Engineering Research Group, Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| |
Collapse
|
32
|
Mekuto L, Ntwampe SKO, Akcil A. An integrated biological approach for treatment of cyanidation wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:711-720. [PMID: 27424119 DOI: 10.1016/j.scitotenv.2016.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
The cyanidation process has been, and still remains, a profitable and highly efficient process for the recovery of precious metals from ores. However, this process has contributed to environmental deterioration and potable water reserve contamination due to the discharge of poorly treated, or untreated, cyanide containing wastewater. The process produces numerous cyanide complexes in addition to the gold cyanocomplex. Additionally, the discharge constituents also include hydrogen cyanide (HCN) - metallic complexes with iron, nickel, copper, zinc, cobalt and other metals; thiocyanate (SCN); and cyanate (CNO). The fate of these complexes in the environment dictates the degree to which these species pose a threat to living organisms. This paper reviews the impact that the cyanidation process has on the environment, the ecotoxicology of the cyanidation wastewater and the treatment methods that are currently utilised to treat cyanidation wastewater. Furthermore, this review proposes an integrated biological approach for the treatment of the cyanidation process wastewater using microbial consortia that is insensitive and able to degrade cyanide species, in all stages of the proposed process.
Collapse
Affiliation(s)
- Lukhanyo Mekuto
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town 8000, South Africa
| | - S K O Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town 8000, South Africa.
| | - Ata Akcil
- Mineral-Metal Recovery and Recycling (MMR&R) Research Group, Mineral Processing Div., Dept. of Mining Eng., Suleyman Demirel University, TR32260 Isparta, Turkey
| |
Collapse
|
33
|
Razanamahandry LC, Andrianisa HA, Karoui H, Kouakou KM, Yacouba H. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso. CHEMOSPHERE 2016; 157:71-78. [PMID: 27209555 DOI: 10.1016/j.chemosphere.2016.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 06/05/2023]
Abstract
Soil and water samples were collected from a watershed in Burkina Faso where illegal artisanal gold extraction using cyanidation occurs. The samples were used to evaluate cyanide contamination and the presence of cyanide degrading bacteria (CDB). Free cyanide (F-CN) was detected in all samples, with concentrations varying from 0.023 to 0.9 mg kg(-1), and 0.7-23 μg L(-1) in the soil and water samples, respectively. Potential CDB also were present in the samples. To test the effective F-CN degradation capacity of the isolated CDB species, the species were cultivated in growth media containing 40, 60 or 80 mg F-CN L(-1), with or without nutrients, at pH 9.5 and at room temperature. More than 95% of F-CN was degraded within 25 h, and F-CN degradation was associated with bacterial growth and ammonium production. However, initial concentrations of F-CN higher than 100 mg L(-1) inhibited bacterial growth and cyanide degradation. Abiotic tests showed that less than 3% of F-CN was removed by volatilization. Thus, the degradation of F-CN occurred predominately by biological mechanisms, and such mechanisms are recommended for remediation of contaminated soil and water. The bacteria consortium used in the experiment described above exist in a Sahelian climate, which is characterized by a long hot and dry season. Because the bacteria are already adapted to the local climate conditions and show the potential for cyanide biodegradation, further applicability to other contaminated areas in West Africa, where illegal gold cyanidation is widespread, should be explored.
Collapse
Affiliation(s)
- Lovasoa Christine Razanamahandry
- International Institute for Water and Environmental Engineering (2iE), Department of Water and Sanitary Engineering, Laboratory of Water, Decontamination, Ecosystem and Health (LEDES), 01 PO Box 594, 01, Ouagadougou, Burkina Faso.
