1
|
Smith JEG, Ashton JL, Argent LP, Cheyne JE, Montgomery JM. Recording plasticity in neuronal activity in the rodent intrinsic cardiac nervous system using calcium imaging techniques. Front Synaptic Neurosci 2023; 15:1104736. [PMID: 37082542 PMCID: PMC10110955 DOI: 10.3389/fnsyn.2023.1104736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
The intrinsic cardiac nervous system (ICNS) is composed of interconnected clusters of neurons called ganglionated plexi (GP) which play a major role in controlling heart rate and rhythm. The function of these neurons is particularly important due to their involvement in cardiac arrhythmias such as atrial fibrillation (AF), and previous work has shown that plasticity in GP neural networks could underpin aberrant activity patterns that drive AF. As research in this field increases, developing new techniques to visualize the complex interactions and plasticity in this GP network is essential. In this study we have developed a calcium imaging method enabling the simultaneous recording of plasticity in neuronal activity from multiple neurons in intact atrial GP networks. Calcium imaging was performed with Cal-520 AM labeling in aged spontaneously hypertensive rats (SHRs), which display both spontaneous and induced AF, and age-matched Wistar Kyoto (WKY) controls to determine the relationship between chronic hypertension, arrhythmia and GP calcium dynamics. Our data show that SHR GPs have significantly larger calcium responses to cholinergic stimulation compared to WKY controls, as determined by both higher amplitude and longer duration calcium responses. Responses were significantly but not fully blocked by hexamethonium, indicating multiple cholinergic receptor subtypes are involved in the calcium response. Given that SHRs are susceptible to cardiac arrhythmias, our data provide evidence for a potential link between arrhythmia and plasticity in calcium dynamics that occur not only in cardiomyocytes but also in the GP neurons of the heart.
Collapse
Affiliation(s)
- Joscelin E. G. Smith
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Pūtahi Manawa, Centre for Heart Research, Auckland, New Zealand
| | - Jesse L. Ashton
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Pūtahi Manawa, Centre for Heart Research, Auckland, New Zealand
| | - Liam P. Argent
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Pūtahi Manawa, Centre for Heart Research, Auckland, New Zealand
| | | | - Johanna M. Montgomery
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Pūtahi Manawa, Centre for Heart Research, Auckland, New Zealand
- *Correspondence: Johanna M. Montgomery,
| |
Collapse
|
2
|
Stoyek MR, Hortells L, Quinn TA. From Mice to Mainframes: Experimental Models for Investigation of the Intracardiac Nervous System. J Cardiovasc Dev Dis 2021; 8:149. [PMID: 34821702 PMCID: PMC8620975 DOI: 10.3390/jcdd8110149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
The intracardiac nervous system (IcNS), sometimes referred to as the "little brain" of the heart, is involved in modulating many aspects of cardiac physiology. In recent years our fundamental understanding of autonomic control of the heart has drastically improved, and the IcNS is increasingly being viewed as a therapeutic target in cardiovascular disease. However, investigations of the physiology and specific roles of intracardiac neurons within the neural circuitry mediating cardiac control has been hampered by an incomplete knowledge of the anatomical organisation of the IcNS. A more thorough understanding of the IcNS is hoped to promote the development of new, highly targeted therapies to modulate IcNS activity in cardiovascular disease. In this paper, we first provide an overview of IcNS anatomy and function derived from experiments in mammals. We then provide descriptions of alternate experimental models for investigation of the IcNS, focusing on a non-mammalian model (zebrafish), neuron-cardiomyocyte co-cultures, and computational models to demonstrate how the similarity of the relevant processes in each model can help to further our understanding of the IcNS in health and disease.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
| | - Luis Hortells
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg–Bad Krozingen, 79110 Freiburg, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
- School of Biomedical Engineering, Dalhousie University, Halifax, NS 15000, Canada
| |
Collapse
|
3
|
Grassam-Rowe A, Ou X, Lei M. Novel cardiac cell subpopulations: Pnmt-derived cardiomyocytes. Open Biol 2020; 10:200095. [PMID: 32810421 PMCID: PMC7479933 DOI: 10.1098/rsob.200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/29/2020] [Indexed: 11/12/2022] Open
Abstract
Diversity among highly specialized cells underlies the fundamental biology of complex multi-cellular organisms. One of the essential scientific questions in cardiac biology has been to define subpopulations within the heart. The heart parenchyma comprises specialized cardiomyocytes (CMs). CMs have been canonically classified into a few phenotypically diverse subpopulations largely based on their function and anatomic localization. However, there is growing evidence that CM subpopulations are in fact numerous, with a diversity of genetic origin and putatively different roles in physiology and pathophysiology. In this chapter, we introduce a recently discovered CM subpopulation: phenylethanolamine-N-methyl transferase (Pnmt)-derived cardiomyocytes (PdCMs). We discuss: (i) canonical classifications of CM subpopulations; (ii) discovery of PdCMs; (iii) Pnmt and the role of catecholamines in the heart; similarities and dissimilarities of PdCMs and canonical CMs; and (iv) putative functions of PdCMs in both physiological and pathological states and future directions, such as in intra-cardiac adrenergic signalling.
Collapse
Affiliation(s)
| | - Xianghong Ou
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical University, Luzhou 6400, People's Republic of China
| |
Collapse
|
4
|
Richards EM, McElhaney E, Zeringue K, Joseph S, Keller-Wood M. Transcriptomic evidence that cortisol alters perinatal epicardial adipose tissue maturation. Am J Physiol Endocrinol Metab 2019; 317:E573-E585. [PMID: 31322429 PMCID: PMC6842920 DOI: 10.1152/ajpendo.00007.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cortisol administration during late gestation in ewes, modeling maternal stress, resulted in transcriptomic changes suggesting altered maturation and metabolic changes to the offspring heart. This study investigates the effects of cortisol on epicardial adipose tissue (EAT), a visceral fat pad associated with adverse cardiovascular conditions in adults. Pregnant ewes were treated with either 1 mg·kg-1·day-1 cortisol from 115 days gestation to term and EAT collected from term fetuses (control: n = 8, maternal cortisol 1 mg·kg-1·day-1: n = 6). To compare the effects of cortisol to the normal maturation in EAT, we also modeled the normal changes in gene expression in EAT at the transition from in utero to postnatal life using the EAT from control fetuses and from two-week-old lambs (control: n = 7). Transcriptomic modeling was used to identify pathways altered by maternal cortisol overexposure. Transcriptomic modeling confirmed the brown fat phenotype of EAT at term and a transition toward white fat at 2 wk of age in EAT of control fetuses/lambs and highlighted a role of immune responses, including complement coagulation, and serotonin in this transition. Maternal cortisol (1 mg·kg-1·day-1) increased the lipid peroxidation product 4-hydroxynonenal in EAT of term fetuses but did not affect the number of activated macrophages or size of the lipid droplets in the depot; transcriptomics suggested an earlier metabolic maturation of EAT via, in part, increased immune responses.
Collapse
Affiliation(s)
- Elaine M Richards
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Emily McElhaney
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Katelyn Zeringue
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | - Serene Joseph
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | | |
Collapse
|
5
|
Chottova Dvorakova M, Mistrova E, Paddenberg R, Kummer W, Slavikova J. Substance P Receptor in the Rat Heart and Regulation of Its Expression in Long-Term Diabetes. Front Physiol 2018; 9:918. [PMID: 30057556 PMCID: PMC6053525 DOI: 10.3389/fphys.2018.00918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Substance P (SP) is a neuropeptide engaged in the signal transmission of neural C fibers afferents in the myocardium. The actions of SP in the heart are extensive and they are mediated by the neurokinin 1 receptor (NK1R), a member of the tachykinin subfamily of G-protein coupled receptors. The receptors have been found in the heart, but to our knowledge, their exact localization in the heart has not been described yet. Here, we investigated the presence of NK1R protein in separate rat heart compartments by means of western blot and its tissue distribution by means of immunofluorescence. Specificity of NK1R immunolabeling was controlled by preabsorption of the antiserum with its corresponding peptide. Additionally, we investigated abundance of gene for NK1R in separated heart chambers by means of quantitative real-time PCR (RT-PCR). Relative abundance of NK1R mRNA was expressed as a ratio of target gene Cq value to Cq value of control gene - beta-actin. Finally, we studied abundance of NK1R mRNA in different cell types of heart isolated by laser capture microdissection. Immunofluorescence showed NK1R immunoreactivity on the surface of some intracardiac neurons and smooth muscle cells of coronary vessels. The results of quantitative RT-PCR indicate abundance of mRNA for NK1R in all heart chambers with highest level in the left atrium. The presence of NK1R mRNA was detected in some samples of dissected intracardiac neurons, but not in cardiomyocytes or smooth muscle cells of coronary vessels. In the course of long-term diabetes, a significant downregulation of the NK1R mRNA was seen in the right atrium and upregulation in the right ventricle 53 weeks after the induction of diabetes. Our results indicate localization of NK1R in some intracardiac neurons and smooth muscle cells. Impaired transcription of the NK1R gene in the diabetic heart may be induced by unidentified genes or factors involved in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Magdalena Chottova Dvorakova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Eliska Mistrova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Renate Paddenberg
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Slavikova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
6
|
Ashton JL, Burton RAB, Bub G, Smaill BH, Montgomery JM. Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation. Front Physiol 2018; 9:240. [PMID: 29615932 PMCID: PMC5869186 DOI: 10.3389/fphys.2018.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/06/2018] [Indexed: 12/30/2022] Open
Abstract
Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic neurons are clustered in stellate and cervical ganglia alongside the spinal cord and extend fibers to the heart directly innervating the myocardium. These neurons are major drivers of hyperactive sympathetic activity observed in heart disease, ventricular arrhythmias, and sudden cardiac death. Both pre- and postsynaptic changes have been observed to occur at synapses formed by sympathetic ganglion neurons, suggesting that plasticity at sympathetic neuro-cardiac synapses is a major contributor to arrhythmias. Less is known about the plasticity in parasympathetic neurons located in clusters on the heart surface. These neuronal clusters, termed ganglionated plexi, or “little brains,” can independently modulate neural control of the heart and stimulation that enhances their excitability can induce arrhythmia such as atrial fibrillation. The ability of these neurons to alter parasympathetic activity suggests that plasticity may indeed occur at the synapses formed on and by ganglionated plexi neurons. Such changes may not only fine-tune autonomic innervation of the heart, but could also be a source of maladaptive plasticity during atrial fibrillation.