| | - Harinaivo Anderson Andrianisa
- International Institute for Water and Environmental Engineering (2iE), Department of Water and Sanitary Engineering, Laboratory of Water, Decontamination, Ecosystem and Health (LEDES), 01 PO Box 594, 01, Ouagadougou, Burkina Faso
| | - Hela Karoui
- International Institute for Water and Environmental Engineering (2iE), Department of Water and Sanitary Engineering, Laboratory of Water, Decontamination, Ecosystem and Health (LEDES), 01 PO Box 594, 01, Ouagadougou, Burkina Faso
| | - Koffi Marcelin Kouakou
- International Institute for Water and Environmental Engineering (2iE), Department of Water and Sanitary Engineering, Laboratory of Water, Decontamination, Ecosystem and Health (LEDES), 01 PO Box 594, 01, Ouagadougou, Burkina Faso
| | - Hamma Yacouba
- International Institute for Water and Environmental Engineering (2iE), Laboratory of Water Resource and Hydrology (LEAH), 01 PO Box 594, 01, Ouagadougou, Burkina Faso
| |
Collapse
|
34
|
Mekuto L, Ntwampe SKO, Kena M, Golela MT, Amodu OS. Free cyanide and thiocyanate biodegradation by Pseudomonas aeruginosa STK 03 capable of heterotrophic nitrification under alkaline conditions. 3 Biotech 2016; 6:6. [PMID: 28330076 PMCID: PMC4697911 DOI: 10.1007/s13205-015-0317-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022] Open
Abstract
An alkali-tolerant bacterium, Pseudomonas aeruginosa STK 03 (accession number KR011154), isolated from an oil spill site, was evaluated for the biodegradation of free cyanide and thiocyanate under alkaline conditions. The organism had a free cyanide degradation efficiency of 80 and 32 % from an initial concentration of 250 and 450 mg CN-/L, respectively. Additionally, the organism was able to degrade thiocyanate, achieving a degradation efficiency of 78 and 98 % from non- and free cyanide spiked cultures, respectively. The organism was capable of heterotrophic nitrification but was unable to denitrify aerobically. The organism was unable to degrade free cyanide in the absence of a carbon source, but it was able to degrade thiocyanate heterotrophically, achieving a degradation efficiency of 79 % from an initial concentration of 250 mg SCN-/L. Further increases in thiocyanate degradation efficiency were only observed when the cultures were spiked with free cyanide (50 mg CN-/L), achieving a degradation efficiency of 98 % from an initial concentration of 250 mg SCN-/L. This is the first study to report free cyanide and thiocyanate degradation by Pseudomonas aeruginosa. The higher free cyanide and thiocyanate tolerance of the isolate STK 03, which surpasses the stipulated tolerance threshold of 200 mg CN-/L for most organisms, could be valuable in microbial consortia for the degradation of cyanides in an industrial setting.
Collapse
Affiliation(s)
- Lukhanyo Mekuto
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000 South Africa
| | - Seteno Karabo Obed Ntwampe
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000 South Africa
| | - Margaret Kena
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000 South Africa
| | - Mhlangabezi Tolbert Golela
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000 South Africa
| | - Olusola Solomon Amodu
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000 South Africa
| |
Collapse
|
35
|
Luque-Almagro VM, Moreno-Vivián C, Roldán MD. Biodegradation of cyanide wastes from mining and jewellery industries. Curr Opin Biotechnol 2015; 38:9-13. [PMID: 26745356 DOI: 10.1016/j.copbio.2015.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
Abstract
Cyanide, one of the known most toxic chemicals, is widely used in mining and jewellery industries for gold extraction and recovery from crushed ores or electroplating residues. Cyanide toxicity occurs because this compound strongly binds to metals, inactivating metalloenzymes such as cytochrome c oxidase. Despite the toxicity of cyanide, cyanotrophic microorganisms such as the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 may use cyanide and its derivatives as a nitrogen source for growth, making biodegradation of cyanurated industrial waste possible. Genomic, transcriptomic and proteomic techniques applied to cyanide biodegradation ('cyan-omics') provide a holistic view that increases the global insights into the genetic background of cyanotrophic microorganisms that could be used for biodegradation of industrial cyanurated wastes and other biotechnological applications.