Collapse
Affiliation(s)
- Jesse L Ashton
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Gil Bub
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Bruce H Smaill
- Department of Physiology, University of Auckland, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
7
|
Jarkovska D, Bludovska M, Mistrova E, Krizkova V, Kotyzova D, Kubikova T, Slavikova J, Erek SN, Djordjevic A, Chottova Dvorakova M. Expression of classical mediators in hearts of rats with hepatic dysfunction. Can J Physiol Pharmacol 2017; 95:1351-1359. [PMID: 28746816 DOI: 10.1139/cjpp-2017-0060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Liver cirrhosis is associated with impairment of cardiovascular function including alterations of the heart innervation, humoral and nervous dysregulation, changes in systemic circulation and electrophysiological abnormalities. Choline acetyltransferase (ChAT), enzyme forming acetylcholine, tyrosine hydroxylase (TH), and dopamine-β-hydroxylase (DBH), enzymes participating in noradrenaline synthesis, are responsible for the production of classical neurotransmitters, and atrial natriuretic peptide (ANP) is produced by cardiomyocytes. The aim of this study was to evaluate the influence of experimentally induced hepatic dysfunction on the expression of proANP, ChAT, TH, and DBH in the heart. Hepatic dysfunction was induced by application of thioacetamide (TAA) or by ligation of bile duct. Biochemical parameters of hepatic injury and levels of peroxidation in the liver and heart were measured. Liver enzymes measured in the plasma were significantly elevated. Cardiac level of peroxidation was increased in operated but not TAA group animals. In the left atrium of operated rats, the expression of TH and DBH was lower, while expression of ChAT remained unchanged. In TAA group, no significant differences in the expression of the genes compared to controls were observed. Liver injury induced by ligation leads to an imbalance in the intracardiac innervation, which might impair nervous control of the heart.
Collapse
Affiliation(s)
- Dagmar Jarkovska
- a Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic.,b Department of Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic
| | - Monika Bludovska
- a Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic.,c Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic
| | - Eliska Mistrova
- a Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic.,b Department of Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic
| | - Vera Krizkova
- d Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Lidicka 1, Pilsen 323 00, Czech Republic
| | - Dana Kotyzova
- c Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic
| | - Tereza Kubikova
- a Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic.,d Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Lidicka 1, Pilsen 323 00, Czech Republic
| | - Jana Slavikova
- a Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic
| | - Sumeyye Nur Erek
- b Department of Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic
| | - Aleksandar Djordjevic
- b Department of Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic
| | - Magdalena Chottova Dvorakova
- a Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic.,b Department of Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen 323 00, Czech Republic
| |
Collapse
|
8
|
Pauziene N, Rysevaite-Kyguoliene K, Alaburda P, Pauza AG, Skukauskaite M, Masaityte A, Laucaityte G, Saburkina I, Inokaitis H, Plisiene J, Pauza DH. Neuroanatomy of the Pig Cardiac Ventricles. A Stereomicroscopic, Confocal and Electron Microscope Study. Anat Rec (Hoboken) 2017; 300:1756-1780. [DOI: 10.1002/ar.23619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Neringa Pauziene
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | | | - Paulius Alaburda
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Audrys G. Pauza
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Monika Skukauskaite
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Aiste Masaityte
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Goda Laucaityte
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Inga Saburkina
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Hermanas Inokaitis
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Jurgita Plisiene
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Dainius H. Pauza
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| |
Collapse
|
9
|
Wake E, Brack K. Characterization of the intrinsic cardiac nervous system. Auton Neurosci 2016; 199:3-16. [DOI: 10.1016/j.autneu.2016.08.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
|
10
|
Pauziene N, Alaburda P, Rysevaite-Kyguoliene K, Pauza AG, Inokaitis H, Masaityte A, Rudokaite G, Saburkina I, Plisiene J, Pauza DH. Innervation of the rabbit cardiac ventricles. J Anat 2015; 228:26-46. [PMID: 26510903 DOI: 10.1111/joa.12400] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 11/28/2022] Open
Abstract
The rabbit is widely used in experimental cardiac physiology, but the neuroanatomy of the rabbit heart remains insufficiently examined. This study aimed to ascertain the architecture of the intrinsic nerve plexus in the walls and septum of rabbit cardiac ventricles. In 51 rabbit hearts, a combined approach involving: (i) histochemical acetylcholinesterase staining of intrinsic neural structures in total cardiac ventricles; (ii) immunofluorescent labelling of intrinsic nerves, nerve fibres (NFs) and neuronal somata (NS); and (iii) transmission electron microscopy of intrinsic ventricular nerves and NFs was used. Mediastinal nerves access the ventral and lateral surfaces of both ventricles at a restricted site between the root of the ascending aorta and the pulmonary trunk. The dorsal surface of both ventricles is supplied by several epicardial nerves extending from the left dorsal ganglionated nerve subplexus on the dorsal left atrium. Ventral accessing nerves are thicker and more numerous than dorsal nerves. Intrinsic ventricular NS are rare on the conus arteriosus and the root of the pulmonary trunk. The number of ventricular NS ranged from 11 to 220 per heart. Four chemical phenotypes of NS within ventricular ganglia were identified, i.e. ganglionic cells positive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and biphenotypic, i.e. positive for both ChAT/nNOS and for ChAT/tyrosine hydroxylase. Clusters of small intensely fluorescent cells are distributed within or close to ganglia on the root of the pulmonary trunk, but not on the conus arteriosus. The largest and most numerous intrinsic nerves proceed within the epicardium. Scarce nerves were found near myocardial blood vessels, but the myocardium contained only a scarce meshwork of NFs. In the endocardium, large numbers of thin nerves and NFs proceed along the bundle of His and both its branches up to the apex of the ventricles. The endocardial meshwork of fine NFs was approximately eight times denser than the myocardial meshwork. Adrenergic NFs predominate considerably in all layers of the ventricular walls and septum, whereas NFs of other neurochemical phenotypes were in the minority and their amount differed between the epicardium, myocardium and endocardium. The densities of NFs positive for nNOS and ChAT were similar in the epicardium and endocardium, but NFs positive for nNOS in the myocardium were eight times more abundant than NFs positive for ChAT. Potentially sensory NFs positive for both calcitonin gene-related peptide and substance P were sparse in the myocardial layer, but numerous in epicardial nerves and particularly abundant within the endocardium. Electron microscopic observations demonstrate that intrinsic ventricular nerves have a distinctive morphology, which may be attributed to remodelling of the peripheral nerves after their access into the ventricular wall. In conclusion, the rabbit ventricles display complex structural organization of intrinsic ventricular nerves, NFs and ganglionic cells. The results provide a basic anatomical background for further functional analysis of the intrinsic nervous system in the cardiac ventricles.