Collapse
Affiliation(s)
- Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
36
|
Luque-Almagro V, Escribano M, Manso I, Sáez L, Cabello P, Moreno-Vivián C, Roldán M. DNA microarray analysis of the cyanotroph Pseudomonas pseudoalcaligenes CECT5344 in response to nitrogen starvation, cyanide and a jewelry wastewater. J Biotechnol 2015; 214:171-81. [DOI: 10.1016/j.jbiotec.2015.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
|
37
|
Molecular cloning of rhodanese gene from soil metagenome of cold desert of North-West Himalayas: sequence and structural features of the rhodanese enzyme. 3 Biotech 2015; 5:513-521. [PMID: 28324556 PMCID: PMC4522728 DOI: 10.1007/s13205-014-0249-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022] Open
Abstract
Rhodanese is a multifunctional, sulfur transferase that catalyzes the detoxification of cyanide by sulphuration in a double displacement (ping pong) mechanistic reaction. In the present study, small-insert metagenomic library from soil sample collected from Ladakh (3,000–3,600 m.a.s.l) in northwestern Himalayas, India was constructed. Function-driven screening of ~8,500 colonies led to the isolation of one esterase-positive clone (clone-est) harboring 2.43 kb insert. Sequence analysis of the insert identified two ORF’s, phosM encoding phosphoesterase and rodM encoding rhodanese. The 800 bp rodM gene encoded a polypeptide of 227 amino acids (RodM). The RodM showed maximum homology with the rhodanese-like protein from Cyanobacterium synechococcus species with a score identity of only 51 %. Putative 3D structure of RodM developed by homology modeling resembles to homodimeric protein of SUD sulfur transferase of Wolinellasuccinogenes with properly structured active-site cysteine (Cys) residue. Rhodanese has been reported from few culturable microorganisms.
Collapse
|
38
|
Mekuto L, Ntwampe SKO, Jackson VA. Biodegradation of free cyanide and subsequent utilisation of biodegradation by-products by Bacillus consortia: optimisation using response surface methodology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10434-10443. [PMID: 25721526 DOI: 10.1007/s11356-015-4221-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
A mesophilic alkali-tolerant bacterial consortium belonging to the Bacillus genus was evaluated for its ability to biodegrade high free cyanide (CN(-)) concentration (up to 500 mg CN(-)/L), subsequent to the oxidation of the formed ammonium and nitrates in a continuous bioreactor system solely supplemented with whey waste. Furthermore, an optimisation study for successful cyanide biodegradation by this consortium was evaluated in batch bioreactors (BBs) using response surface methodology (RSM). The input variables, that is, pH, temperature and whey-waste concentration, were optimised using a numerical optimisation technique where the optimum conditions were found to be as follows: pH 9.88, temperature 33.60 °C and whey-waste concentration of 14.27 g/L, under which 206.53 mg CN(-)/L in 96 h can be biodegraded by the microbial species from an initial cyanide concentration of 500 mg CN(-)/L. Furthermore, using the optimised data, cyanide biodegradation in a continuous mode was evaluated in a dual-stage packed-bed bioreactor (PBB) connected in series to a pneumatic bioreactor system (PBS) used for simultaneous nitrification, including aerobic denitrification. The whey-supported Bacillus sp. culture was not inhibited by the free cyanide concentration of up to 500 mg CN(-)/L, with an overall degradation efficiency of ≥ 99 % with subsequent nitrification and aerobic denitrification of the formed ammonium and nitrates over a period of 80 days. This is the first study to report free cyanide biodegradation at concentrations of up to 500 mg CN(-)/L in a continuous system using whey waste as a microbial feedstock. The results showed that the process has the potential for the bioremediation of cyanide-containing wastewaters.