Collapse
Affiliation(s)
- Neringa Pauziene
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulius Alaburda
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Audrys G Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hermanas Inokaitis
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aiste Masaityte
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gabriele Rudokaite
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Inga Saburkina
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Plisiene
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
11
|
Abstract
Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.
Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure.
Collapse
Affiliation(s)
- Wohaib Hasan
- Knight Cardiovascular Institute; Oregon Health & Science University; Portland, OR USA
| |
Collapse
|
12
|
Zarzoso M, Rysevaite K, Milstein ML, Calvo CJ, Kean AC, Atienza F, Pauza DH, Jalife J, Noujaim SF. Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function. Cardiovasc Res 2013; 99:566-75. [PMID: 23559611 DOI: 10.1093/cvr/cvt081] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Pulmonary vein ganglia (PVG) are targets for atrial fibrillation ablation. However, the functional relevance of PVG to the normal heart rhythm remains unclear. Our aim was to investigate whether PVG can modulate sinoatrial node (SAN) function. METHODS AND RESULTS Forty-nine C57BL and seven Connexin40+/EGFP mice were studied. We used tyrosine-hydroxylase (TH) and choline-acetyltransferase immunofluorescence labelling to characterize adrenergic and cholinergic neural elements. PVG projected postganglionic nerves to the SAN, which entered the SAN as an extensive, mesh-like neural network. PVG neurones were adrenergic, cholinergic, and biphenotypic. Histochemical characterization of two human embryonic hearts showed similarities between mouse and human neuroanatomy: direct neural communications between PVG and SAN. In Langendorff perfused mouse hearts, PVG were stimulated using 200-2000 ms trains of pulses (300 μs, 400 µA, 200 Hz). PVG stimulation caused an initial heart rate (HR) slowing (36 ± 9%) followed by acceleration. PVG stimulation in the presence of propranolol caused HR slowing (43 ± 13%) that was sustained over 20 beats. PVG stimulation with atropine progressively increased HR. Time-course effects were enhanced with 1000 and 2000 ms trains (P < 0.05 vs. 200 ms). In optical mapping, PVG stimulation shifted the origin of SAN discharges. In five paroxysmal AF patients undergoing pulmonary vein ablation, application of radiofrequency energy to the PVG area during sinus rhythm produced a decrease in HR similar to that observed in isolated mouse hearts. CONCLUSION PVG have functional and anatomical biphenotypic characteristics. They can have significant effects on the electrophysiological control of the SAN.
Collapse
Affiliation(s)
- Manuel Zarzoso
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Stress-triggered changes in peripheral catecholaminergic systems. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:359-97. [PMID: 24054153 DOI: 10.1016/b978-0-12-411512-5.00017-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sympathetic nervous system not only regulates cardiovascular and metabolic responses to stress but also is altered by stress. The sympathoneural and sympathoadrenomedullary systems are modified by different metabolic pathways and have different responses to short- and to long-term stressors. Stress also induces nonneuronal catecholamine enzymes, primarily through corticosteroids. Catecholamine synthetic enzymes are induced by different pathways in response to short- and long-term acting stressors, like cold exposure or immobilization, and differently in the sympathetic ganglia and the adrenal medulla. However, a long-term exposure to one stressor can increase the response to a second, different stressor. Tyrosine hydroxylase gene transcription increases after only 5min of immobilization through phosphorylation of CREB, but this response is short lived. However, repeated stress gives a longer-lived response utilizing transcription factors such as Egr-1 and Fra-2. Glucocorticoids and ACTH also induce sympathoneural enzymes leading to distinct patterns of short-term and long-lived activation of the sympathetic nervous system. Nonneuronal phenylethanolamine N-methyltransferase (PNMT) develops early in the heart and then diminishes. However, intrinsic cardiac adrenergic cells remain and nonneuronal PNMT is present in many cells of the adult organism and increases in response to glucocorticoids. Both stress-induced and administered glucocorticoids induce fetal PNMT and hypertension. Human stressors such as caring for an ill spouse or sleep apnea cause a persistent increase in blood norepinephrine, increased blood pressure, and downregulated catecholamine receptors. Hypertension is associated with a loss of slow-wave sleep, when sympathetic nerve activity is lowest. These findings indicate that stress-induced alteration of the sympathetic nervous system occurs in man as in experimental animals.
Collapse
|
14
|
Palomar AR, Larios BN, De Sánchez VC, Pérez LM, López FDLC, Flores G, Gómez-Villalobos MDJ. Expression and distribution of dopamine transporter in cardiac tissues of the guinea pig. Neurochem Res 2010; 36:399-405. [PMID: 21170736 DOI: 10.1007/s11064-010-0344-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
Dopamine transporter (DAT) is a membrane protein that it is a marker for dopaminergic neurons. In the present work, throught Western blot and autoradiographic studies with a selective ligand for DAT ([(3)H] WIN-35428) and noradrenaline transporter (NET) ([(3)H] Nisoxetine), we search the expression and distribution of DAT in comparison with NET, in cardiac tissue of guinea pig in order to support the presence of dopaminergic nerve cells into the heart. Expression of DAT, and NET were evidenced by a bands of 75 and 54 kDa, respectively in the heart. Binding for DAT and NET were found in the four cardiac chambers. However, DAT show heterogeneous distribution with binding in right atria and in both ventricles, whereas NET show homogenous distribution in the four cardiac chambers. The results show the expression of DAT in cardiac tissues with a different distribution compared with NET, being an evidence for the presence of dopaminergic nerve cells into the heart.
Collapse
Affiliation(s)
- Alejandro Reynoso Palomar
- Instituto de Fisiología, Universidad Autonoma de Puebla, 14 Sur 6301, San Manuel, CP 72570, Puebla, Puebla, Mexico
| | | | | | | | | | | | | |
Collapse
|
15
|
Crocker CB, Kovera MB. The effects of rehabilitative voir dire on juror bias and decision making. LAW AND HUMAN BEHAVIOR 2010; 34:212-226. [PMID: 19644740 DOI: 10.1007/s10979-009-9193-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 07/09/2009] [Indexed: 05/28/2023]
Abstract
During voir dire, judges frequently attempt to "rehabilitate" venirepersons who express an inability to be impartial. Venirepersons who agree to ignore their biases and base their verdict on the evidence and the law are eligible for jury service. In Experiment 1, biased and unbiased mock jurors participated in either a standard or rehabilitative voir dire conducted by a judge and watched a trial video. Rehabilitation influenced insanity defense attitudes and perceptions of the defendant's mental state, and decreased scaled guilt judgments compared to standard questioning. Although rehabilitation is intended to correct for partiality among biased jurors, rehabilitation similarly influenced biased and unbiased jurors. Experiment 2 found that watching rehabilitation did not influence jurors' perceptions of the judge's personal beliefs about the case.
Collapse
Affiliation(s)
- Caroline B Crocker
- Department of Psychology, John Jay College of Criminal Justice, City University of New York, 445 W. 59th Street, New York, NY 10019, USA.
| | | |
Collapse
|
16
|
Florencio Gama E, Maria Santarém J, Aparecido Liberti E, Jacob Filho W, de Souza RR. Exercise changes the size of cardiac neurons and protects them from age-related neurodegeneration. Ann Anat 2010; 192:52-7. [DOI: 10.1016/j.aanat.2009.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/12/2009] [Accepted: 09/08/2009] [Indexed: 11/29/2022]
|
17
|
Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 2009; 89:535-606. [PMID: 19342614 DOI: 10.1152/physrev.00042.2006] [Citation(s) in RCA: 360] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct stressful stimuli.
Collapse
Affiliation(s)
- Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
18
|
Bao X, Liu F, Gu Y, Lu CM, Ziegler MG. Impaired Chronotropic Response to Exercise in Mice Lacking Catecholamines in Adrenergic Cells. Ann N Y Acad Sci 2008; 1148:297-301. [DOI: 10.1196/annals.1410.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Hasan W, Smith PG. Modulation of rat parasympathetic cardiac ganglion phenotype and NGF synthesis by adrenergic nerves. Auton Neurosci 2008; 145:17-26. [PMID: 19019738 DOI: 10.1016/j.autneu.2008.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/22/2008] [Accepted: 10/09/2008] [Indexed: 01/14/2023]
Abstract
Cardiac function is regulated by interactions among intrinsic and extrinsic autonomic neurons, and the mechanisms responsible for organizing these circuits are poorly understood. Parasympathetic neurons elsewhere synthesize the neurotrophin NGF, which may promote postganglionic axonal associations where parasympathetic axons inhibit sympathetic transmitter release. Previous studies have shown that parasympathetic NGF content and neurochemical phenotype are regulated by sympathetic innervation. In this study we assessed contributions of sympathetic input on cardiac ganglion neuronal phenotype and NGF expression. Because cardiac ganglia are reported to contain putative noradrenergic neurons, we eliminated sympathetic input both surgically (extrinsic) and chemically (extrinsic plus intrinsic). In controls, most cardiac ganglion neurons expressed vesicular acetylcholine transporter, frequently colocalized with vesicular monoamine transporter, but lacked catecholamine histofluorescence. Most cardiac ganglion neurons expressed NGF transcripts, and 40% contained mature and 47% proNGF immunoreactivity. Guanethidine treatment for 7 days decreased numbers of neurons expressing vesicular acetylcholine transporter, NGF transcripts and NGF immunoreactivity, but did not affect proNGF or vesicular monoamine transporter immunoreactivity. Stellate ganglionectomy had comparable effects on neurochemical phenotype and mature NGF immunoreactivity, but proNGF expression was additionally reduced. These findings show that individual cardiac ganglion neurons display markers of both cholinergic and noradrenergic transmission. Sympathetic noradrenergic innervation maintains levels of cholinergic but not noradrenergic marker protein. Sympathetic innervation also promotes cardiac ganglion neuronal NGF synthesis. Because chemical blockade of all noradrenergic transmission is no more effective than extrinsic sympathectomy, local intrinsic noradrenergic transmission is not a factor in regulating ganglion neuron phenotype.
Collapse
Affiliation(s)
- Wohaib Hasan
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | |
Collapse
|
20
|
Yoshimoto M, Wehrwein EA, Novotny M, Swain GM, Kreulen DL, Osborn JW. Effect of stellate ganglionectomy on basal cardiovascular function and responses to beta1-adrenoceptor blockade in the rat. Am J Physiol Heart Circ Physiol 2008; 295:H2447-54. [PMID: 18931026 DOI: 10.1152/ajpheart.00958.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac sympathetic nerve activity is an important short-term controller of cardiac function and arterial pressure. Studies also suggest that long-term increases in cardiac sympathetic nerve activity may contribute to hypertension, coronary artery disease, and cardiac remodeling in heart failure. However, our understanding of the role of cardiac sympathetic nerves in chronic models of cardiovascular disease has been limited by inadequate experimental approaches. The present study was conducted to develop a surgical method to surgically denervate the sympathetic nerves of the rat heart for long-term cardiovascular studies. We characterized the effect of cardiac sympathetic denervation on basal levels of mean arterial pressure (MAP) and heart rate (HR) and the responses to a chronic administration of atenolol, a beta1-adrenoceptor antagonist. Rats were instrumented with telemetry transmitters for continuous recording of MAP and HR. After a 4-day baseline period, the rats were subjected to bilateral stellate ganglionectomy (SGX; n=9) or sham surgery (Sham; n=8). Seven days following SGX or Sham, the rats were administered atenolol for 5 days, followed by a 7-day recovery period. Following a transient decrease, SGX had no effect on basal MAP but decreased HR compared with baseline and Sham rats. Five days of atenolol treatment decreased MAP similarly in SGX and Sham rats. Atenolol resulted in a marked bradycardia in Sham rats but had a neglible effects on HR in SGX rats. The measurement of the content of cardiac catecholamines in all cardiac chambers at the end of the study verified a successful sympathetic denervation. This study confirms that bilateral SGX is a useful method to study the contribution of cardiac sympathetic nerves on the regulation of cardiac function. Moreover, these results suggest that cardiac sympathetic nerves are relatively unimportant in maintaining the basal level of MAP or the depressor response to atenolol in conscious, unrestrained rats.