Collapse
Affiliation(s)
- Lukhanyo Mekuto
- Bioresource Engineering Research Group (BioERG), Department of Biotechnology, Cape Peninsula University of Technology, PO Box 652, Cape Town, 8000, South Africa
| | | | | |
Collapse
|
39
|
Zhang Y, Yu X, Wang Q, Jiang Z, Fang T. Adsorption of zinc onto anionic ion-exchange resin from cyanide barren solution. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2014.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Biodetoxification of cyanide-containing industrial wastewaters by Rhodococcus UKMP-5M. Biologia (Bratisl) 2015. [DOI: 10.2478/s11756-014-0487-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Nallapan Maniyam M, Sjahrir F, Latif Ibrahim A, Cass AEG. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:357-364. [PMID: 25723061 DOI: 10.1080/10934529.2015.987524] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.
Collapse
|
42
|
Mirizadeh S, Yaghmaei S, Ghobadi Nejad Z. Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM). JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:85. [PMID: 24921051 PMCID: PMC4036835 DOI: 10.1186/2052-336x-12-85] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 05/05/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Biodegradation of free cyanide from industrial wastewaters has been proven as a viable and robust method for treatment of wastewaters containing cyanide. RESULTS Cyanide degrading bacteria were isolated from a wastewater treatment plant for coke-oven-gas condensate by enrichment culture technique. Five strains were able to use cyanide as the sole nitrogen source under alkaline conditions and among them; one strain (C2) was selected for further studies on the basis of the higher efficiency of cyanide degradation. The bacterium was able to tolerate free cyanide at concentrations of up to 500 ppm which makes it a good potentially candidate for the biological treatment of cyanide contaminated residues. Cyanide degradation corresponded with growth and reached a maximum level 96% during the exponential phase. The highest growth rate (1.23 × 10(8)) was obtained on day 4 of the incubation time. Both glucose and fructose were suitable carbon sources for cyanotrophic growth. No growth was detected in media with cyanide as the sole carbon source. Four control factors including, pH, temperature, agitation speed and glucose concentration were optimized according to central composite design in response surface method. Cyanide degradation was optimum at 34.2°C, pH 10.3 and glucose concentration 0.44 (g/l). CONCLUSIONS Bacterial species degrade cyanide into less toxic products as they are able to use the cyanide as a nitrogen source, forming ammonia and carbon dioxide as end products. Alkaliphilic bacterial strains screened in this study evidentially showed the potential to possess degradative activities that can be harnessed to remediate cyanide wastes.
Collapse
Affiliation(s)
- Shabnam Mirizadeh
- Department of Chemical and Petroleum Engineering, Biotechnology Research Center, Sharif University of Technology, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering, Biotechnology Research Center, Sharif University of Technology, Tehran, Iran
| | - Zahra Ghobadi Nejad
- Department of Chemical and Petroleum Engineering, Biotechnology Research Center, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
43
|
Novak D, Franke-Whittle IH, Pirc ET, Jerman V, Insam H, Logar RM, Stres B. Biotic and abiotic processes contribute to successful anaerobic degradation of cyanide by UASB reactor biomass treating brewery waste water. WATER RESEARCH 2013; 47:3644-3653. [PMID: 23726700 DOI: 10.1016/j.watres.2013.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 03/02/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
In contrast to the general aerobic detoxification of industrial effluents containing cyanide, anaerobic cyanide degradation is not well understood, including the microbial communities involved. To address this knowledge gap, this study measured anaerobic cyanide degradation and the rearrangements in bacterial and archaeal microbial communities in an upflow anaerobic sludge blanket (UASB) reactor biomass treating brewery waste water using bio-methane potential assays, molecular profiling, sequencing and microarray approaches. Successful biogas formation and cyanide removal without inhibition were observed at cyanide concentrations up to 5 mg l(-1). At 8.5 mg l(-1) cyanide, there was a 22 day lag phase in microbial activity, but subsequent methane production rates were equivalent to when 5 mg l(-1) was used. The higher cumulative methane production in cyanide-amended samples indicated that part of the biogas was derived from cyanide degradation. Anaerobic degradation of cyanide using autoclaved UASB biomass proceeded at a rate more than two times lower than when UASB biomass was not autoclaved, indicating that anaerobic cyanide degradation was in fact a combination of simultaneous abiotic and biotic processes. Phylogenetic analyses of bacterial and archaeal 16S rRNA genes for the first time identified and linked the bacterial phylum Firmicutes and the archaeal genus Methanosarcina sp. as important microbial groups involved in cyanide degradation. Methanogenic activity of unadapted granulated biomass was detected at higher cyanide concentrations than reported previously for the unadapted suspended biomass, making the aggregated structure and predominantly hydrogenotrophic nature of methanogenic community important features in cyanide degradation. The combination of brewery waste water and cyanide substrate was thus shown to be of high interest for industrial level anaerobic cyanide degradation.
Collapse
Affiliation(s)
- Domen Novak
- E-Net Okolje, doo, Linhartova 13, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
|
46
|
Bacterial cyanide degradation is under review: Pseudomonas pseudoalcaligenes CECT5344, a case of an alkaliphilic cyanotroph. Biochem Soc Trans 2011; 39:269-74. [PMID: 21265786 DOI: 10.1042/bst0390269] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are thousands of areas in the U.S.A. and Europe contaminated with cyanide-containing wastes as a consequence of a large number of industrial activities such as gold mining, steel and aluminium manufacturing, electroplating and nitrile pesticides used in agriculture. Chemical treatments to remove cyanide are expensive and generate other toxic products. By contrast, cyanide biodegradation constitutes an appropriate alternative treatment. In the present review we provide an overview of how cells deal in the presence of the poison cyanide that irreversible binds to metals causing, among other things, iron-deprivation conditions outside the cell and metalloenzymes inhibition inside the cell. In this sense, several systems must be present in a cyanotrophic organism, including a siderophore-based acquisition mechanism, a cyanide-insensitive respiratory system and a cyanide degradation/assimilation pathway. The alkaliphilic autochthonous bacterium Pseudomonas pseudocaligenes CECT5344 presents all these requirements with the production of siderophores, a cyanide-insensitive bd-related cytochrome [Cio (cyanide-insensitive oxidase)] and a cyanide assimilation pathway that generates ammonium, which is further incorporated into organic nitrogen.
Collapse
|
47
|
Luque-Almagro VM, Merchán F, Blasco R, Igeño MI, Martínez-Luque M, Moreno-Vivián C, Castillo F, Roldán MD. Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate:quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain. MICROBIOLOGY-SGM 2010; 157:739-746. [PMID: 21178163 DOI: 10.1099/mic.0.045286-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from L-malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation in vivo. Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate:quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in P. pseudoalcaligenes CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.
Collapse
Affiliation(s)
- Victor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, 1a Planta, Universidad de Córdoba, Córdoba, Spain
| | - Faustino Merchán
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Rafael Blasco
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - M Isabel Igeño
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Manuel Martínez-Luque
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, 1a Planta, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, 1a Planta, Universidad de Córdoba, Córdoba, Spain
| | - Francisco Castillo
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, 1a Planta, Universidad de Córdoba, Córdoba, Spain
| | - M Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Edificio Severo Ochoa, 1a Planta, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
48
|
Zhang W, Liu W, Lv Y, Li B, Ying W. Enhanced carbon adsorption treatment for removing cyanide from coking plant effluent. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:135-140. [PMID: 20813456 DOI: 10.1016/j.jhazmat.2010.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 07/31/2010] [Accepted: 08/06/2010] [Indexed: 05/29/2023]
Abstract
Batch experiments were conducted to determine the effects of metal loading and fixing methods on the capacity of granular activated carbon (GAC) for removing cyanide from KCN (pH 11), K(3)Fe(CN)(6) solutions and several SCP effluent samples. KI fixed carbon (Cu/KI-GAC) was the most effective among the GAC samples tested. Adsorption was the primary mechanism of cyanide removal; catalytic oxidation of the adsorbed cyanide on carbon surface contributed a minor amount of the observed removal. Four small adsorbers containing the base GAC and 0-100% of Cu/KI-GAC were employed for treating a Fenton oxidized/precipitated SCP effluent sample. After the start-up period (<3-week) to establish the effective biological activated carbon (BAC) function in the adsorbers, the effluents became stable and met the discharge limits (COD(Cr)<50mg/L and TCN<0.5mg/L); with >30% Cu/KI-GAC in the adsorber, the effluent would meet the discharge limits during the start-up phase.