Collapse
Affiliation(s)
- Misa Yoshimoto
- Department of Integrative Biology and Physiology, University of Minneapolis, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wehrwein EA, Parker LM, Wright AA, Spitsbergen JM, Novotny M, Babankova D, Swain GM, Habecker BA, Kreulen DL. Cardiac norepinephrine transporter protein expression is inversely correlated to chamber norepinephrine content. Am J Physiol Regul Integr Comp Physiol 2008; 295:R857-63. [PMID: 18565836 DOI: 10.1152/ajpregu.00190.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac neuronal norepinephrine (NE) transporter (NET) in sympathetic neurons is responsible for uptake of released NE from the neuroeffector junction. The purpose of this study was to assess the chamber distribution of cardiac NET protein measured using [(3)H]nisoxetine binding in rat heart membranes and to correlate NE content to NET amount. In whole mounts of atria, NET was colocalized in nerve fibers with tyrosine hydroxylase (TH) immunoreactivity. NE content expressed as micrograms NE per gram tissue was lowest in the ventricles; however, NET binding was significantly higher in the left ventricle than the right ventricle and atria (P < 0.05), resulting in a significant negative correlation (r(2) = 0.922; P < 0.05) of NET to NE content. The neurotoxin 6-hydroxydopamine, an NET substrate, reduced NE content more in the ventricles than the atria, demonstrating functional significance of high ventricular NET binding. In summary, there is a ventricular predominance of NET binding that corresponds to a high NE reuptake capacity in the ventricles, yet negatively correlates to tissue NE content.
Collapse
Affiliation(s)
- Erica A Wehrwein
- Dept. of Physiology, Michigan State Univ., East Lansing, MI 48823, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Choate JK, Murphy SM, Feldman R, Anderson CR. Sympathetic control of heart rate in nNOS knockout mice. Am J Physiol Heart Circ Physiol 2007; 294:H354-61. [PMID: 17951372 DOI: 10.1152/ajpheart.00898.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of neuronal nitric oxide synthase (nNOS) in cardiac postganglionic sympathetic neurons leads to enhanced cardiac sympathetic responsiveness in normal animals, as well as in animal models of cardiovascular diseases. We used isolated atria from mice with selective genetic disruption of nNOS (nNOS(-/-)) and their wild-type littermates (WT) to investigate whether sympathetic heart rate (HR) responses were dependent on nNOS. Immunohistochemistry was initially used to determine the presence of nNOS in sympathetic [tyrosine hydroxylase (TH) immunoreactive] nerve terminals in the mouse sinoatrial node (SAN). After this, the effects of postganglionic sympathetic nerve stimulation (1-10 Hz) and bath-applied norepinephrine (NE; 10(-8)-10(-4) mol/l) on HR were examined in atria from nNOS(-/-) and WT mice. In the SAN region of WT mice, TH and nNOS immunoreactivity was virtually never colocalized in nerve fibers. nNOS(-/-) atria showed significantly reduced HR responses to sympathetic nerve activation and NE (P < 0.05). Similarly, the positive chronotropic response to the adenylate cyclase activator forskolin (10(-7)-10(-5) mol/l) was attenuated in nNOS(-/-) atria (P < 0.05). Constitutive NOS inhibition with L-nitroarginine (0.1 mmol/l) did not affect the sympathetic HR responses in nNOS(-/-) and WT atria. The paucity of nNOS in the sympathetic innervation of the mouse SAN, in addition to the attenuated HR responses to neuronal and applied NE, indicates that presynaptic sympathetic neuronal NO does not modulate neuronal NE release and SAN pacemaking in this species. It appears that genetic deletion of nNOS results in the inhibition of adrenergic-adenylate cyclase signaling within SAN myocytes.
Collapse
Affiliation(s)
- J K Choate
- Department of Physiology, School of Biomedical Sciences, Monash University, 3800 Australia.
| | | | | | | |
Collapse
|
23
|
Abstract
Plasma levels of norepinephrine and epinephrine were measured in 84 patients aged 56 +/- 9 (mean +/- SD) years with chronic ischemic heart disease (IHD), anterior acute myocardial infarction (AMI), posterior AMI, acute or chronic IHD associated with various types of electrical instability and in the control subjects. During the first day of hospitalization, plasma epinephrine levels were higher in patients with AMI in both localizations and chronic IHD in comparison with control values. There were no significant differences in plasma epinephrine levels among these groups of patients. However, in the same time period, plasma norepinephrine concentrations in patients with chronic IHD and posterior AMI did not differ from the control values; in patients with anterior AMI they reached by approximately 60% higher values than in the control group. Moreover, all myocardial lesions showing different types of electrical instability were associated with increased plasma levels of both norepinephrine and epinephrine. In conclusion, high plasma levels of epinephrine may result from sympathoadrenal activation. High plasma levels of norepinephrine in patients with anterior AMI and no change in patients with posterior AMI suggest a rather myocardial than an extramyocardial origin of plasma norepinephrine level in anterior AMI. Norepinephrine released from the ischemic area might contribute to the electrical instability of the myocardium and generation of dysrrhythmias.
Collapse
Affiliation(s)
- Jana Slavíková
- Department of Physiology, Medical School and Teaching Hospital, Plzen, Charles University, Czech Republic.
| | | | | |
Collapse
|
24
|
Krizanova O, Myslivecek J, Tillinger A, Jurkovicova D, Kubovcakova L. Adrenergic and calcium modulation of the heart in stress: from molecular biology to function. Stress 2007; 10:173-84. [PMID: 17514586 DOI: 10.1080/10253890701305754] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is strong evidence about the importance of catecholamines and calcium signaling in heart function. Also, interaction of these two systems is well documented. Catecholamines signal through adrenergic receptors, and further activate calcium transport either from the extracellular space, or from the intracellular calcium stores. This review summarizes current knowledge on catecholamine production in the heart, with special focus on the final enzyme in the catecholamine synthesizing pathway, phenylethanolamine N-methyltransferase (PNMT), in different cell types in the heart. Further, signaling through different types of adrenergic receptors in physiological conditions and after exposure to different stressors is discussed. Also, part of this review considers activation of an intracellular calcium transport system via inositol 1,4,5-trisphosphate receptor and to possible functional consequences in control and stress conditions.
Collapse
Affiliation(s)
- O Krizanova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
25
|
Tillinger A, Novakova M, Pavlovicova M, Lacinova L, Zatovicova M, Pastorekova S, Krizanova O, Kvetnansky R. Modulation by 6-hydroxydopamine of expression of the phenylethanolamine N-methyltransferase (PNMT) gene in the rat heart during immobilization stress. Stress 2006; 9:207-13. [PMID: 17175506 DOI: 10.1080/10253890601069385] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Phenylethanolamine N-methyltransferase (PNMT) is the final enzyme in the catecholamine synthesizing cascade that converts noradrenaline (NA) to adrenaline (Adr). Both of these catecholamines are physiologically important hormones and neurotransmitters in mammals with profound influence on the activity of the cardiovascular system. Although PNMT activity and gene expression have been reported in the neonatal and also adult rat heart, little is known about the identity of the cells expressing PNMT mRNA. In this study, we have shown that besides PNMT in neuronal and intrinsic cardiac cells, this enzyme is expressed also in rat cardiomyocytes, as shown by immunofluorescence in isolated cardiomyocytes. To determine which cells in the heart more sensitively show stress-induced changes in PNMT mRNA expression, we performed chemical sympathectomy by administration of 6-hydroxydopamine (6-OHDA), which destroys catecholaminergic terminals. We determined PNMT mRNA levels in the left atria and ventricles of control and stressed rats. In the rats treated with 6-OHDA, PNMT mRNA levels were not changed under normal, physiological conditions compared to vehicle treated rats. Similar results were observed on isolated cardiomyocytes from control and 6-OHDA treated rats. However, 6-OHDA treatment prevented immobilization-induced increase in PNMT mRNA expression. The results allow us to propose that in the heart, the immobilization-induced increase in PNMT gene expression is probably not in cardiomyocytes, but in neuronal cells.
Collapse
Affiliation(s)
- A Tillinger
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06, Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yasuhara O, Matsuo A, Bellier JP, Aimi Y. Demonstration of Choline Acetyltransferase of a Peripheral Type in the Rat Heart. J Histochem Cytochem 2006; 55:287-99. [PMID: 17142806 DOI: 10.1369/jhc.6a7092.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic innervation of the heart has been analyzed using cholinergic markers including acetylcholinesterase, choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). In the present study we demonstrate putative cholinergic nerves in the rat heart using an antibody to ChAT of a peripheral type (pChAT), which is the product of a splice variant of ChAT mRNA and preferentially localized to peripheral cholinergic nerves. Expression of mRNAs for pChAT and the conventional form of ChAT (cChAT) were verified in the rat atrium by RT-PCR. Localization of both protein products in the atrium was confirmed by Western blotting. Virtually all neurons and small intensely fluorescent cells in the intrinsic cardiac ganglia were stained immunohistochemically for pChAT. The density of pChAT-positive fibers was very high in the conducting system, high in both atria, the right atrium in particular, and low in the ventricular walls. pChAT and VAChT immunoreactivities were closely associated in some fibers and fiber bundles in the ventricular walls. These results indicate that intrinsic cardiac neurons homogeneously express both pChAT and cChAT. Furthermore, innervation of the ventricular walls by pChAT- and VAChT-positive fibers provides morphological evidence for a significant role of cholinergic mechanisms in ventricular functions.