Collapse
Affiliation(s)
- Wei Zhang
- School of Resources and Environmental Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai 200237, China
| | - Wandong Liu
- School of Resources and Environmental Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai 200237, China
| | - Yan Lv
- School of Resources and Environmental Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai 200237, China
| | - Bingjing Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai 200237, China
| | - Weichi Ying
- School of Resources and Environmental Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
49
|
McLamore ES, Zhang W, Porterfield DM, Banks MK. Membrane-aerated biofilm proton and oxygen flux during chemical toxin exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7050-7057. [PMID: 20735036 DOI: 10.1021/es1012356] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bioreactors containing sessile bacteria (biofilms) grown on hollow fiber membranes have been used for treatment of many wastestreams. Real time operational control of bioreactor performance requires detailed knowledge of the relationship between bulk liquid water quality and physiological transport at the biofilm-liquid interface. Although large data sets exist describing membrane-aerated bioreactor effluent quality, very little real time data is available characterizing boundary layer transport under physiological conditions. A noninvasive, microsensor technique was used to quantify real time (≈1.5 s) changes in oxygen and proton flux for mature Nitrosomonas europaea and Pseudomonas aeruginosa biofilms in membrane-aerated bioreactors following exposure to environmental toxins. Stress response was characterized during exposure to toxins with known mode of action (chlorocarbonyl cyanide phenyl-hydrazone and potassium cyanide), and four environmental toxins (rotenone, 2,4-dinitrophenol, cadmium chloride, and pentachlorophenol). Exposure to sublethal concentrations of all environmental toxins caused significant increases in O(2) and/or H(+) flux (depending on the mode of action). These real time microscale signatures (i.e., fingerprints) of O(2) and H(+) flux can be coupled with bulk liquid analysis to improve our understanding of physiology in counter-diffusion biofilms found within membrane aerated bioreactors; leading to enhanced monitoring/modeling strategies for bioreactor control.
Collapse
Affiliation(s)
- E S McLamore
- Physiological Sensing Facility, Purdue University, 1203 West State Street, West Lafayette, Indiana 47907-2057, USA.
| | | | | | | |
Collapse
|
50
|
Huertas MJ, Sáez LP, Roldán MD, Luque-Almagro VM, Martínez-Luque M, Blasco R, Castillo F, Moreno-Vivián C, García-García I. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. JOURNAL OF HAZARDOUS MATERIALS 2010; 179:72-78. [PMID: 20346583 DOI: 10.1016/j.jhazmat.2010.02.059] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 05/29/2023]
Abstract
Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Volatilization of toxic hydrogen cyanide (HCN) was avoided by using an alkaline medium for the treatment. The operational procedure was optimized to assess cyanide biodegradation at variable pH values and dissolved oxygen concentrations. Using an initial pH of 10 without subsequent adjustment allowed total cyanide to be consumed at a mean rate of approximately 2.81 mg CN(-) L(-1) O.D.(-1) h(-1); however, these conditions posed a high risk of HCN formation. Cyanide consumption was found to be pH-dependent. Thus, no bacterial growth was observed with a controlled pH of 10; on the other hand, pH 9.5 allowed up to 2.31 mg CN(-) L(-1) O.D.(-1) h(-1) to be converted. The combination of a high pH and a low dissolved oxygen saturation (10%) minimized the release of HCN. This study contributes new basic knowledge about this biological treatment, which constitutes an effective alternative to available physico-chemical methods for the purification of wastewater containing cyanide or cyano-metal complexes.
Collapse
Affiliation(s)
- M J Huertas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla Avda Américo Vespucio, 49, 41092 Sevilla, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|