Collapse
Affiliation(s)
- Osamu Yasuhara
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| | | | | | | |
Collapse
|
27
|
Slavikova J, Dvorakova M, Reischig J, Palkovits M, Ondrias K, Tarabova B, Lacinova L, Kvetnansky R, Marks A, Krizanova O. IP3 type 1 receptors in the heart: Their predominance in atrial walls with ganglion cells. Life Sci 2006; 78:1598-602. [PMID: 16223514 DOI: 10.1016/j.lfs.2005.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 07/22/2005] [Indexed: 11/19/2022]
Abstract
Previously we have shown that inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are abundantly expressed in the atria of rat hearts. Since arrangement of atria is very heterogeneous, in this work we focused on the precise localization of IP3 receptors in the left atrium, where the gene expression of the type 1 IP3R was the highest. The mRNA levels of the IP3 type 1 receptors in the left atrium, left ventricle and myocytes were determined using real-time polymerase chain reaction and Taqman probe. For precise localization, immunohistochemistry with the antibody against type 1 IP3Rs was performed. The mRNA of type 1 IP3 receptor was more than three times higher in the left atrium than in the left ventricle, as determined by real-time PCR. Expression of the type 1 IP3 receptor mRNA was higher in the atria, especially in parts containing cardiac ganglion cells. The atrial auricles, which are particularly free of ganglion cells, and the ventricles (wall of the right and left ventricle and ventricular septum) contained four to five times less IP3 receptors than atrial samples with ganglia. IP3R type 1 immunoreactivity detected by a confocal microscope attributed the most condensed signal on ganglionic cells, although light immunoreactivity was also seen in cardiomyocytes. These results show that type 1IP3 receptors predominate in intrinsic neuronal ganglia of cardiac atria.
Collapse
MESH Headings
- Animals
- Calcium Channels/analysis
- Calcium Channels/genetics
- Ganglia, Parasympathetic/chemistry
- Ganglia, Parasympathetic/cytology
- Ganglia, Parasympathetic/metabolism
- Gene Expression
- Heart/innervation
- Heart Atria/innervation
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate Receptors
- Male
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/genetics
Collapse
Affiliation(s)
- J Slavikova
- Faculty of Medicine, Charles University, Plzen, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kuncová J, Svíglerová J, Tonar Z, Slavíková J. Heterogenous changes in neuropeptide Y, norepinephrine and epinephrine concentrations in the hearts of diabetic rats. Auton Neurosci 2005; 121:7-15. [PMID: 15955747 DOI: 10.1016/j.autneu.2005.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/24/2005] [Accepted: 05/01/2005] [Indexed: 11/25/2022]
Abstract
The changes in concentrations of neuropeptide Y (NPY), norepinephrine and epinephrine were investigated in the rat hearts 1, 2, 4, 6, 9 and 12 months after administration of streptozotocin (STZ; 65 mg/kg i.v.). About 30% of diabetic animals displayed symptoms of partial spontaneous recovery, i.e. decreasing blood glucose levels and increasing insulin concentrations in the plasma and pancreas. NPY concentrations in the atria of diabetic rats did not differ from those in age-matched control rats 1, 2, 4, 6 months in the right atria and even 9 months after STZ in the left atria. However, uncompensated diabetes led to a significant decrease in NPY levels 9 and 12 months after STZ administration in the right and left atria, respectively. In the ventricles, NPY concentrations were significantly decreased 6 months after the onset of diabetes. Interestingly, partial spontaneous recovery of diabetes was associated with increased NPY levels in the atria. Myocardial norepinephrine concentrations increased 1 month after STZ and then declined reaching approximately 60% of the respective control values 12 months after the onset of the disease. Partial spontaneous recovery of diabetes had no effect on norepinephrine concentrations. Myocardial epinephrine concentrations did not differ from those found in controls till month 9 of the disease and they became significantly lower at month 12. Partial recovery of diabetes resulted in epinephrine concentrations not differing from the control values at month 12 of diabetes. Regarding to preferential localization of norepinephrine in the sympathetic postganglionic fibers and that of NPY also in intrinsic ganglion neurons, intrinsic neuronal circuits seem to be less susceptible to STZ-induced damage than extrinsic nerves and they might be able to recover after amelioration of diabetes.
Collapse
Affiliation(s)
- Jitka Kuncová
- Department of Physiology, Faculty of Medicine, Charles University, Lidická 1, 301 66 Plzen, Czech Republic.
| | | | | | | |
Collapse
|
29
|
Kvetnansky R, Micutkova L, Kubovcakova L, Sabban EL, Palkovits M, Krizanova O. Localization and regulation of phenylethanolamine N-methyltransferase gene expression in the heart of rats and mice during stress. Ann N Y Acad Sci 2004; 1018:405-17. [PMID: 15240396 DOI: 10.1196/annals.1296.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recently we have described the existence of phenylethanolamine N-methyltransferase (PNMT) mRNA in the heart of adult rats. In this study, we report the first data on distribution of the PNMT protein in rat hearts, which follows the distribution of PNMT mRNA (high levels in the atria and low levels in ventricles). The main aim of this study was to determine the localization of the PNMT mRNA in the heart and to examine whether gene expression of this enzyme is affected by immobilization (IMO) stress in a time-dependent manner. PNMT mRNA levels were detected in all seven studied parts of the heart (atria without and with intramural ganglion cells, ventricles, and septum), with the highest levels in the left atrium and its ganglionic part. Both Southern blot and sequencing verified the specificity of PNMT detected by RT-PCR. Single IMO for 2-h increased gene expression of PNMT, as determined by both RT-PCR and Real-Time PCR in the right and left atria. Surprisingly, the ganglionic parts of the atria did not respond to stress stimulation. Peak levels of PNMT mRNA were found in the 3-h interval after the IMO terminated, and also 24 h after the first or sixth IMO. Expression of aromatic L-amino acids decarboxylase and dopamine-beta-hydroxylase has also been detected in the heart of control and stressed rats. In the atria, the effect of stress is clearly modulated by glucocorticoids, since in mice with corticotrophin-releasing hormone knocked out gene the immobilization-induced increase in the PNMT mRNA levels seen in wild-type animals was abolished. Thus, our data have shown that gene expression of the PNMT is localized, not predominantly in cardiac ganglion cells, but in a wide range in atrial cardiomyocytes. Mechanism responsible for the regulation of stress-induced increase of PNMT gene expression in cardiac atria is clearly dependent on the presence of glucocorticoids.
Collapse
Affiliation(s)
- Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|